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Anterior talofibular ligament (ATFL) injuries are common ankle injuries that require accurate grading 
for effective treatment planning. However, conventional diagnostic methods, including manual 
MRI interpretation, often lack objectivity and reproducibility. Radiomics, a technique that extracts 
quantitative features from medical images, offers a promising solution for enhancing diagnostic 
precision. This study developed a radiomics model based on MRI fat-suppressed proton density-
weighted turbo spin-echo images to grade ATFL injuries. A dataset of 467 arthroscopically confirmed 
cases (276 partial tears, 191 complete tears) was analyzed, and 28 key features were selected for model 
construction using machine learning classifiers. The support vector machine (SVM) model achieved the 
best performance, with an AUC of 0.955 (95% CI: 0.931–0.980) on the training set and 0.844 (95% CI: 
0.781–0.906) on the validation set. Decision curve analysis and confusion matrix results demonstrated 
the model’s strong predictive accuracy and clinical utility. This SVM-based radiomics model offers a 
reliable, non-invasive approach for precise ATFL injury diagnosis and grading, with significant potential 
for improving clinical decision-making and personalized treatment.
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Ankle sprains represent one of the most prevalent joint injuries, contributing to approximately 40% of all sports-
related injuries1. Epidemiological studies indicate that ankle sprains have a prevalence of 10% in both males 
and females, with a notably higher incidence among soccer and basketball players2,3. The anterior talofibular 
ligament (ATFL) is the most frequently injured ligament on the lateral side of the ankle joint. Without timely and 
appropriate treatment, such injuries can progress to chronic ankle instability (CAI), a condition that significantly 
affects long-term mobility and quality of life4. Studies report that 5–33% of patients with ankle injuries continue 
to experience pain one year after the initial injury. Moreover, up to 33% of these patients report at least one 
recurrence, often accompanied by the development of CAI within three years5. Therefore, early and accurate 
diagnosis of ATFL injuries is crucial for effective treatment and prevention of long-term complications.

Clinically, the diagnosis of ankle sprains primarily relies on physical examination, including the anterior 
drawer and talar tilt tests, supplemented by imaging modalities for confirmation. Among these, ultrasonography 
has been reported as the most sensitive and specific technique for diagnosing lateral ankle ligament injuries, 
providing a dynamic, real-time, and cost-effective alternative to magnetic resonance imaging (MRI)6. However, 
MRI remains widely utilized due to its superior soft tissue contrast and accessibility. MRI is well-established 
as a precise, reliable, and effective imaging modality for evaluating ankle ligament injuries7. Studies indicate 
that MRI demonstrates a sensitivity of 82.1% for acute ATFL injuries and 86.3% for chronic ATFL injuries, 
highlighting its critical role in the diagnostic workflow of ATFL pathology8.

In recent years, advancements in artificial intelligence and medical imaging technologies have propelled the 
emerging field of radiomics into widespread clinical applications. Radiomics focuses on the high-throughput 
extraction of quantitative features from medical images, enabling the development of models for disease 
diagnosis and therapeutic efficacy assessment9. In this study, we developed a radiomics-based predictive model 
leveraging MRI data to assess its clinical utility in diagnosing ATFL injuries.
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Data and methods
Study design
This retrospective study was performed in line with the principles of the Declaration of Helsinki and approved 
by the Medical Ethics Committee of Wangjing Hospital of China Academy of Chinese Medical Sciences (IRB 
No. WJEC-KT-2021-041-P003), and all patients voluntarily signed an informed consent form. All data used 
in this study were obtained from the electronic medical records, spanning from May 2019 to September 2024, 
and were kept strictly confidential. Clinical data, including age, sex, history of ankle sprain, and affected side, 
were collected for each patient. Patients were classified into an ATFL partial tear group or a complete tear group 
according to arthroscopic findings10. Blinded to the imaging and clinicopathological data, the patients were 
randomly allocated to either a training set or a validation set in a 7:3 ratio. The Flowchart is shown in Fig. 1.

Inclusion and exclusion criteria
This study retrospectively analyzed transverse fat-suppressed proton density-weighted turbo spin-echo (FS-
PDw-TSE) of 467 patients with ATFL injuries, confirmed through ankle arthroscopy. Inclusion criteria: (1) 
between the ages of 18 and 50; (2) ATFL injuries confirmed through arthroscopic examination and identified 
on 3.0 T MRI scans; (3) complete clinical records; (4) intact cognitive function with ability to cooperate during 
MRI procedures. Indications for arthroscopy: (1) chronic or recurrent ankle instability, characterized by 
recurrent sprains, chronic pain, or functional impairment, that has not improved despite at least 3–6 months of 
conservative treatment; (2) MRI and physical examination findings indicating a grade 3 ATFL tear (complete 
rupture) or other intra-articular pathologies, such as cartilage or osteochondral damage, which require surgical 
confirmation and treatment. Exclusion criteria: (1) prior ipsilateral ligament surgery; (2) conditions such as 
rheumatoid arthritis, osteoarthritis, ankle fractures, malignant tumors, or other diseases affecting ankle 
symptoms; (3) severe cardiovascular or other systemic diseases, or contraindications to MRI.

Examination method
A 3.0 T MRI system (Magnetom Skyra, Siemens Healthcare, Erlangen, Germany) was utilized, with patients 
positioned supine, ensuring the affected ankle joint remained in a naturally straight posture. Imaging 
was performed using an ankle-specific coil with a transverse FS-PDw-TSE (TR 2,390 ms, TE 48 ms, FOV 
180 × 180 mm, spacing between slices 0.3 mm, and slice thickness 3 mm). Based on the imaging characteristics of 
ATFL and clinical expertise, transverse images provide the clearest visualization of the ligament. Consequently, 
the grade of ATFL damage was assessed primarily using transverse FS-PDw-TSE, which was the focus of this 
study11.

Region of interest segmentation
The region of interest (ROI) was manually segmented layer by layer using 3D Slicer software (Version 5.6.2, 
https://www.slicer.org). To evaluate the intra- and inter-class correlation coefficients (ICC) for feature extraction, 
MRI images of 30 patients were randomly selected. Two radiologists independently segmented the ligaments on 
transverse FS-PDw-TSE to delineate the ROI; after a one-week interval, Physician A re-segmented the ROI 
for the same 30 patients to assess inter- and intra-observer consistency and repeatability. Physician A then 
completed the ROI segmentation for the remaining 437 patients. The MRI appearances of ATFL tears at different 
grades are shown in Fig. 2.

Fig. 1.  Flowchart illustrating the study design.
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Radiomics feature extraction
Radiomics features were extracted from the manually delineated ROI using PyRadiomics (Version 2.7.7, Python 
3.7.3). The extracted radiomics features included the gray-level co-occurrence matrix (GLCM), gray-level 
size zone matrix (GLSZM), gray-level run-length matrix (GLRLM), neighboring gray-tone difference matrix 
(NGTDM), gray-level dependence matrix (GLDM), as well as first-order and shape-based features.

Radiomics feature screening
To mitigate the risk of overfitting due to an excessive number of features, data dimensionality reduction and 
feature screening were systematically conducted in a stepwise manner. Initially, features demonstrating high 
reproducibility (ICC > 0.75) were retained for subsequent analysis12. The process for selecting significant 
radiomics features involved multiple steps: First, Z-score standardization was applied to normalize feature 
magnitudes, scaling the data to a mean of 0 and variance of 1. Next, independent sample t-tests were conducted 
for initial screening, retaining features with P < 0.05. Subsequently, Pearson correlation coefficients were 
calculated for highly reproducible features, retaining those with coefficients greater than 0.9. Finally, the Least 
Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was employed to identify critical 
features from each set. Cross-validation and penalty parameter adjustment were used to compress the coefficients 
of unstable and redundant features to zero, ultimately retaining highly relevant radiomics features with nonzero 
coefficients13.

Radiomics models development and validation
The final set of radiomics features was applied using seven machine learning models: Support Vector Machine 
(SVM), K-Nearest Neighbor, Random Forest, Extra Trees, Light Gradient Boosting Machine, Multilayer 
Perceptron, and Logistic Regression, to construct radiomics models. Receiver Operating Characteristic (ROC) 
curves were plotted, and metrics such as the area under the curve (AUC), accuracy, specificity, sensitivity, positive 
predictive value (PPV), and negative predictive value (NPV) were computed to assess the models’ diagnostic 
performance. The best-performing models were identified based on their AUC values in the validation set. 
Decision Curve Analysis (DCA) was conducted to assess the clinical utility of the predictive models. A confusion 
matrix was generated to evaluate the predictive model’s accuracy in identifying ATFL injuries.

Statistical analysis
Statistical analyses were conducted using Python 3.7.3. Continuous variables were assessed for normality. Data 
following a normal distribution were reported as mean ± standard deviation (SD) and compared between groups 
using an independent samples t-test. Non-normally distributed data were expressed as median (interquartile 
range) and analyzed using the two-sample rank-sum test. Categorical variables were described as frequencies 
and compared between groups using the chi-square test or Fisher’s exact test, as appropriate. A p-value of < 0.05 
was considered statistically significant.

Fig. 2.  Sample images for ATFL injuries. (A) Normal ATFL. (B) ROI outline of ATFL. (C) Partial tear of the 
ATFL. (D) Complete tear of the ATFL.
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Results
General information
A total of 467 patients with ATFL injuries were included in the study. Based on arthroscopic findings, 276 patients 
were classified into the partial tear group, and 191 were categorized into the complete tear group. The patients 
were randomly allocated into a training set and a validation set at a ratio of 7:3. The training set consisted of 
326 patients, comprising 196 cases of partial tear and 130 cases of complete tear. The validation set included 141 
patients, with 80 cases of partial tear and 61 cases of complete tear. No significant differences were observed in 
baseline characteristics, including gender, age, history of ankle sprain, and affected side, between the two groups 
(P > 0.05), indicating comparability. Refer to Table 1 for detailed baseline characteristics.

Results of screening radiomics features
A total of 1,197 original radiomics features were extracted, comprising 286 GLCM features, 208 GLSZM features, 
208 GLRLM features, 65 NGTDM features, 182 GLDM features, 233 first-order features, and 15 shape features, 
as illustrated in Fig. 3A and B. Features with an ICC > 0.75 were initially screened, resulting in 906 radiomics 
features, which were subsequently t-tested, yielding 678 features. When applying a Pearson correlation coefficient 
threshold of 0.9, the feature set was reduced to 201 features. LASSO cross-validation further downscaled the 
feature set, as depicted in Fig. 3C and D. A final set of 28 features was selected for constructing radiomics models, 
including 8 GLCM features, 7 GLSZM features, 2 NGTDM features, 10 first-order features, and 1 shape feature, 
as presented in Fig. 3E.

Radiomics model development and validation
SVM, K-Nearest Neighbor, Random Forest, Extra Trees, Light Gradient Boosting Machine, Multilayer 
Perceptron, and Logistic Regression machine learning models were employed for constructing and training 
radiomics models. The performance of these models was evaluated on the training set. The SVM classifier was 
ultimately chosen to develop the optimal MRI-based radiomics model, as illustrated in Fig. 4. The SVM model 
achieved an AUC of 0.955 (95% CI: 0.931–0.980) on the training set and 0.844 (95% CI: 0.781–0.906) on the 
validation set. The AUC, sensitivity, specificity, accuracy, PPV, and NPV for various models on the training and 
validation sets are detailed in Table 2.

The final selected radiomics features were linearly combined based on their respective coefficient weightings 
to calculate the rad-score, and radiomics bar graphs were generated. The results demonstrated that the SVM 
model exhibited strong predictive performance in grading ATFL injuries in both the training and validation sets, 
as shown in Fig. 5A and B. DCA revealed that the SVM model achieved a high net clinical benefit ratio in both 
the training and validation sets, as depicted in Fig. 5C and D. Additionally, the confusion matrix was used to test 
the classification accuracy of the SVM model. The SVM model demonstrated an accuracy of 91.3% (179/196) in 
diagnosing partial tears and 91.5% (119/130) in identifying complete tears in the training set. In the validation 
set, the accuracy was 81.3% (65/80) for partial tears and 68.9% (42/61) for complete tears. Detailed results are 
presented in Fig. 5E and F.

Discussion
ATFL injury is the most common ligament injury in the ankle joint. Without timely treatment, complications 
such as CAI and cartilage damage may arise14. Currently, ATFL injury is primarily diagnosed through physical 
examination of the ankle joint and imaging studies. While arthroscopy remains the gold standard for diagnosing 
ATFL injuries, it is an invasive procedure associated with surgical risks, anesthetic complications, and economic 
burdens, making it unsuitable as a routine diagnostic method15. Consequently, MRI is widely utilized for 
diagnosing ATFL injuries, despite the increasing clinical recognition of ultrasonography as a valuable alternative. 
MRI enables staging of the injury into partial and complete tears based on ligament continuity, alignment, and 
adhesion to surrounding tissues16. However, challenges arise when ATFL injuries are accompanied by edema, 
intra-synovial hemorrhage, or coexisting injuries, as well as partial volume effects caused by surrounding 
adipose tissue, which can obscure the grading of ligament damage. Radiomics, however, allows for the extraction 
of numerous deep and quantitative imaging features from medical data17.

Category Partial tear group (n = 276) Complete tear group (n = 191) P value

Training set (n = 326)

 Age (Years) 34.5 ± 10.9 33.6 ± 12.3 0.49

 Sex (Male/Female) 104/92 67/63 0.88

 Side (Left/Right) 95/101 55/75 0.33

 History of ankle sprain (Yes/No) 132/64 82/48 0.84

Validation set (n = 141)

 Age (Years) 35.6 ± 12.9 34.8 ± 11.9 0.99

 Sex (Male/Female) 44/36 29/32 0.48

 Side (Left/Right) 38/42 33/28 0.54

 History of ankle sprain (Yes/No) 52/28 37/24 0.76

Table 1.  Baseline characteristics of patients.
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In this study, using MRI radiomics techniques, 28 features indicative of ATFL injury were identified, 
predominantly comprising GLCM, GLSZM, and First-Order features. The GLCM captures the probability 
distribution of gray-level pairs at specific distances and orientations within an image. GLCM-derived texture 
features, which are interpretable and effective, have been employed to identify ROI and classify tendinopathy 
images18,19. Additionally, GLCM demonstrates a strong correlation with bone morphometry20. This study 
demonstrates that GLCM plays a vital role in identifying ligament injuries. By quantifying textural features (e.g., 
contrast, homogeneity) and directional changes in ligament tissues, GLCM sensitively detects microstructural 
abnormalities, facilitating early diagnosis and treatment efficacy assessment21. The GLSZM quantifies the size 
of pixel regions with the same gray level that are spatially adjacent, capturing the texture consistency and non-
periodic characteristics of the image22. Ligament injuries often involve structural changes such as edema, fiber 
disruption, or scar formation17. GLSZM effectively quantifies texture consistency and heterogeneity across 
different regions, enabling the detection of subtle structural alterations. First-order features represent the most 
fundamental statistical descriptors in radiomics, characterizing pixel intensity distributions within an image, 
such as mean, standard deviation, skewness, and kurtosis23. Unlike texture features, first-order features are 
independent of spatial relationships and are derived directly from pixel intensity statistics. The mean value 

Fig. 3.  Radiomics feature screening and results. (A) Classification of original radiomics features. (B) 
Distribution of original radiomics features. (C) Graph of LASSO 10-fold cross-validation regression. (D) 
Convergence graph of radiomics features of LASSO regression. (E) Features used to construct the radiomics 
model.
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of first-order features reflects the overall signal intensity of ligaments, which may vary due to injury-related 
changes such as edema, fibrosis, or other tissue alterations. The standard deviation indicates variations in local 
density distribution, highlighting increased tissue heterogeneity24. In summary, GLCM, GLSZM, and first-order 
features play a significant role in the diagnosis of ligament injuries.

The findings of this study indicate that the SVM-based radiomics model exhibits high sensitivity, specificity, 
and net clinical benefit in diagnosing ATFL injuries. SVM is a supervised machine learning algorithm that learns 
from data to make decisions25. The fundamental concept of SVM is to identify a hyperplane that maximizes 
classification boundaries for optimal separation in binary classification problems. By leveraging the “kernel 
trick,” SVM can handle nonlinear problems by mapping data to a high-dimensional space where it becomes 
linearly separable26. SVM excels in high-dimensional spaces, demonstrating robustness by relying solely on 
support vector points, thereby avoiding overfitting. It is widely utilized in medical image analysis, anomaly 
detection, and other fields, serving as a powerful tool in machine learning27. SVM is extensively applied in 
musculoskeletal disorders, with numerous studies focusing on diagnosing and predicting outcomes for injuries 
such as those of the anterior cruciate ligament28,29 and the medial patellofemoral ligament30. Moreover, its 
application in diagnosing ankle ligament injuries has gained increasing attention.

Artificial intelligence is increasingly being utilized in the diagnosis of ligament injuries, with machine 
learning and deep learning methods gaining attention for their potential applications in the assessment of 
ATFL injuries. Yan W et al.17 achieved high-accuracy binary classification of ATFL injuries using intelligent 
localization and SVM. Their method involved feature point extraction with the DRLSE algorithm to locate the 

Model Group AUC(95%CI) Sensitivity Specificity Accuracy PPV NPV

Support Vector Machine Train 0.955(0.931-980) 0.915 0.913 0.914 0.875 0.942

Support Vector Machine Test 0.844(0.781–0.906) 0.770 0.762 0.766 0.712 0.813

K-Nearest Neighbor Train 0.901(0.869-0933) 0.408 1.000 0.764 1.000 0.718

K-Nearest Neighbor Test 0.799(0.726–0.871) 0.557 0.850 0.723 0.739 0.716

Random Forest Train 0.938(0.914–0.962) 0.838 0.872 0.859 0.813 0.891

Random Forest Test 0.852(0.790–0.914) 0.705 0.850 0.787 0.782 0.791

Extra Trees Train 0.875(0.835–0.915) 0.823 0.791 0.804 0.723 0.871

Extra Trees Test 0.787(0.712–0.861) 0.672 0.775 0.730 0.695 0.756

Light Gradient Boosting Machine Train 0.943(0.920–0.966) 0.885 0.893 0.890 0.846 0.921

Light Gradient Boosting Machine Test 0.839(0.774–0.905) 0.639 0.912 0.794 0.848 0.768

Multilayer Perceptron Train 0.928(0.902–0.955) 0.869 0.847 0.856 0.790 0.907

Multilayer Perceptron Test 0.851(0.790–0.912) 0.902 0.687 0.780 0.687 0.902

Logistic Regression Train 0.899(0.865–0.932) 0.862 0.770 0.807 0.713 0.893

Logistic Regression Test 0.846(0.785–0.907) 0.934 0.562 0.723 0.620 0.918

Table 2.  Diagnostic performance of various radiomics models in training and validation set. AUC, the area 
under the curve; PPV, positive predictive value; NPV, negative predictive value.

 

Fig. 4.  ROC curves for different machine learning models. (A) ROC curve for the training set. (B) ROC curve 
for the validation set; SVM, Support Vector Machine; KNN, K-Nearest Neighbor; LightGBM, Light Gradient 
Boosting Machine; MLP, Multilayer Perceptron; LR, Logistic Regression.
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ATFL region, combined with first-order grayscale and second-order texture features, highlighting its automation 
and suitability for small sample datasets. This study utilized a larger sample size and a more comprehensive set 
of radiomics features to develop an SVM model capable of graded diagnosis for partial and complete ATFL 
tears. Multidimensional evaluation metrics verified the model’s predictive efficacy and clinical utility, surpassing 
existing studies in both diagnostic depth and clinical applicability. Astolfi RS et al.31 explored small-sample 
data enhancement and feature extraction techniques to achieve binary classification of ATFL injuries using a 
random forest classifier. However, their study lacked graded diagnosis, limiting its clinical applicability. This 
study integrates large-sample multidimensional feature analysis and graded diagnosis, significantly improving 

Fig. 5.  Radiomics score histograms, DCA curves, and confusion matrices of the SVM model. (A) SVM bar 
graph for the training set. (B) SVM bar graph for the validation set. (C) DCA curve of the SVM model in the 
training set. (D) DCA curve of the SVM model in the validation set. (E) Confusion matrix of the SVM model 
in the training set. (F) Confusion matrix of the SVM model in the validation set.
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the model’s accuracy and clinical utility. It offers valuable support for fine-grained diagnosis and optimization 
of treatment plans for ATFL injuries. Ni M et al.32 employed a deep learning approach to classify ATFL injuries, 
utilizing data from 1,073 patients. The model demonstrated superior performance in an external validation 
cohort, achieving AUCs as high as 0.89–0.99, outperforming radiologists. However, its interpretability remains 
limited. In contrast, this study leverages radiomics combined with SVM, offering enhanced interpretability 
that allows clinicians to understand model decisions while providing graded diagnostic support for partial and 
complete ATFL tears. Additionally, our method is computationally efficient, well-suited for small datasets, and 
easily deployable in resource-limited healthcare settings. Moreover, we incorporate DCA to quantify the clinical 
utility of the model, further reinforcing its practical value.

This study has several limitations. First, while this study included imaging data from 467 arthroscopic 
examinations, it was conducted as a single-center retrospective study. The lack of external validation highlights 
the need for larger datasets and multicenter sources to enhance the reliability and clinical applicability of 
radiomics studies. Second, radiomics features in this study were exclusively extracted from transverse FS-
PDw-TSE. Future studies should incorporate 3D-MRI, which can provide superior anatomical detail and 
enhance the accuracy of ligament injury detection10. This approach may improve the diagnostic performance 
and applicability of radiomics-based models. Third, this study primarily analyzed imaging data and did not 
incorporate clinical characteristics of patients. As a result, predictive models incorporating clinical features were 
not developed. Future research should integrate clinical data to improve diagnostic and therapeutic strategies 
for ATFL injuries33. Finally, as this was a retrospective study, we could not ensure that all transverse slices were 
perfectly parallel to the ATFL. Additionally, this study did not exclude individuals with increased lateral ankle 
laxity due to inadequate initial treatment, nor did it assess its relationship with MRI findings34.

This study demonstrated excellent diagnostic performance by leveraging MRI-extracted radiomic features 
and an SVM classifier to construct a predictive model for ATFL injury identification, offering valuable insights 
into the diagnosis and management of ankle injuries while equipping clinicians with an objective and accurate 
diagnostic tool.

Data availability
The raw data underlying this study are available from the corresponding author upon reasonable request.
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