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Simple Summary: Brain cancers, such as gliomas, are very difficult to detect because of their
localization and late onset of symptoms. Here, we have developed a novel cancer detection
method based on plasma denaturation profiles obtained by a non-conventional use of Differential
Scanning Fluorimetry. Using blood samples from glioma patients and healthy controls, we show
that their denaturation profiles can be automatically distinguished with the help of machine
learning algorithms with 92% accuracy. This promising approach can now be extended to other
types of cancers and could become a powerful pan-cancer diagnostic and monitoring tool requiring
only a simple blood test.

Abstract: Glioblastoma is the most frequent and aggressive primary brain tumor. Its diagnosis is
based on resection or biopsy that could be especially difficult and dangerous in the case of deep
location or patient comorbidities. Monitoring disease evolution and progression also requires
repeated biopsies that are often not feasible. Therefore, there is an urgent need to develop
biomarkers to diagnose and follow glioblastoma evolution in a minimally invasive way. In the
present study, we described a novel cancer detection method based on plasma denaturation
profiles obtained by a non-conventional use of differential scanning fluorimetry. Using blood
samples from 84 glioma patients and 63 healthy controls, we showed that their denaturation
profiles can be automatically distinguished with the help of machine learning algorithms with 92%
accuracy. Proposed high throughput workflow can be applied to any type of cancer and could
become a powerful pan-cancer diagnostic and monitoring tool requiring only a simple blood test.
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1. Introduction

Diffuse gliomas are the most frequent and aggressive primary brain tumors in adults.
Currently, no curative treatment is available despite the association of surgical resection,
radiotherapy and chemotherapy as first-line treatment [1]. Another major challenge in
glioma patient management is obtaining timely and precise histological and molecular
characterization of the tumor in order to establish diagnosis and orient treatment. However,
biopsies of these tumors could be impossible due to their deep or diffuse location or due
to patient comorbidities. In these cases, treatment would be chosen based on MRI neuro-
imaging characteristics that are often insufficient. Thus, non-invasive biomarkers to detect
gliomas are critically needed. Moreover, because repeated biopsies to document disease
evolution is impossible, the optimization of patient follow-up is also necessary. Currently,
the evaluation of patients under treatment is based on MRI, steroid dose and clinical
examination, which are often difficult to interpret after radiotherapy, anti-angiogenic
therapy or immunotherapy [2,3]. Finally, an accurate and timely detection of the disease
recurrence is crucial to optimize the therapeutic options and to improve patients’ treatment
and quality of life. Thus, there is an urgent need in the neuro-oncology field to design new
easy-to-use methods that are less invasive than histological examination and more efficient
than neuroimaging in order to help patient diagnosis and to follow disease progression.

Over the last decade, several teams have shown that differential scanning calorimetry
(DSC), a biophysical method used to study thermal denaturation of proteins [4,5], could
be potentially used to detect a number of diseases including diabetes, Lyme disease, and
several types of cancer [6]. Indeed, applying DSC directly to biofluids, such as serum,
plasma or cerebro-spinal fluid (CSF), resulted in reproducible denaturation profiles specific
to the clinical state of an individual [6]. The observed differences in denaturation profiles
of biofluids from healthy controls and patients could be explained by changes in ther-
mostability of the most abundant proteins or by the change in their relative concentrations.
Independent of the underlying molecular mechanisms resulting in this change, the denatu-
ration profile itself can therefore be used as a biomarker. We have recently demonstrated
that despite the blood–brain barrier, the presence of glioblastoma induced specific changes
in patients’ plasma that can be detected by differential scanning calorimetry (DSC) [7,8].

Despite very promising proof-of-concept studies, no clinical detection tool based
on DSC profiling of biofluids has been developed due to incompatibility of the DSC in-
strument with a clinical high-throughput process. We now describe a novel method for
high-throughput plasma profiling by repurposing another fundamental research method:
nanoDSF (differential scanning fluorimetry). NanoDSF, which was originally designed to
study protein thermostability [9,10], is based on the modifications of the intrinsic fluores-
cence of the macromolecules upon their thermal denaturation. In this study, we applied
nanoDSF to analyze the plasma of patients affected by glioma and developed a novel
AI-based method to automatically distinguish the denaturation profiles of patients from
that of control individuals.

2. Results
2.1. Patient Characteristics

We conducted this study on a bicentric cohort of 84 glioma patients with a median
age at diagnosis of 49.3 years (range, 19.6–77.5). Twenty-two patients (26%) presented with
1p/19q codeleted IDH mutated oligodendroglioma, 25 patients (31%) with IDH mutated
astrocytoma and 37 patients (43%) with IDH wild-type astrocytoma (including 19 IDHwt
glioblastomas) (see Table 1 for more detailed patient characteristics). All patients benefited
from plasma collection before adjuvant treatment.
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Table 1. Patient characteristics.

Factors N %

Age (median, min–max) 49.3 (19.6–77.5)

Gender (Men/women) 45/39 54/46

KPS * (median, min–max) 80 (50–100)

50 1 1

60 10 13

70 17 21

80 23 29

90 20 25

100 9 11

Steroids 51 64

Histology

Oligodendroglioma

Grade II 2 2

Grade III 20 24

Astrocytoma IDHmut *

Grade II 3 4

Grade III 19 23

Grade IV 3 4

Astrocytoma IDHwt *

Grade II 7 8

Grade III 11 13

Grade IV 19 22

Surgery

Gross total resection 33 41

Partial resection 48 59

Adjuvant treatment

Radiotherapy alone 10 12

Chemotherapy alone 12 14

Radiotherapy + chemotherapy 57 68

None 5 6
* KPS: Karnofsky Performance Scale, IDH: isocitrate dehydrogenase.

2.2. Plasma Profiling

Plasma samples from our cohort of 84 glioma patients and from 63 healthy controls
were loaded to 24 capillary chips and then scanned using nanoDSF Prometheus NT.Plex
instrument (Nanotemper, München, Germany) in order to obtain the denaturation profiles
in the range from 15 to 95 ◦C. Raw data were exported into datasets that contained all
of the nanoDSF outputs: fluorescence at 330 and 350 nm (F330 and F350), the ratio of
these values (F330/F350) as well as absorbance at 350 nm (A350). Their respective first
derivative were added to the datasets to emphasize their dynamic. The first derivatives of
F330/F350 were plotted to visualize denaturation (Figure 1). As seen from this figure, the
mean denaturation profile of the glioma patients’ plasma was drastically different from
that of healthy individuals. Compared to results obtained with DSC [8,11], we observed
a higher variability in nanoDSF denaturation profiles both within controls and glioma
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patients. The use of the advanced AI approach is thus justified to distinguish healthy and
glioma profiles.
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2.3. Plasma Profile Classification Using AI

In order to differentiate between the denaturation profiles of healthy individuals
and glioma patients, we set out to design an automated way to classify the obtained
profiles using an artificial intelligence (AI) approach. Moreover, automation is needed
for future applications of this approach to much larger scale analysis in clinics as well as
to detect possible subtle differences between subgroups of samples. We tested several
machine learning algorithms [12] on the data: the classical Logistic Regression (LR), the
often well-performing Support Vector Machine (SVM), the Neural Networks (NN), and
two different ensemble methods: Random Forest (RF) and Adaptive Boosting (AdaBoost).
These algorithms were evaluated using a leave-one-out approach where each datum is used
once as a test, while the others are used to train the automatic classifiers; the obtained values
are thus averages of as many experiments as there are data. The three nanoDSF outputs
(F330, F350 and A350), the ratio F330/F350, and their respective derivatives, were tested
independently and in all possible combinations as input for these artificial intelligence
algorithms (best performances being obtained using all these elements together, all results
reported in this paper correspond to this case). Table 2 shows the results obtained with
the five machine learning algorithms (LR, SVM, NN, RG and AdaBoost) using the settings
allowing the best observed performance on our 147 samples (84 patients and 63 controls).
NN and AdaBoost algorithms had the best accuracy (above 92%), while all others achieved
around 90% of correct classification. LR algorithm provided the lowest number of false
positives (only four healthy individuals were wrongly classified as glioma patients), while
AdaBoost was better at reducing the number of false negatives (only five glioma patients
classified as healthy). The two algorithms with highest accuracy (NN and AdaBoost)
had closely related small numbers of the two error types (false positives: five and six,
respectively, false negatives: six and five, respectively). When the algorithm allowed
it, we also tested its version that focuses on minimizing the number of false negatives
in order to decrease the possibility of missing the diagnosis of glioma that could have
devastating consequences given the rapidly developing nature of this disease. As seen from
the Table 2, the false negative focusing version of the SVM algorithm (fnf-SVM) maintained
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the same level of overall accuracy as the original SVM (87% of correct classification) while
obtaining just one false negative (corresponding to 1.19% of glioma patients misclassified
by this algorithm). Taken together, our results show that the detection of glioma based
on the denaturation profile of plasma can be efficiently automated. Moreover, combining
high-throughput nanoDSF and automated data treatment by machine learning makes our
approach compatible with large-scale applications in clinics for cancer detection using a
simple blood test.

Table 2. Best obtained results with the different machine learning algorithms.

Algorithm
Original Algorithms FN Minimized

LR SVM NN RF AdaBoost fnf-SVM

Accuracy (%) 89.80 87.07 92.52 89.12 92.52 87.07

False positives (n) 4 13 5 8 6 18

False negatives (n) 11 6 6 8 5 1

Sensitivity 0.87 0.93 0.93 0.90 0.94 0.99

Specificity 0.94 0.79 0.92 0.87 0.90 0.71

Precision 0.95 0.86 0.94 0.90 0.93 0.82
The best results are written in bold.

3. Discussion

Detection of cancers by a minimally invasive blood test, or “liquid biopsy”, has been
a long-thought goal in the field. A number of different cancer detection methods have
been tested over the past ten years, which are based on biophysical methods such as
differential scanning calorimetry (DSC) [11], infrared technology (ATR-FTIR) [13] as well as
on the detection and isolation of cell-free nucleic acids, extracellular vesicles and circulating
tumor cells [14–18]. Among these, many pilot studies have previously tested DSC of
biofluids as a one-step and low-cost approach for diagnosis of a great number of diseases,
including several types of cancers [11,19,20], raising hopes of designing a unique pan-
cancer diagnostic tool. However, despite the efforts invested in developing this approach,
technical restrictions and low throughput of DSC instruments made them impossible to be
transferred for wide use in clinics. In our study, we describe a major technical breakthrough
allowing us to overcome these obstacles while keeping equivalent accuracy and all the
advantages of a blood test. Indeed, our approach that uses the nanoDSF instrument
requires minimal quantity of plasma, no need for sample preparation, and allows much
faster sample handling due to disposable capillaries and high-powered fully automated
data analysis using machine learning algorithms. Compared to classical DSC, our method
provides a significant increase in throughput and reproducibility while decreasing the
possibility of technical error.

Using nanoDSF, we showed that denaturation profiles of the glioma patients’ plasma
was different from that of healthy individuals. The observed difference in the plasma
denaturation profiles between the glioma and the healthy samples can be explained by
the variation in thermal stability of the plasma constituents. Indeed, the plasma denatura-
tion profiles correspond to the cumulative sum of those from the most abundant plasma
proteins [11]. Since the thermal denaturation profile of a protein is an intrinsic property de-
pendent on its structure, modifications, such as mutation, post translational modifications,
or ligand binding, can significantly impact this profile. Interestingly, there was no major
variability in nanoDSF denaturation profiles within controls, regardless of sex or age of the
individuals. This can be explained by the fact that the composition of many biofluids, such
as plasma, serum, cerebrospinal fluid, is meticulously maintained by the organism, thus
resulting in a reproducible denaturation profile. Such healthy plasma equilibrium is altered
in glioma patients, leading to the emergence of a different glioma-specific profile. Even
though further studies are needed to identify the molecular basis of plasma changes in
glioma patients, observed differences in the denaturation profile can be used as a biomarker.
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Increasing the number of samples will also likely help to distinguish profiles obtained from
different subtypes of glioma.

Compared to previously published studies using denaturation profiles to detect can-
cers, our study provides a significance improvement due to application of machine learning
algorithms to classify the obtained profiles in an automated way. This automatization will
not only allow future large-scale studies that involve plasma samples from thousands of
patients but will also enable future inter-cancer classification. Indeed, the glioma detection
approach described in our study can be further extended to other cancers. As shown in
Figure 2, the workflow of a universal cancer detection approach would consist of two stages.
During the first (“AI training”) stage, a mathematical model, that is, a function assigning
a clinical status to any DSF denaturation profile, is inferred using artificial intelligence
(AI) approaches. To do so, sets of blood plasma samples from well-characterized cancer
cases need to be assembled and processed by a DSF instrument to get plasma denaturation
profiles. The profiles from patients and healthy individuals associated with their clinical
status (healthy vs. cancer) are then used to constitute an atlas that serves as the input to
train the artificial intelligence. With the increasing number of samples used to constitute
the atlas, the final model is expected to be more and more precise. During the second
(“Blood test”) stage, a sample from a previously untested patient is used to generate a
plasma denaturation profile using a DSF. The obtained profile is then analyzed by the AI
model obtained during the first stage and gives an instantaneous answer about the disease
status of the individual.
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generated by nanoDSF are added to a database (Atlas) along with their corresponding clinical status.
Artificial intelligence (AI) algorithms are then trained using this Atlas to generate a model. Right
panel corresponds with the use of the obtained model to identify whether the nanoDSF profile of a
new sample tested corresponds with a glioma or not. Dotted line indicates that the same workflow
can be applied to another cancer (Cancer X).

4. Methods
4.1. Patients

The patient cohort consisted of 51 patients at La Timone Hospital (Marseille) from
June 2009 to February 2017 and 33 patients at La Pitié Salpétrière Hospital (Paris) from
November 2008 to September 2016. Eligible patients were those aged 18 years or older
with newly diagnosed glioma for whom plasma samples were available at the time of
diagnosis, before adjuvant treatment. Clinical evaluations were performed every cycle, and
imaging evaluations were performed every two cycles. Treatment responses and disease
progression were reviewed using the RANO criteria [3]. Healthy control samples were
collected at the time of routine blood collection of 63 healthy volunteers (31 male, 32 female)
with a median age of 34 years (range, 16–79). All patients and healthy volunteers provided
written informed consent in accordance with institutional, national guidelines and the
Declaration of Helsinki.

4.2. Plasma Samples

Blood samples from this cohort and from 63 healthy controls were collected into EDTA
tubes, separated by centrifugation (2000× g, 10 min, 20 ◦C, twice) within 30 min and then
stored at −80 ◦C. No other specific purification step was added in order not to perturb
the interactome or alter the chemical state of plasma proteins. Before nanoDSF analysis,
samples were thawed rapidly at 37 ◦C, centrifuged and loaded on a 10 µL capillary.

4.3. Sample Analysis by NanoDSF

Plasma samples were loaded to 10 µL capillaries and scanned using nanoDSF Prometheus
NT.Plex instrument (Nanotemper) at 5% of laser power and 1 ◦C/min heating rate to obtain
denaturation profiles in the range from 15 to 95 ◦C. The machine can analyze 24 samples at
once; we carefully mixed patients and controls to avoid any batch effect. Raw data were
exported into datasets that contained all the nanoDSF outputs: fluorescence at 330 and 350
nm (F330 and F350) as well as the ratio of these values (F330/F350) and absorbance at 350
nm (A350).

4.4. Algorithm Trainings

The code used was written in Python. The data preparation was carried out using the
pandas library (https://pandas.pydata.org, accessed on 13 February 2021) while the ma-
chine learning algorithms were run using the scikit-learn toolbox (https://scikit-learn.org,
accessed on 13 February 2021). Raw data from the nanoDSF instrument (F330, F350 and
A350) were interpolated using InterpolatedUnivariateSpline from the scipy.interpolate
module in order to ensure the same temperature alignment for all data. The different tested
implementations are: (1) LogisticRegression from the linear_model module with parameter
max_iter sets to 1000; (2) SVC from the svm module with the following combination of pa-
rameters: kernel = “poly”, gamma = “auto”, C = 1, degree between 1 and 3; kernel = “rbf”,
C = 1, gamma within {0.001, 0.01, 0.1, 1, 10}. The fnf-SVM results were obtained using SVC
with the same parameters except for class_weight that was set to {0:1, 1:100} (instead of the
default None value); (3) MLPClassifier from the neural_network module with different
architecture (reported results correspond to 3 hidden layers of 750, 200, 50, respectively),
max_iter was fixed to 5000 and learning_rate = “adaptive”; (4) RandomForestClassifier
from the ensemble module with parameter n_estimators fixed to 500; (5) AdaBoostClassifier
from the module ensemble with a DecisionTreeClassifier from the module tree as weak
classifier (parameter base_estimator) with max_depth taken between 1 and 3, n_estimators

https://pandas.pydata.org
https://scikit-learn.org
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set to 100. All algorithms were evaluated using the split from the LeaveOneOut method of
the model_selection module.

5. Conclusions

In conclusion, our proof-of-concept study demonstrates the possibility to automat-
ically distinguish glioma patients from healthy controls by a simple blood test, using a
novel technology that combines differential scanning fluorimetry and machine learning
algorithms. We propose that plasma profiling using denaturation signatures by nanoDSF
can be used to develop a low-cost and high-throughput pan-cancer detection method.
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