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Abstract: Obstructive sleep apnea (OSA), a disease associated with excessive sleepiness and increased
cardiovascular risk, affects an estimated 1 billion people worldwide. The present study examined
proteomic biomarkers indicative of presence, severity, and treatment response in OSA. Participants
(n = 1391) of the Stanford Technology Analytics and Genomics in Sleep study had blood collected
and completed an overnight polysomnography for scoring the apnea–hypopnea index (AHI). A
highly multiplexed aptamer-based array (SomaScan) was used to quantify 5000 proteins in all plasma
samples. Two separate intervention-based cohorts with sleep apnea (n = 41) provided samples
pre- and post-continuous/positive airway pressure (CPAP/PAP). Multivariate analyses identified
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84 proteins (47 positively, 37 negatively) associated with AHI after correction for multiple testing. Of
the top 15 features from a machine learning classifier for AHI ≥ 15 vs. AHI < 15 (Area Under the
Curve (AUC) = 0.74), 8 were significant markers of both AHI and OSA from multivariate analyses.
Exploration of pre- and post-intervention analysis identified 5 of the 84 proteins to be significantly
decreased following CPAP/PAP treatment, with pathways involving endothelial function, blood
coagulation, and inflammatory response. The present study identified PAI-1, tPA, and sE-Selectin as
key biomarkers and suggests that endothelial dysfunction and increased coagulopathy are important
consequences of OSA, which may explain the association with cardiovascular disease and stroke.

Keywords: obstructive sleep apnea; proteomics; apnea–hypopnea index; biomarkers; machine
learning; treatment

1. Introduction

Obstructive sleep apnea (OSA) is characterized by recurrent partial or complete ob-
structive events of the upper airway, resulting in arousals and oxygen desaturations [1].
Nocturnal polysomnography (PSG) is the current gold standard for diagnosing and evalu-
ating sleep apnea severity [2]. The presence and severity of sleep apnea is approximated by
the apnea–hypopnea index (AHI), the number of abnormal respiratory events recorded per
hour of sleep during PSG, whereby an AHI ≥ 5 but <15 is indicative of mild sleep apnea,
AHI ≥ 15 but <30 is indicative of moderate sleep apnea, and AHI ≥ 30 is indicative of
severe sleep apnea in adults [3].

Obstructive sleep apnea is an extremely common condition. A recent study estimated
almost 1 billion people worldwide are affected by OSA, with prevalence exceeding 50%
in some countries [4]. The prevalence of OSA is higher in men, increases with age, and
is associated with higher body mass index (BMI) [5]. A recent study in adults older than
40 reported the prevalence of moderate-to-severe sleep-disordered breathing was 49.7%
in men and 23.4% in women [6]. High levels of sleep apnea, typically of the obstructive
type, are associated with increased cardiovascular risk, notably increased risk of high blood
pressure [7], increased vascular aging [8], heart failure [9], arrythmias [10], and stroke [11],
effects that seem more correlated with hypoxia than with sleep fragmentation [10,12].
Sleep fragmentation, in contrast, correlates more with arousal disturbances and daytime
sleepiness, although some authors have found higher cardiovascular risk in sleepy versus
non sleepy OSA patients [10,13]. Timely diagnosis and treatment of OSA is imperative to
the health and prognosis of millions.

Recent work highlighted a need for blood-based biomarkers in sleep medicine to
streamline more accurate and objective ascertainment of disorders [14]. Previously, we
studied 1300 serum proteins in 351 patients with OSA compared to 362 controls [15], iden-
tifying 65 proteins associated with AHI and 9 differentially expressed proteins (DEPs)
in moderate-to-severe OSA (AHI ≥ 15) compared to mild OSA/controls (AHI < 15).
That study demonstrated that multivariate protein measurement could be used to predict
the presence of moderate-to-severe OSA (AHI ≥ 15) compared with mild OSA/controls
(AHI < 15) using a machine learning classifier and identified 3 proteins that were responsive
to positive airway pressure (PAP) treatment in a cohort of 16 patients with OSA. Such
results supported the initial efficacy of proteomic biomarkers for diagnosing OSA as well
as their potential for measuring OSA severity and treatment response.

In the present study, we extend and validate the results of our previous findings [15]
by identifying proteins cross-sectionally associated with the presence and severity of OSA
(i.e., total AHI and OSA severity classifications) using an independent sample with a larger
panel (~5000) of proteins in a larger (~1400) sample of clinic patients. We also examined the
effect of OSA treatment (i.e., CPAP/PAP and supplemental oxygen versus off treatment)
on identified proteins to explore potential pathophysiological mechanisms associated with
managing symptoms and consequences of OSA.
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2. Results
2.1. Stanford Technology Analytics and Genomics in Sleep (STAGES) Study Cohort

Demographic and clinical information for participants (n = 1391) included in the
final analyses is presented in Table 1. The final sample with all relevant outcomes had
almost equal representation of males (52%) and females (48%), with an average age of
46.1 ± 15.2 years, average BMI of 30.9 ± 8.7 kg/m2, and was primarily Caucasian/white
(80%) and non-Hispanic (94%). Regarding PSG, average sleep duration was 5.6 ± 1.7 h,
and patients had an average AHI of 15.6 ± 19.7 (range = 0.0–154.6). According to PSG
technician notes, 7% of participants were provided CPAP during the PSG. Approximately
7% of participants self-reported using CPAP or PAP, less than 1% reported supplemental
oxygen use, and less than 1% reported having previous sleep apnea surgery. Regarding
blood sampling, most samples (67%) were collected between 12:00 PM and 23:59 PM, with
an average time from draw to blood processing of 31.0 ± 14.0 h (range = 6.8–126.3 h),
during which blood was transported to Stanford University for central processing.

Table 1. Demographic and clinical characteristics of participants included in final analyses (n = 1391).

Mean Std Min Max

Demographic Characteristics
Age (years) 46.1 15.2 13.0 84.0

Sex (M) 720 (52%)
BMI (kg/m2) 30.9 8.7 11.9 75.0

Race
Caucasian/White 1112 (80%)

Asian 141 (10%)
Two or More 89 (6%)

Other (Black/African American/American
Indian/Alaska Native/Pacific Islander) 49 (4%)

Ethnicity (Hispanic Origin; yes) 87 (6%)
Comorbidities

Hypertension 430 (32%)
Cardiovascular Problems 175 (13%)

High Cholesterol 373 (27%)
Diabetes II 129 (9%)

Asthma 283 (21%)
Chronic Obstructive Pulmonary Disease 57 (4%)

Other Pulmonary Problems 52 (3%)
Polysomnography Outcomes

Sleep Duration (h) 5.6 1.7 1.0 10.2
AHI (number/hour) 15.6 19.7 0.0 154.6

Total Apnea events (n) 30.1 60.7 0.0 862.0
Average Apnea Duration (s) 19.4 7.7 6.5 63.8
Total Hypopnea Events (n) 44.3 63.1 0.0 528.0

Average Hypopnea Duration (s) 20.8 7.9 0.0 71.8
Total Desaturations (n) 35.8 74.8 0.0 866.0

Average Desaturation Duration (s) 29.4 11.1 5.0 98.4
CPAP Use During PSG 94 (7%)

Previous OSA Diagnosis 273 (20%)
CPAP/PAP Use 98 (7%)

Supplemental Oxygen Use 11 (<1%)
Prior Sleep Apnea Surgery 8 (<1%)

Plasma Sample Characteristics
Draw Period (n (%))

AM (6:00–11:59) 455 (33%)
PM (12:00–23:59) 936 (67%)

Time to Blood Processing (h) 31.0 14.0 6.8 126.3

Notes: Data are presented as number (%) unless otherwise specified: std, standard deviation; BMI, body mass
index; OSA, obstructive sleep apnea; CPAP, continuous positive airway pressure; PAP, positive airway pressure;
PSG, polysomnography; AHI, apnea–hypopnea index.
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2.2. Effect of Time to Blood Processing

To analyze the effect of travel time at room temperature, we added 224 EDTA samples
collected during the daytime that were immediately processed and were also measured
using the same proteomic panel. Summary results of multivariate analyses of the combined
cohort (n = 1654) including all STAGES plasma samples (n = 1430; time to processing
range: 1–126 h) and the immediately processed samples (n = 224; time to processing = 0)
are presented in Supplementary Table S1. Not surprisingly, most proteins (n = 4151) were
affected by time from blood draw to processing, including 2505 positively associated
proteins and 1646 negatively associated proteins, whereby relative protein expression
increased or decreased, respectively, with longer time spent at room temperature. As
this may be an important consideration in the interpretation of our results, time to blood
processing was included as a covariate in all multivariate analyses. Further, we include
false discovery rate (FDR) corrected p-values (i.e., FDR p combined time to processing)
and beta coefficients (i.e., beta combined time to processing) from the analysis, including a
comparison with immediately processed samples in supplementary tables alongside results
of the following multivariate analyses for additional consideration in the interpretation of
our results.

2.3. Proteins Associated with the Apnea–Hypopnea Index

Proteins significantly associated with total AHI as a continuous variable are pre-
sented in Table 2 and Supplementary Table S2. Multivariate analyses identified 84 proteins
(47 positively and 37 negatively) associated with AHI after FDR correction. Proteins most
positively associated with AHI were E-selectin (sE-Selectin), tissue-type plasminogen ac-
tivator (tPA), plasminogen activator inhibitor 1 (PAI-1), scavenger receptor cysteine rich
type 1 protein (sCD163), and tissue factor pathway inhibitor (TFPI). Pathways related to
fatty acid oxidation and metabolism, RA and retinol biosynthesis and metabolism, comple-
ment and coagulation cascades, blood coagulation and clotting cascades, platelet amyloid
precursor protein, and plasminogen activating cascades were involved (Supplementary
Table S3B). Proteins most negatively associated with AHI include sex hormone-binding
globulin (SHBG), amyloid-like protein 1, Desmoglein-2, serum albumin, and secretogranin-
3 (SCG3), with pathways involved in insulin-like growth factor signaling and regulation,
ghrelin regulation of food intake and energy homeostasis, genes encoding structural ECM
glycoproteins, and post-translational modification of synthesis of GPI-anchored proteins
(Supplementary Table S3C).

Table 2. The 84 proteins significantly associated with the apnea–hypopnea index (AHI) after
5% FDR correction.

Target UniProt ID Entrez Gene Symbol FDR p β

sE-Selectin P16581 SELE 0.000029 0.06051
SHBG P04278 SHBG 0.000029 −0.089355

Amyloid-like protein 1 P51693 APLP1 0.000029 −0.045214
Desmoglein-2 Q14126 DSG2 0.000029 −0.034139

tPA P00750 PLAT 0.000031 0.069885
PAI-1 P05121 SERPINE1 0.000036 0.063664

Albumin P02768 ALB 0.000062 −0.020515
SCG3 Q8WXD2 SCG3 0.000162 −0.033395

sCD163 Q86VB7 CD163 0.000205 0.042673
NEGR1.2 Q7Z3B1 NEGR1 0.000225 −0.018214
NEGR1.1 Q7Z3B1 NEGR1 0.000225 −0.018214

SEZ6L Q9BYH1 SEZ6L 0.00033 −0.020777
TFPI P10646 TFPI 0.00033 0.029951

Aminoacylase-1 Q03154 ACY1 0.000471 0.075644
P5I11 O14683 TP53I11 0.001001 0.085686
GP116 Q8IZF2 ADGRF5 0.001001 0.051286
NAR3 Q13508 ART3 0.001001 −0.033656



Int. J. Mol. Sci. 2022, 23, 7983 5 of 19

Table 2. Cont.

Target UniProt ID Entrez Gene Symbol FDR p β

IGFBP-5 P24593 IGFBP5 0.001157 −0.036965
IGFBP-2 P18065 IGFBP2 0.001182 −0.056639

Agrin O00468 AGRN 0.001399 0.030074
ADH4 P08319 ADH4 0.001399 0.078678
CRIP1 P50238 CRIP1 0.001419 0.042984

QORL1 O95825 CRYZL1 0.001419 0.059314
CPLX2 Q6PUV4 CPLX2 0.001419 −0.040126

TrATPase P13686 ACP5 0.00142 0.028185
LG3BP Q08380 LGALS3BP 0.001451 0.043542
TMCC3 Q9ULS5 TMCC3 0.001893 0.04806

Adiponectin Q15848 ADIPOQ 0.00193 −0.048973
Retinal dehydrogenase 1 P00352 ALDH1A1 0.002368 0.050139

ECOP Q96AW1 VOPP1 0.002368 −0.03208
RGMB Q6NW40 RGMB 0.002787 −0.01764
IL-1F6 Q9UHA7 IL36A 0.004977 0.049501

MXRA8 Q9BRK3 MXRA8 0.005084 −0.021983
Apo F Q13790 APOF 0.005695 −0.049634

DCNL5 Q9BTE7 DCUN1D5 0.005695 0.034994
TGF-b R III Q03167 TGFBR3 0.006 −0.017724

DKK3 Q9UBP4 DKK3 0.006746 −0.022198
BGLR P08236 GUSB 0.006973 0.05775

ALDOB P05062 ALDOB 0.006973 0.060758
NG36 Q96KQ7 EHMT2 0.006973 −0.034322

GLTD2 A6NH11 GLTPD2 0.00784 0.025655
SSRA P43307 SSR1 0.008692 0.023203

LSAMP Q13449 LSAMP 0.009783 −0.016283
Nectin-like protein 3 Q8N3J6 CADM2 0.009832 −0.028616

ADH1G P00326 ADH1C 0.010797 0.082389
Keratin 7 P08729 KRT7 0.011084 −0.035521
ADH1A P07327 ADH1A 0.012978 0.048781
Notch-3 Q9UM47 NOTCH3 0.013526 −0.016603
WISP-2 O76076 WISP2 0.013526 −0.02948
ATF6B Q99941 ATF6B 0.014183 0.021569
Siglec-7 Q9Y286 SIGLEC7 0.014183 0.019849
HTRA1 Q92743 HTRA1 0.014939 0.02271
GPDA P21695 GPD1 0.015466 0.041435
LECT2 O14960 LECT2 0.015466 0.040275

UNC5H4 Q6UXZ4 UNC5D 0.015833 −0.040023
CNTFR alpha P26992 CNTFR 0.016 −0.018317

CRP P02741 CRP 0.016692 0.085334
TSG-6 P98066 TNFAIP6 0.017048 −0.036688

CRDL1 Q9BU40 CHRDL1 0.017249 −0.019389
EphB6 O15197 EPHB6 0.017249 −0.014918
SERC Q9Y617 PSAT1 0.019394 0.059281
APEL Q9ULZ1 APLN 0.019471 0.017664

Factor I P05156 CFI 0.019664 0.010343
NOTUM Q6P988 NOTUM 0.021415 0.031373
TICN3 Q9BQ16 SPOCK3 0.02557 0.04362
SDC3 O75056 SDC3 0.026477 0.024861
TPMT P51580 TPMT 0.029611 0.024919
SLIK1 Q96PX8 SLITRK1 0.030448 −0.035068

Cathepsin A P10619 CTSA 0.031241 0.037457
IGF-II receptor P11717 IGF2R 0.036093 0.018009

DUSP13 Q6B8I1 DUSP13 0.036472 −0.032443
SCG1 P05060 CHGB 0.037039 −0.020791

Cytochrome P450 3A4.2 P08684 CYP3A4 0.03901 0.030195
Cytochrome P450 3A4.1 P08684 CYP3A4 0.03901 0.030195

HEM4 P10746 UROS 0.039722 0.027314
GGT2 P36268 GGT2 0.039722 0.047757
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Table 2. Cont.

Target UniProt ID Entrez Gene Symbol FDR p β

JTB O76095 JTB 0.041075 −0.016475
TPP1 O14773 TPP1 0.042957 0.025119

CBPM P14384 CPM 0.042957 0.021753
ARMEL Q49AH0 CDNF 0.044989 −0.02417
AZGP1 P25311 AZGP1 0.044989 −0.014643

Coagulation factor IXab P00740 F9 0.046407 0.021377
Macrophage mannose

receptor P22897 MRC1 0.046663 0.01932

PGD2 synthase P41222 PTGDS 0.049592 −0.024343

2.4. Differential Expression of Proteins Stratified by Severity Index of AHI

Differences in characteristics of participants (n = 1391) by OSA classification status
based on AHI are presented in Supplementary Table S4. Participants with moderate-to-
severe OSA (AHI ≥ 15) were significantly older (50.5 ± 13.1 vs. 43.9 ± 15.7; p = 4.22 × 10−15),
had higher BMI (33.6 ± 9.1 vs. 29.5 ± 8.1; p = 8.23 × 10−23), and consisted of a significantly
higher proportion of males (63% vs. 41%; p = 1.63 × 10−15) compared with the mild-
to-no OSA (AHI < 15) group (Supplementary Table S4A). A marginally longer time to
processing was found in subjects with moderate-to-severe OSA (32.1 ± 14.4 vs. 30.5 ± 13.8,
respectively; p = 0.004). Multivariate analyses identified 69 differentially expressed proteins
(DEPs) between these two OSA groups, with 40 upregulated and 29 downregulated in
those with moderate-to-severe OSA (Supplementary Table S5). Top upregulated proteins
included Quinone oxidoreductase-like protein 1 (QORL1), Tumor protein p53-inducible
protein 11 (P5I11), cystine-rich protein 1 (CRIP1), DCN1-like protein 5 (DCNL5), and
Tartrate-resistant acid phosphatase type 5 (TrATPase), with pathways similar to those listed
for proteins positively associated with AHI (Supplementary Table S6A). Top downregulated
proteins included Amyloid-like protein 1, Desmoglein-2, SHBG, secretogranin-3 (SCG3),
and vesicular, overexpressed in cancer, prosurvival protein 1 (ECOP), with pathways
like those listed for proteins negatively associated with AHI, plus fibrinolysis pathways,
complement system pathways, and others (Supplementary Table S6C). In comparison
to AHI-associated proteins found using linear regression, 50 of 69 DEPs for this OSA
classification were significant in AHI multivariate analyses.

Summary characteristics comparing severe OSA, moderate OSA, mild OSA, and con-
trols are presented in Supplementary Table S4B–D. Thirty-two significant DEPs (20 upregu-
lated, 12 downregulated) were found in severe OSA compared to controls, and 4 significant
DEPs (1 upregulated, 3 downregulated) were found in moderate OSA compared to controls
(presented in Supplementary Tables S7 and S8, respectively). No DEPs were found between
mild OSA and controls.

2.5. Protein Markers Validated with a Machine Learning Classifier

Many proteins (n = 84) were significantly associated with AHI when modeled as
a continuous variable, and the largest number of proteins (n = 69) was identified when
AHI was stratified by severity using the cutoff score of 15 as a binary variable. The
AHI ≥ 15 cutoff score was therefore next used to train a machine learning classifier on So-
maScan protein measures using three different models. Model 1 incorporated protein mea-
sures and demographic variables and achieved 66.4% accuracy (F1 = 0.598) in classifying
moderate-to-severe OSA. Model 2 incorporated only proteins and achieved 66.9% accuracy
(F1 = 0.603). Model 3, with only demographics, achieved the lowest accuracy of 63.5%
(F1 = 0.566). Receiver operating curves (ROC) and areas under the curves (AUCs) for each
model are presented in Figure 1, classifier metrics are presented in Table 3, and the confu-
sion matrix is in Supplementary Table S9. Of the top 15 classifier features from Model 1
(Supplementary Table S10), 10 proteins were identified as significant protein markers of
AHI, and 8 were significant DEPs for moderate-to-severe OSA (Amyloid-like protein 1, tPA,
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PAI-1, CRIP1, SCG3, ECOP, Desmoglein-2, and SHBG), suggesting these proteins are robust
predictors of the presence and severity of sleep apnea. When comparing the models, we see
a trend in the differences for Model 1 compared with Model 3, and Model 2 compared with
Model 3 (Supplementary Table S11A). It seems here that the improvement in prediction
coming from the protein expression variables over the demographics is the main factor
playing into the performance of the model.
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Table 3. Performance metrics of a machine learning classifier for moderate-to-severe OSA (AHI ≥ 15)
trained on 974 samples (331 cases, 643 controls) and validated on 417 samples (142 cases, 275 controls).

Model F1 Accuracy Sensitivity Specificity AUC

1. Proteins + Demographics 0.598 0.664 0.732 0.629 0.741
2. Proteins 0.603 0.669 0.739 0.633 0.741

3. Demographics 0.566 0.635 0.697 0.604 0.700

2.6. Effect of CPAP and Supplemental Oxygen on Protein Markers

Proteins associated with CPAP/PAP intervention are presented in Supplementary
Table S12A. For this comparison, we only used the 84 proteins previously shown to be
associated with total AHI. Nonparametric paired samples tests comparing pre- and post-
intervention protein expression identified 5 proteins significantly reduced following use
of CPAP/PAP: CRP (change = −12.3%; p = 0.004), PAI-1 (change = −10.6%; p = 0.007),
TrATPase (change = −6.2%; p = 0.009), sE-Selectin (change = −8.2%; p = 0.030), and tPA
(change = −14.1%; p = 0.047). These proteins are associated with pathways involved in blood
coagulation, inflammatory response, fibrinolysis, and plasminogen activation. Regarding
changes in protein expression with supplemental oxygen compared with air (i.e., sham), when
patients were off CPAP, nonparametric paired comparisons identified significant differences
in protein expression change for PAI-1 and TGF-b R III (Supplementary Table S12B), whereby
PAI-1 decreased with supplemental oxygen and increased with air, whereas TGF-b R III
increased with supplemental oxygen and decreased with air. Regarding the proteins with
significant changes following CPAP/PAP, CRP and tPA decreased, and TrATPase and
sE-Selectin increased with supplemental oxygen, whereas these proteins all increased with
air. However, these differences did not reach statistical significance.
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2.7. Replication with Our Prior Study in Serum

In comparison with our previous findings in serum [15], 44 (52%) of the 84 proteins
associated with total AHI in the present study were not included in the SomaScan 1.3
panel used in our previous study, and therefore could not be included in this comparison
(see Supplementary Table S13 for a complete list). Seven (18%) of the 40 remaining protein
markers of AHI were replicated in the present study, including tPA, TFPI, Aminoacylase-1,
LG3BP, Factor I, and Coagulation Factor IXab (all positively associated with AHI), and
UNC5H4 (negatively associated with AHI). We further conducted multivariate linear regres-
sion analyses for the 1282 mutual proteins between the 1.3K and 5K panels in the combined
STAGES/Stanford Sleep Study cohort (n = 1921). This analysis resulted in 77 proteins
(49 positive, 28 negative) significantly associated with AHI (Supplementary Table S14),
including 22 proteins identified in the STAGES cohort alone. Significant proteins included
sE-Selectin, PAI-1, Coagulation Factor IXab, TFPI, IGFBP-2, UNC5H4, SHBG, CRP, TrAT-
Pase, and tPA, with pathway analysis identifying functions consistent with those previously
described for AHI as a continuous variable (Supplementary Table S15).

We further trained a similar machine learning classifier as previously described with
the 5 proteins significant for AHI in the STAGES cohort, combined cohort, and that were
responsive to CPAP (i.e., CRP, PAI-I, TrATPase, tPA, and sE-Selectin) for classifying par-
ticipants into OSA or control categories based on an AHI cutoff score of 15. ROCs and
AUCs for each model are presented in Figure 2, and classifier metrics are presented in
Table 4. Performance metrics for Model 1 (proteins + demographics) and Model 2 (proteins
only) were similar to, albeit slightly lower than, those from the classifier using the entire
array of 4985 proteins. Model 1 with the targeted proteins achieved the highest accuracy of
65.7% (F1 = 0.571) compared to an accuracy of 66.4% (F1 = 0.598) from the entire protein
array. There were significant differences between Model 1 and Model 2 (DeLong: Z = 2.94;
p = 0.003; Bootstrap: D = 2.95; p = 0.003) and Model 1 and Model 3 (DeLong: Z = 2.44;
p = 0.014; Bootstrap: D = 2.43; p = 0.015; Supplementary Table S11B). In this case, the
integration of proteins with the demographics showed a clear improvement over the two
individual data sources. Collectively, this suggests that this subset of proteins seems to
contribute a significant proportion of the predictive ability of the presence, severity, and
treatment response for obstructive sleep apnea.
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Figure 2. Receiver operating characteristics (ROC) curves for machine learning classifier for moderate-
to-severe obstructive sleep apnea in replicated and CPAP proteins. Model 1 (red line) included the
five replicated proteins as well as demographic variables (i.e., age, sex, BMI) and achieved the highest
accuracy of 66%; Model 2 (green line) included only the five proteins, and Model 3 (blue line) included
only demographic variables.
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Table 4. Performance metrics of a machine learning classifier using only the 5 replicated proteins
that were also CPAP responsive for moderate-to-severe OSA (AHI ≥ 15) trained on 974 samples
(331 cases, 643 controls) and validated on 417 samples (142 cases, 275 controls).

All Proteins Model F1 Accuracy Sensitivity Specificity AUC

1. Proteins + Demographics 0.571 0.657 0.669 0.651 0.734
2. Proteins 0.534 0.619 0.641 0.607 0.670

3. Demographics 0.566 0.635 0.697 0.604 0.700

3. Discussion

These results extend our prior study of 713 patients with 1500 proteins using an
independent sample with a similar but larger platform and larger sample. In this study, we
found 84 proteins (47 positive and 37 negatively) associated with total AHI, 50 of which
were also significant DEPs between moderate-to-severe OSA (AHI ≥ 15) and mild/no
OSA (AHI < 15). Of the 42 significant predictive features of the OSA machine learning
classifier, 8 of the top 15 features were significant markers of total AHI and OSA from
multivariate analysis, suggesting that these 8 proteins (Amyloid-like protein 1, tPA, PAI-1,
CRIP1, SCG3, ECOP, Desmoglein-2, and SHBG) are likely predictors of the presence and
severity of sleep apnea. Furthermore, five of the 84 significant protein markers for AHI
(CRP, PAI-1, TrATPase, sE-Selectin, and tPA) were significantly affected by CPAP/PAP
treatment and were replicated in a combined analysis with the samples from our previous
study. These results suggest that this subset of proteins represents robust predictors of the
presence and severity of sleep apnea and may be potential markers of treatment response
in sleep apnea management.

The results obtained here must be considered more unbiased than candidate marker
studies reported in the literature, as we studied over 5000 proteins, a study more akin to
conducting a genome-wide association study versus candidate gene studies. Encouragingly,
the present study validated markers identified in our previous findings with 1500 proteins
in serum [15], notably increased tPA and sE-selectin, two factors that have been consistently
reported in multiple studies to be associated with sleep apnea [16–18]. This is despite
the fact the assays were done in EDTA plasma that had travelled for over 24 h at room
temperature prior to processing in the STAGES samples. These two factors are primarily
secreted by the endothelium in the setting of damage or injury, confirming that sleep
apnea likely causes sleep fragmentation and damages the endothelium, perhaps as the
result of hypoxia. These results support the notion that sleep apnea is associated with
accelerated vascular aging [8]. Similarly, CRP, a marker of inflammation secreted by the
liver and known to correlate with BMI, has been shown by multiple investigators to be
higher in BMI-matched individuals with sleep apnea, and to also decrease with CPAP
therapy [19,20].

A novel, potentially robust sleep apnea marker identified in this study is Tartrate-
resistant acid phosphatase (TrATPase), also called acid phosphatase 5, tartrate resistant
(ACP5). TrATPase is a glycosylated monomeric metalloprotein enzyme important to
the function of osteoclasts, although it is also secreted by macrophages and immune
cells. Deficiency in TrATPase is associated with spondylenchondrodysplasia, a disorder
that combines abnormal bone development, various autoimmune diseases and central
nervous abnormalities. Interestingly, OSA has been associated with osteoporosis in recent
studies [21–23], a possible reflection of hypoxia.

The present study also identified PAI-1, another important coagulation factor, as
significantly upregulated in sleep apnea, consistent with other studies [16,24]. Intriguingly,
PAI-1 was not altered in our first published proteomic study, which used serum samples [15].
One possible explanation is that PAI-1 has a large platelet pool [25,26], thus measures in
serum and plasma have different roles, explaining the discrepancy across the two studies,
and suggesting that free PAI-1, the active form, is the culprit in the present findings. Another
explanation could be that our first study was not powered to detect such an association



Int. J. Mol. Sci. 2022, 23, 7983 10 of 19

in PAI-1, which would explain why PAI-1 was amongst the top proteins significantly
associated with total AHI in the combined analysis.

In the context of pathobiological mechanisms underlying sleep apnea, PAI-1 is hypoxi-
cally regulated and an inhibitor of tPA, and dual elevation of PAI-1and tPA is associated
with increases in coagulation and fibrinolysis turnover. Indeed, following injury, PAI-1
helps maintain fibrinolysis to local regions of tPA release [26,27]. Increased tPA and PAI-1
have also been suggested to increase local blood–brain barrier permeability [26]. More
recently, increased PAI-1 and tPA have also demonstrated associations with post COVID-19
hypercoagulability [28,29], a state that induces thrombosis [30], a likely result of hypoxia.
It is our hypothesis (Figure 3) that endothelial damage in sleep apnea, perhaps as the result
of hypoxia, induces increased local fibrin aggregation and fibrinolysis. In this context, a
dual increase of tPA and PAI-1 has been found to predict stroke [31], and they are further
elevated post stroke [32,33], suggesting these to be possible mediators of the important
association of stroke with sleep apnea. This may also explain the protective effect of CPAP
in patients with OSA [34,35], whereby the present study identified significant reductions
in PAI-1 and tPA, along with sE-Selectin, TrATPase, and CRP, after at least two weeks on
CPAP/PAP. This suggests that treatment with CPAP/PAP reduces the hypoxic burden
associated with sleep apnea, thereby reducing fibrinolysis, blood coagulation, plasminogen
activation, and inflammatory responses.
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Figure 3. Proposed mechanisms in the relationship between obstructive sleep apnea, PAI-1, tPA, and
sE-Selectin. Hypoxia in sleep apnea causes endothelial damage or injury. This is associated with
(1) increased release of sE-selectin; and (2) stimulation of local fibrin aggregation. Increased tPA and
PAI-1 activity reflects enhanced fibrin formation/fibrinolysis turnover, perhaps contributing to the
known increased risk of stroke in sleep apnea.

There are important limitations to consider when interpreting our results. Although
the SomaScan assay has demonstrated good validity and reproducibility as well as stability
in protein expression with varying time to processing [36,37], the blood samples from
different sites were shipped to Stanford for processing at room temperature, and therefore
may have been subject to blood composition changes associated with such a delay. All
PSGs were conducted as part of standard-of-care according to the clinic protocol at each
site and using the sampling rate/filters recommended by the datacenter; therefore, certain
methodologies may have varied between study sites. Similarly, evaluation of the response
to CPAP/PAP treatment was conducted in a combined sample of participants from two
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separate cohorts with different methodologies. Neither of the intervention cohorts included
a control condition. Furthermore, the combined sample size of 25 in CPAP/PAP evaluation
may not be sufficiently powered to examine such a relationship, and future research should
include larger sample sizes and comparisons with controls. We relied on self-reported
outcomes for demographic and secondary clinical conditions (e.g., BMI, cardiovascular
disease). Finally, although we found biomarkers that were cross-sectionally associated with
sleep apnea and that responded to CPAP, our machine learning models achieved relatively
low accuracy, and addition of these biomarkers to demographics only marginally improved
performance in our ROC curve analysis. One reason for this could be the dependance of
these markers on demographics, and/or that these markers only contribute marginally to
risk of OSA. This result outlines the need for finding additional biomarkers by increasing
the CPAP sample size.

4. Materials and Methods
4.1. Stanford Technology Analytics and Genomics in Sleep Study Cohort

The Stanford Technology Analytics and Genomics in Sleep (STAGES) study, described
previously [38,39], collected data from patients across 11 different sleep clinics between
2018 and 2020. Briefly, all participants were patients who attended an appointment with
a physician at a sleep clinic and completed an overnight polysomnography (PSG) study,
in addition to completing the Alliance Sleep Questionnaire (ASQ) and providing a blood
sample. Although 1430 participants completed the study, a total of 1391 participants
had relevant PSG, ASQ, and blood sampling data and were included in final analyses.
All investigations were carried out following the rules of the Declaration of Helsinki of
1975, each institution’s Institutional Review Board approved all study procedures, and
participants provided written informed consent. Data collected from STAGES, aside from
the blood samples, are available through the National Sleep Research Resource (NSRR).

4.1.1. Polysomnography

All participants completed a Level 1 nocturnal PSG study in a sleep lab. All PSGs were
conducted as part of standard-of-care according to the clinic protocol at each site and using
the sampling rate/filters recommended by the datacenter. Outcomes of interest for the
present study included total PSG duration (h), sleep duration (h), apnea–hypopnea index
(AHI, with hypopnea defined as 3% desaturation or arousal). Individuals undergoing
PSG exclusively for treatment purposes (e.g., oral appliance evaluation) were excluded
at enrollment, but CPAP or other OSA treatment was used in some cases, and these
participants were included in this analysis. AHI was scored based on the American
Academy of Sleep Medicine’s recommended criteria for scoring a respiratory event as a
hypopnea [3], and the presence and severity of OSA was characterized by the AHI score.
A cutoff score of 15 was used to stratify patients to moderate-to-severe OSA (AHI ≥ 15)
or mild-to-no OSA (AHI < 15). We also subclassified OSA cases into severe (AHI ≥ 30),
moderate (30 > AHI ≥ 15), or mild (15 > AHI ≥ 5) in comparison to controls (AHI < 5)
using standard cutoff scores [1,3].

4.1.2. Alliance Sleep Questionnaire

The ASQ is an electronic, comprehensive sleep disorder questionnaire that includes ques-
tions and validated measures designed to collect standardized subjective sleep data [39,40].
The questionnaire uses complex branching logic in a modular fashion to guide partic-
ipants through a comprehensive set of questions to quantify demographic and clinical
characteristics, including age, sex, body mass index (BMI), race, ethnicity, and associated
medical history (e.g., medication use, presence of comorbidities, previous diagnosis of
sleep conditions, sleep complaints). All patients completed the ASQ within approximately
4 weeks of the polysomnography.
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4.1.3. Blood Sampling

Blood samples were typically collected during the scheduled PSG, either the evening
before or the morning after the PSG, or within four weeks of the PSG. Times of blood
draw were dichotomized (i.e., blood draw) into morning (i.e., 0:00–11:59) and evening
(i.e., 12:00–23:59) samples to control for diurnal variation in blood composition. Blood
samples were then shipped at room temperature, in most cases taking 1–2 days to arrive at
Stanford, and processed for EDTA plasma and DNA extraction. As there was variability in
the amount of time samples remained at room temperature (i.e., time to blood processing),
time to processing was included in all analyses as a salient covariate. Time to processing
was calculated as the total number of hours between time of blood sample collection to time
plasma was frozen, which was then log-normalized, and extreme outliers (log-normalized
processing time < 2.7) were removed (n = 7) to reduce variability in protein expression
based on a long duration of processing time.

4.2. Intervention Cohorts

EDTA plasma samples from two different studies were used to examine the effect of
CPAP/PAP and oxygen use on protein biomarkers of sleep apnea. One study recruited local
community members and was conducted at Washington University in St. Louis (WashU)
as described previously [41]. It included 16 patients with OSA (7 mild (5 < AHI < 15);
11 moderate-to-severe (AHI ≥ 15)) who underwent PAP treatment for 1–4 months and
provided plasma samples pre- and post-treatment. Participants included in analyses were
adherent to PAP, defined as usage for at least 4 h on at least 70% of the 30 preceding nights
as recorded by the PAP machine. The other study recruited participants with a diagnosis
of moderate-to-severe OSA who had been treated with CPAP for more than one year; this
study was conducted at the University of Oxford, as described previously [42]. It included
25 participants in a two-arm randomized crossover design. Participants had moderate-to-
severe OSA and had been treated with CPAP for more than 1 year, with average CPAP
usage exceeding 4 h/night. After four nights of screening off CPAP, participants had
at least 14 nights back on CPAP therapy before undergoing 14 nights of supplemental
oxygen or 14 nights of air (both off CPAP). Participants then had a washout period of at
least 14 nights back on CPAP before crossing over (e.g., air if oxygen was the first arm).
Plasma samples were collected on days 0 (pre-arm 1), 14 (post-arm 1), 28 (pre-arm 2), and
42 (post-arm 2). The present study combined 16 pre-PAP samples (from the WashU study)
with 25 post-air off-CPAP samples (from the Oxford study) as the “before CPAP/PAP”
condition and 16 post-PAP samples (WashU) with 25 pre-air on-CPAP samples (Oxford)
as the “after CPAP/PAP” condition, for a total sample size of 41 participants. We further
examined the effect of supplemental oxygen compared with that of air from the samples
collected (n = 25) in the Oxford study.

4.3. Stanford Sleep Cohort

We sought to extend and replicate our previous findings using the Stanford Sleep
Study, as described previously [15]. Briefly, 1070 participants ages 18 to 91 were enrolled
by the Stanford Sleep Clinic in 1999, and each participant provided a blood sample and
completed overnight PSG. Blood samples were typically collected the morning following
overnight PSG and allowed to clot for a minimum of 30 min. Serum was then aliquoted
and stored at −80 ◦C before being shipped to SomaLogic for protein quantification. Of
note, serum samples from this study were collected and processed with a mean delay of
11.6 years (i.e., from blood draw to SomaScan assay). PSG studies for cohort participants
were scored using the alternate AASM hypopnea definition for AHI [43].
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4.4. Protein Quantification

Plasma samples from the STAGES cohort and intervention cohorts and serum samples
from the Stanford Sleep Cohort followed the same protein quantification protocol. Relative
expression levels (i.e., relative florescent units (RFU)) of proteins were assayed using the
SomaScan aptamer-based multiplexed platform (SomaLogic Inc., Boulder, CO, USA), which
utilizes aptamers and hybridization to quantify proteins from small amounts of human
plasma [44–46]. The SomaScan platform was designed to have extended dynamic range and
includes both extracellular and intracellular proteins (with soluble domains of membrane
proteins). SomaScan assays have demonstrated good validity and reproducibility as well as
stability in protein expression with varying time to processing [36,37]. SomaLogic further
conducts standardized data quality control at the sample level and protein level to adjust
for variability between and within samples, and provides population-based normalized
outputs of relative protein expression levels. Detailed information on SomaLogic’s quality
control technique can be found on the manufacturer’s website (https://somalogic.com/
technology/, accessed on 17 July 2022). SomaLogic provided two output files, each with
different levels of population-based normalization, whereby the present study utilized
the most-normalized output based on our sample distributions. Plasma samples from the
STAGES cohort and intervention cohorts used the SomaScan platform of 5287 proteins (i.e.,
version 5K). After removal of non-human proteins (e.g., mouse), a total of 4985 proteins
were quantified and analyzed (see Supplementary Table S16 for a complete list of proteins
included in analyses). Serum samples from the Stanford Sleep Cohort used the SomaScan
platform of 1300 proteins (i.e., version 1.3K).

4.5. GWAS Principal Components

As genetic ancestry plays an integral role in disease phenotyping, the first five principal
components from genome-wide association study (GWAS) analysis were included as
important covariates in the present study. A total of 467 patients with OSA and 907 controls,
as defined above, all genotyped using an Affymetrix PMRA array (Thermo Fisher Scientific,
Santa Clara, CA, USA), were included. The cohort was imputed to the 1000 Genome
Phase III [47] after haplotype phasing using QCTOOL version 2. Quality control was
conducted to ensure no duplicated patients based on inheritance by descent using KING
version 2.2.6 [48]. Variants and samples with missing call rates lower than 0.1, and variants
with minimum allele frequency lower than 0.05 were excluded. Imputation calls with
R2 ≥ 0.9 were selected to compute principal component analysis using PLINK version
1.9 [49,50]. Patients were matched with the closest controls in a 1:2 ratio based on the
Euclidean distance of individuals’ principal components.

4.6. Statistical Analyses
4.6.1. Descriptive Statistics

Data were analyzed in Jupyter Notebook version 6.0.1 with Python 3.7.4 using the
statsmodels library version 0.10.1 [51]. Descriptive statistics are reported as mean and stan-
dard deviation (SD) for continuous variables, and number and percentage for dichotomous
variables. We examined differences in demographic and clinical characteristics between
participants with OSA and controls using Mann–Whitney U tests, as most of our continuous
variables were not normally distributed, and Chi squared tests for dichotomous variables,
whereby an a priori alpha level of 0.05 indicated a significant difference between groups.

4.6.2. Multivariate Proteomic Analyses

Using the statsmodels 0.10.1 library in Python 3.7.4 [51], we executed a series of
multiple linear regression models with log-normalized protein expression as the dependent
variable and the associated sleep apnea feature as the independent variable. Important
covariates such as age, sex, BMI, log-normalized blood time to processing, blood draw
period (i.e., morning or evening), study site, and the first five principal components from
GWAS analysis to control for ancestry were included. As BMI is highly correlated with
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sleep apnea, we sought to include additional features as covariates to control for any
residual effect, including BMI2 and age × BMI × sex. We executed regression models with
the following sleep apnea features as independent variables: (1) log-normalized AHI + 1;
(2) mild-to-moderate OSA vs. mild/no OSA; (3) severe OSA vs. controls; (4) moderate OSA
vs. controls; and (5) mild vs. controls. We applied the Benjamini–Hochberg procedure for
controlling the FDR to all p-values with an a priori p-value of 0.05 for identifying statistically
significant proteins in all models.

4.6.3. Effect of Time to Blood Processing on Protein Expression

As our samples were collected at 11 different sites across the country, time to blood
processing varied considerably. To account for this, we examined the effect of time to
processing in STAGES samples (n = 1430; time to processing range: 1–126 h) in comparison
to 224 samples processed immediately after collection. Multiple linear regressions with
log-normalized protein expression as the dependent variable and log-normalized time to
blood processing as the independent variable with a 5% FDR correction were used for
this comparison. An FDR-corrected a priori p-value of 0.05 was used for significance. To
facilitate interpretation of our findings, p-values and beta coefficients for the effect of time
to processing are presented in the Supplementary Materials alongside multivariate results
for each sleep apnea feature performed in the STAGES dataset.

4.6.4. Pathway Analysis

The ToppFun module of the ToppGene suite (Division of Biomedical Informatics,
Cincinnati Children’s Hospital Medical Center (BMI CCHMC), Cincinnati, OH, USA) was
utilized for biological pathway enrichment analysis for all 5% FDR significant protein
sets [52]. The ToppGene Suite is a free web portal (http://toppgene.cchmc.org, accessed on
25 April 2022) that executes candidate gene/protein prioritization using functional annota-
tions or network analysis. The ToppFun module detects functional enrichment of the input
gene list based on gene ontology, protein domains and interactions, regulome, ontologies,
phenotype, pharmacome, and bibliome, and applies FDR and Bonferroni correction for de-
termining statistical significance. The goal of this network-based prioritization is to identify
proteins/genes that are relevant to pathways involved in biological processes or diseases.
The NCBI Entrez gene IDs of all 5% FDR significant proteins were entered into the ToppFun
module, and results are presented based on significant pathways/functions identified
by ToppFun for all FDR significant proteins as well as upregulated and downregulated
significant proteins separately.

4.6.5. Validation of Protein Markers with a Machine Learning Classifier

The Python Scikit-learn LogisticRegressionCV library (version 1.0.2) [53] was used
to train an ElasticNet (L1 and L2) penalty regularized lasso model to classify participants
as OSA cases (AHI ≥ 15) or mild-to-no OSA (AHI < 15) based on relative protein ex-
pression. Hyperparameters of the models were tuned via 5-fold cross-validation using
RepeatedKFold model evaluation. We used a 70% train–30% test split, whereby data on
974 (331 cases, 643 controls) participants were used for model training, and the remain-
ing 417 (142 cases, 275 controls) participants were used for model testing. Three models
were trained to predict OSA, each with the following features: (1) protein measures in
addition to demographic information (age, sex, and BMI); (2) protein measures alone; and
(3) demographic information (age, sex, and BMI) alone. Preprocessing for the classifier
included log-normalization of relative protein expression and time to blood processing,
followed by the conversion of all continuous variables to a standardized scale using the
sklearn.preprocessing.StandardScaler feature. All models and classifiers used the same
preprocessing, test–train split, and elastic net-based approach for comparison. We used two
strategies to compare the ROC curves with statistical tests: DeLong test and a bootstrap ap-
proach. The DeLong test is a generalization of the Mann–Whitney statistic approach for the
comparison of ROC curves [54]. The null hypothesis is that both areas under the curve are
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equal. The nonparametric asymptotic behavior for U-statistics is valid and can generalize
in this case. The bootstrap approach consists of resampling bootstrap replicates of the data
and comparing the distribution of the differences of AUCs to the normal distribution.

4.6.6. Effect of CPAP and Supplemental Oxygen Interventions on Sleep Apnea Proteins

Using the Python statsmodels library, Wilcoxon signed-rank sum tests, the nonpara-
metric equivalent of a paired t-test, were conducted to examine if there were statistically sig-
nificant differences in protein expression after CPAP/PAP compared to before CPAP/PAP
in the combined WashU and Oxford cohort (n = 41). We further examined the effect of
supplemental oxygen on proteins associated with AHI in comparison with air (i.e., sham)
condition in the Oxford study (n = 25) by conducting Wilcoxon signed-rank sum tests be-
tween change scores in protein expression (i.e., post–pre values) after the oxygen condition
and the air condition.

4.6.7. Replication with Our Prior Study in Serum

Lastly, we sought to replicate and validate our findings with multivariate and classifier
analyses in a combined cohort of the samples from the present STAGES study (n = 1391) and
samples from our previous study (i.e., Stanford Sleep Study [15]) including 530 participants.
As our previous study utilized the SomaScan 1.3K platform, these analyses were conducted
in a total of 1282 proteins who were present in both the 1.3K and 5K panels used in the
STAGES study. We conducted multiple linear regression analysis in the combined cohort
(n = 1921), including log-normalized protein expression as the dependent variable, log-
normalized AHI + 1 as the independent variable, and covariates such as age, sex, BMI,
BMI2, age × sex × BMI, blood draw period, GWAS principal components, and study (i.e.,
STAGES or Stanford Sleep Study).

5. Conclusions

The present study conducted the largest examination of proteins, to date, in adults
with OSA. Confirming our results, PAI-I and tPA were robust predictors based on multi-
variate analyses and the machine learning classifier, and were replicated in the combined
analysis. Both were also responsive to CPAP/PAP treatment. Reductions in PAI-1 after
both supplemental oxygen and CPAP/PAP, but increases with the sham condition are
consistent with previous studies [16,24], and reductions in sE-Selectin after CPAP/PAP is
consistent with results of a recent meta-analysis [55]. Collectively, these findings support
the use of PAI-I, tPA, and sE-Selectin as biomarkers of the presence and severity of sleep
apnea, and they may provide a measure of treatment response in people with sleep apnea.
These results may also inform considerations for additional preventive cardiovascular
management for high-risk patients. Measurement of these key biomarkers may add to
the patient profile and potentially inform additional therapeutic strategies even outside
CPAP/PAP use, and creates an opportunity to inform cardiovascular disease management.
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