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Abstract

The metabolic disturbances that underlie systemic lupus erythematosus are currently unknown. A metabolomic study was
executed, comparing the sera of 20 SLE patients against that of healthy controls, using LC/MS and GC/MS platforms.
Validation of key differences was performed using an independent cohort of 38 SLE patients and orthogonal assays. SLE
sera showed evidence of profoundly dampened glycolysis, Krebs cycle, fatty acid b oxidation and amino acid metabolism,
alluding to reduced energy biogenesis from all sources. Whereas long-chain fatty acids, including the n3 and n6 essential
fatty acids, were significantly reduced, medium chain fatty acids and serum free fatty acids were elevated. The SLE
metabolome exhibited profound lipid peroxidation, reflective of oxidative damage. Deficiencies were noted in the cellular
anti-oxidant, glutathione, and all methyl group donors, including cysteine, methionine, and choline, as well as
phosphocholines. The best discriminators of SLE included elevated lipid peroxidation products, MDA, gamma-glutamyl
peptides, GGT, leukotriene B4 and 5-HETE. Importantly, similar elevations were not observed in another chronic
inflammatory autoimmune disease, rheumatoid arthritis. To sum, comprehensive profiling of the SLE metabolome reveals
evidence of heightened oxidative stress, inflammation, reduced energy generation, altered lipid profiles and a pro-
thrombotic state. Resetting the SLE metabolome, either by targeting selected molecules or by supplementing the diet with
essential fatty acids, vitamins and methyl group donors offers novel opportunities for disease modulation in this disabling
systemic autoimmune ailment.
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Introduction

SLE is a systemic autoimmune disease resulting in chronic

activation of self-reactive lymphocytes and pro-inflammatory

myeloid cells, and inflammation targeting multiple end organs

including the kidneys, brain, joints and skin. The molecular basis

for the various manifestations of this autoimmune disease and the

impact of the systemic autoimmune process on basic metabolic

processes in the body are currently obscure. In addition, the

currently available yardsticks to diagnose and prognosticate the

disease are far from optimal.

In search for novel insights on the disease, as well as potential

disease markers, serum samples from SLE patients were subjected

to a comprehensive metabolic scan using LC/MS and GC/MS

based platforms, and a library of .2000 metabolite standards.

Statistically significant differences were noted in .100 metabo-

lites, falling into several metabolic pathways. The primary

metabolic scan and subsequent validation assays using an

independent cohort of subjects reveal metabolic imbalances in

multiple processes, including glycolysis, the Krebs cycle, fatty acid

(FA) b-oxidation, lipid biosynthesis, eicosanoid biosynthesis, and

methyl group metabolism. The lupus metabolome was also

marked by elevated oxidative stress, insufficient substrates for

energy biosynthesis, imbalanced lipid profiles, and elevated

inflammatory markers. In addition to providing novel insights on

the metabolic fabric underlying SLE, these studies also point to

potential disease markers, therapeutic targets, and imbalances that

may be amenable to dietary correction.

Results

For the primary metabolomic scan, serum from 20 SLE patients

(whose particulars are summarized in Table 1) was compared to

serum metabolities of 9 healthy controls, using a combined LC/

MS and GC/MS based approach, and a library of .2000

metabolite standards. In comparing the metabolites in SLE sera

and healthy controls, .100 metabolites were significantly different

in SLE, as tabulated in Supplementary Table S1. Reference to the

Kyoto Encyclopedia of Genes and Genomes (KEGG, release 41.1,

http://www.genome.jp/kegg) helped identify the metabolic path-

ways that the dysregulated metabolites belonged to. A substantial

fraction of the observed differences pertained to energy metabo-

lism. Energy from carbohydrates can be derived through

glycolysis. This potential energy source was evidently reduced in

SLE, extrapolating from the significant reduction in key

intermediates in this pathway including glycerol-3 phosphate,
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pyruvate and lactate (Fig. 1A–1C). Even more energy can be

derived via the Krebs cycle; however, this was also significantly

dampened in SLE patients, as marked by the reduced serum levels

of malate, citrate and a-ketoglutarate in SLE sera (Fig. 1D–1F).

Energy derivation from lipids was also evidently reduced in SLE,

based on the significantly reduced levels of intermediates of b-

oxidation, 1,2 propanediol and 3-hydroxybutyrate (BHBA)

(Fig. 1G–1H, and Supplementary Table S1). In the absence of

energy derivation from carbohydrates and lipids, amino acids

could emerge as potential energy sources. However, all ketogenic

and glucogenic amino acids (with the exception of arginine) were

also significantly dampened in SLE (Fig. 1I; Supplementary

Table S1).

Another cluster of molecules that were significantly reduced in

SLE included all long chain FA and acyl-carnitines, which are

required for ferrying FA into the mitochondria for b-oxidation and

energy release, as captioned in the heatmap in Fig. 2A.

Interestingly, all essential FA (which are FA that cannot be

synthesized by the body, but are of dietary origin) were also

significantly reduced in SLE. These included the polyunsaturated

fatty acids (PUFA), both n3-PUFA (a-linolenic acid, eicosapen-

taenoate or EPA, docosahexaenoate or DHA) as well as n6-PUFA

(linoleic acid, c-linolenic acid, dihomo c-linolenate or DGLA, and

dihomolinoleate) (Fig. 2A; Supplementary Table S1). In contrast

to the reduction in long-chain FA, SLE sera exhibited elevated

levels of medium chain FA (Fig. 2A). An independent assay using

an orthogonal platform confirmed the significantly elevated levels

of free FA (FFA), in an independent cohort of SLE patients

(Fig. 2B). Collectively, these studies indicate that free FA of

medium chain length are elevated in SLE, while long chain FA

and essential PUFA were reduced.

SLE sera exhibited a profound degree of lipid peroxidation, as

marked by the elevated levels of the products, 9-HODE and 13-

HODE, with these elevations being even more pronounced in

patients with active disease (Fig. 2C). These observations were

validated using an independent platform and independent serum

samples (Fig. 2D). These findings point to an increased level of

oxidative stress in SLE. Concordant with these findings, the levels

of the leading intracellular anti-oxidant, glutathione (GSH) was

significantly reduced in SLE (Fig. 2E).

Methyl group donors, which are necessary for the regeneration

of glutathione, were all significantly reduced in SLE, including

methionine, cysteine, and choline (Fig. 2F–H). The reduced

choline levels were, as one would predict, accompanied by

Figure 1. Key metabolic imbalances in SLE affecting carbohydrate, lipid or amino acid metabolism. The sera of 20 SLE patients and 9
healthy controls were comprehensively scanned for differences in small molecules using LC/MS and GC/MS platforms, referred to as the
‘‘metabolomic scan’’. Shown are the mean metabolite levels of 3 glycolytic intermediates (A–C), three Kreb’s cycle intermediates (D–F), and two
products of fatty acid b-oxidation (G–H). Open bars = healthy controls; closed bars = SLE patients. (*,P,0.05; **,P,0.01; ***,P,0.001). Plotted in (I) is a
heatmap of serum amino acid levels in healthy subjects (first 9 columns) versus SLE patients (rightmost 20 columns), as determined by the
metabolomic scan described above. Red = elevated; green = reduced, relative to the mean levels of the metabolite within the 29 study subjects. The
actual mean levels of the metabolites are listed in Supplementary Table S1.
doi:10.1371/journal.pone.0037210.g001
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significant reductions in phosphocholine levels (Supplementary

Figure S1). Besides methyl group donors, the regeneration of

glutathione requires various co-factors, including vitamin B6; this

vitamin was significantly reduced in SLE sera, with the degree of

reduction correlating with disease activity (Fig. 2I) This was

validated using an independent cohort of SLE sera (Fig. 2J).

Vitamin B5 and alpha-tocopherol were also reduced in SLE sera

(Supplementary Table S1).

In contrast to the reduced levels of most metabolites, a couple of

metabolites were significantly elevated in SLE sera, as summarized

in the heatmap in Fig. 3A. Besides the increase in lipid

peroxidation products (9-HODE and 13-HODE), several gam-

ma-glutamyl peptides, and two eicosanoid metabolites in the n6-

PUFA pathway, Leukotriene B4 (LTB4) and 5-HETE were also

significantly elevated in SLE. Elevations were also noted in the

serum levels of fibrin-degradation peptides and bradykinin in SLE

(Supplementary Table S1). A Random Forest analysis was

performed to identify the metabolites that had the greatest

discriminatory potential to distinguish SLE from controls. The

best discriminators included serum levels of gamma-glutamyl

peptides, 5-HETE, leukotriene B4, bradykinins, fibrin degradation

products and lipid peroxidation products (Fig. 3B). The increases

in LTB4 and 5-HETE were validated using independent assay

platforms and an independent cohort of SLE patients (Fig. 3C–D).

As noted above, almost all gamma-glutamyl peptides were also

significantly elevated in SLE (Fig. 3A). These peptides not only

indicate a vigorous attempt to generate glutathione, they also

suggest that the responsible enzyme, gamma-glutamyl transami-

nase, GGT, may be more active or elevated in SLE. This

prediction was confirmed using an independent assay and an

independent cohort of SLE patients (Fig. 3E).

To gauge the disease specificity of these metabolic markers, they

were next examined in another pro-inflammatory, chronic,

systemic autoimmune disease, rheumatoid arthritis (RA). The

alterations in serum leukotriene B4, MDA, GGT, and glutathione

noted in sera from RA patients were not as profound as those

observed in SLE sera (Fig. 4A–D). Importantly, receiver operator

curves (ROC) underscored the excellent predictive values of serum

leukotriene B4 (AUC = 0.99), lipid peroxidation marker MDA

(AUC = 0.92), GGT1 (AUC = 0.97), and glutathione (AUC = 0.84)

in distinguishing SLE from healthy controls (Fig. 4E–H; redlined).

Indeed, all 4 markers were also very effective in distinguishing SLE

from RA, as revealed by the respective (black, dotted) ROC curves

in Fig. 4E–H. Interestingly, RA patients exhibited modest

elevations in serum MDA and reduction in glutathione compared

to healthy controls, though not as pronounced as those seen in

SLE (Fig. 4B, 4D).

A couple of metabolite levels in SLE sera showed significant

association with some of the medications the patients were on,

including valine, urate, phenylalanine, leucine, citrulline and

methyl butryl carnitine with prednisone, acetaminophen sulfate

and acetamidophenylglucoronide with lisinopril, and guanosine,

theophylline and tryptophan betaine with mycophenolic acid, as

listed in Supplementary Table S1. Besides these, the other

metabolic changes described in this report showed no association

with the nature of the medications the patients were on. We have

re-evaluated this analysis with the validation data sets, and have

confirmed that the serum levels of MDA, GSH, Leukotriene B4

and GGT1 in SLE patients showed no significant association or

correlation with corticosteroid, plaquenil or MMF therapy, even

when the dosages were factored in.

Discussion

This first comprehensive profiling of the metabolomic landscape

in systemic lupus erythematosus reveals a wide array of

disturbances, as summarized in Figure 5. First and foremost is

the profound degree of shutdown of all energy generating

pathways, including glycolysis (Fig. 5A), Krebs cycle (Fig. 5B), b-

oxidation of lipids (Fig. 5C), and the pool of available amino acids

(Fig. 5D). Assuming these changes are reflective of intracellular

changes within these patients, these findings point to a drastic

reduction of ATP generation, and are consistent with earlier

reports indicating that SLE T-cells are less efficient at ATP

generation [1]. We postulate that this may in part represent the

molecular basis for the chronic fatigue that SLE patients typically

experience, though this needs to be formally proven.

Several imbalances were also noted in the patients’ lipid profiles.

Whereas all long chain FA were reduced (Fig. 2, 5E), medium

chain FA were elevated. Whereas the former are primarily

synthesized de novo, the latter are often of dietary origin, since

they are better absorbed. The reduced long chain FA may be due

in part to the reduced availability of the component building

blocks - acyl coA, as well as available co-factors. In addition, the

raised free fatty acids and medium chain FA levels, coupled with

the reduction in essential FA (both n3-PUFA and n6-PUFA;

Fig. 5F) may point to a diet that is high in saturated:unsaturated

ratios. Other than dietary differences, the significant reduction in

essential FA could also be due to accelerated metabolic

consumption or conversion, either through lipid peroxidation or

heightened leukotriene synthesis (Fig. 5G). Whereas n3-PUFAs are

significantly reduced (and possibly peroxidized), the downstream

Table 1. Demographics and Clinical characteristics of SLE
patients used for the metabolomic profiling.

No. 20

Female, no. 15

Age, median, years (range) 33.8 (18–40)

Race: African American/Hispanic, no. 9/10

BMI, kg/M2, median (interquartile) 29.9 (22.5–36.7)

SLEDAI, median (range) 5 (0–18)

Protein:creatinine ratio, mg/mg, mean 2.388

Serum Cr, mg/dl, mean 1.22

Positive anti-dsDNA, no. 8

Hypocomplementemia, no. (total no.tested) 9 (19)

Comorbidities

Diabetes Melitus 1

Hypertension 14

Dyslipidemia 4

Deep venous thromboembolism 4

Cardiovascular disease 1

Others 7

Current medications, no.

Prednisone 15

Mycophenolic acid 8

Azathioprine/MTX 3

Cyclophosphamide 2

Angiotensin blocking agents 7

Hydroxychloroquine 9

doi:10.1371/journal.pone.0037210.t001
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Figure 2. Lipid profiles and methyl group donors in SLE. Plotted in the heatmap in (A) are the serum levels of long chain fatty acids (FA) and
medium chain FA in 9 healthy controls and 20 SLE subjects, as determined by the metabolomic scan. Presentation details are as in Fig. 1(I). In the
metabolomic scan, additional differences were noted in the serum levels of 9-HODE and 13-HODE (C), methionine (F), cysteine (G), choline (H) and
vitamin B6 (I); presentation details are as in Fig. 1. In (C) and (I), the SLE patients have been segregated into 2 groups - mild SLE (SLEDAI ,6; N = 10)
and active SLE (SLEDAI .5; N = 10). Also plotted are validation assays for serum levels of free fatty acids (FFA; B), the lipid peroxidation marker, MDA
(D), glutathione (GSH; E), and vitamin B6 (J), ascertained in an independent cohort of 38 SLE patients and 14 healthy controls, using commercially
available assays, independent of the original metabolomic scan. Each dot represents data from an individual subject (*,P,0.05; **,P,0.01;
***,P,0.001).
doi:10.1371/journal.pone.0037210.g002

Metabolomics of Lupus

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e37210



products of the n6-PUFA pathway, namely 5-HETE and

leukotriene B4 are significantly elevated in SLE. Dampened n3-

PUFA:n6-PUFA ratios may engender a pro-inflammatory milieu,

as reported by others [2,3]. Collectively, the observed lipid

imbalances, pro-inflammatory milieu and the pro-thrombotic state

in SLE resonate well with the increased cardiovascular complica-

tions documented in SLE [4,5,6].

The profound degree of lipid peroxidation seen in SLE is

likely to be a readout of increased oxidative damage due to the

generation of free radicals in the mitochondria. Indeed,

increased oxidative stress and the reduced availability of anti-

oxidants in SLE have been documented in previous reports

[7,8]. Our present findings confirm the reduced levels of the key

intracellular antioxidant, glutathione (GSH) in SLE (Fig. 2, 5I).

Figure 3. Metabolic markers that best distinguish SLE from healthy controls. Plotted in (A) is a heatmap of a cluster of metabolites that
were elevated in SLE sera; presentation details are listed in Fig. 1(I). The metabolites that were best at discriminating SLE from controls (based on the
results from the original metabolomic scan of 20 SLE patients and 9 healthy controls) were identified and ordered using a Random Forest analysis
algorithm (B). The markers are listed in decreasing order of disease-discriminatory potential. Also plotted are validation assays for serum levels of
leukotriene B4 (C), 5-HETE (D), and serum GGT1 (E) ascertained in an independent cohort of 38 SLE patients and 14 healthy controls, using
commercially available kits, independent of the original metabolomic scan (*,P,0.05; **,P,0.01; ***,P,0.001).
doi:10.1371/journal.pone.0037210.g003
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This reduction in GSH is likely to be the end-result of reduced

generation and/or increased consumption. The generation of

GSH and its intermediates requires component amino acids,

methyl group donors, and various cofactors, all of which are

profoundly reduced in SLE (Fig. 1I, 2F–J). The reduction in

methyl group donors (e.g., methionine, choline, cysteine;

Fig. 5H) is also likely to curtail other molecular mechanisms

that are dependent upon methylation, including DNA and

histone methylation, lipid metabolism, and the synthesis of

various mediators. Indeed, global DNA hypomethylation,

accompanied by the activation of various genes has been

documented in human SLE [9,10], and this may in part be

attributed to the drastic reduction in available methyl group

donors in these patients. There are however indications that the

system is vigorously attempting to generate GSH, based on the

striking elevations in various gamma-glutamyl peptides, as well

as dimethyl glycine, both of which are by-product footprints of

these metabolic cascades (Fig. 3A, 5I; Supplementary Table S1).

The reduced levels of choline are, as expected, accompanied

by reduced levels of phosphocholines (Fig. 5H). Since phospho-

cholines constitute integral membrane components, this deficien-

cy could adversely impact membrane structure/dynamics, as well

as cell signaling and function in SLE patients – predictions that

await formal testing. Furthermore, reduced phosphocholine will

impair the export of lipids as VLDL out of the liver. In the face

of elevated FFA, these changes could pave the way towards

hepatic steatosis and fatty liver, and their associated co-

morbidities. Whether SLE patients harbor these hepatic alter-

ations warrants systematic study.

Presently, it is unclear if the serum metabolic changes

observed in this study arise from free metabolites in the sera

or from cell-derived particles (e.g., cellular debris, exosomes,

etc). Irrespective, these disturbances are likely to be reflective of

the intracellular metabolic alterations in these patients, arising

from leukocytes or non-immune cells (e.g., endothelial cells,

hepatocytes, etc). Though the cascades diagramed in Fig. 5

might have arisen from multiple independent triggers, it is

tempting to speculate that subsets of these alterations may be

interconnected to each other, and to immune activation. For

instance, robust and repeated activation of autoreactive

lymphocytes (by autoantigens), various myeloid cells and other

non-immune cells may be the wellspring of redox radicals. This

in turn could result in profound oxidative damage (including

lipid peroxidation) and consumption of GSH. Refocusing all of

the cell’s efforts towards GSH regeneration could have rippling

effects on the cellular stores of amino acids, methyl groups and

various co-factors, the depletion of which may dysregulate

additional interlinked metabolic pathways. Whether genetic

and/or epigenetic factors might also directly regulate any of

the cascades depicted in Fig. 5 is an open question. Whereas

some of the observed changes may be the consequence of

disease, others may well play a role in causing or aggravating

various manifestations of the disease, as implied in Fig. 5 (pink

boxes).

These metabolic alterations have potential diagnostic and

therapeutic implications. Based on the validation assays using

independent serum samples and independent assay platforms, the

serum levels of leukotriene B4, the lipid peroxidation marker

MDA, gamma-glutamyl peptides or GGT, and glutathione

emerge as excellent predictors of SLE, with superior specificity

and sensitivity profiles (Fig. 4), effectively differentiating SLE from

healthy controls as well as another pro-inflammatory, chronic

systemic autoimmune disease, RA. Moreover, the SLE-associated

metabolic changes reported here are distinct from those associated

with other diseases whose metabolomes have been comprehen-

sively profiled, including other autoimmune diseases [11,12] and

Figure 4. Sensitivity and specificity profiles of new metabolic markers in SLE. The levels of the 4 markers indicated were tested in serum
samples from RA patients (open dots; N = 20) and SLE patients (closed dots; N = 38) (A–D). Each dot represents data from a single individual.
(*,P,0.05; **,P,0.01; ***,P,0.001). The dotted line represents the mean serum levels in healthy controls (N = 14). The potential of the different
markers in distinguishing SLE from healthy controls (red bold line), or from RA disease controls (black dotted line) were also analyzed using ROC
curves, as displayed for leukotriene B4 (E), MDA (F), GGT1 (G) and glutathione (H), based on the serum levels observed in the independent cohort of
38 SLE patients, 20 RA patients and 14 healthy controls, in the validation assays plotted in A–D. The ROC curves plot (1-Specificity) % on the x-axis
versus the Sensitivity (%) on the Y-axis, for each marker. AUC = Area under ROC curve.
doi:10.1371/journal.pone.0037210.g004
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cancer [13]. Although all four of the markers displayed in Fig. 4

were significantly altered in SLE sera, they did not correlate

significantly with SLEDAI, anti-dsDNA titers, renal disease or

disease duration (data not shown). Interestingly, although the

peroxidation marker MDA did not correlate with disease activity

in SLE, other lipid peroxidation markers such as 9/13-HODE did

show higher associations with higher disease activity (Fig. 2C); the

significance of these subtle differences currently remain unknown.

Interestingly, the increased serum levels of leukotriene B4 and

reduced serum levels of glutathione correlated with age, alluding

to the importance of factoring in age differences when examining

these two markers.

Finally, the metabolic landscape in SLE may lend itself to

disease modulation by targeted therapeutics and/or dietary

means. The reduced levels of n3-PUFA (which is totally diet-

derived), could perhaps be corrected by dietary supplementation

particularly since fish oil supplements have been shown to be

effective in murine lupus [14], and in limited clinical trials in SLE

patients [15]. The reduced levels of various co-factors call for

adequate vitamin supplementation (in particular, the B vitamins)

as adjunctive therapy in SLE. Since dietary choline is the major

source of methyl groups, supplementing the diet with choline and

its precursors (notably, lecithin) may also be important. Whether

dietary anti-oxidants can alter the intra-cellular redox balance in

SLE remains to be established. Regardless, resetting the imbal-

Figure 5. An overview of the metabolic imbalances in SLE. The most significant metabolic alterations in SLE have been organized into
different biochemical pathways, including glycolysis (A), Krebs cycle (B), fatty acid oxidation (C), amino acid pools (D), lipid biosynthesis (E), essential
FA (F), eicosanoid biosynthesis (G) and methyl group interchange pathways (H) leading to glutathione generation (I). Metabolites that were elevated
in SLE are in red font, while reduced metabolites are in green font. Mitochondrial events are blue-boxed, while events that take place in the
endoplasmic reticulum are yellow-boxed. Salient metabolic consequences that can potentially contribute to the manifestations of SLE are highlighted
in pink.
doi:10.1371/journal.pone.0037210.g005
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anced metabolome offers new and exciting opportunities for

disease modulation in SLE.

Materials and Methods

Patient Samples
For the primary metabolomic scan, all 20 SLE patients were

drawn from the Renal Clinic at UT Southwestern Medical

Center, Dallas, TX, of whom 10 had active renal disease with

SLEDAI .5. Patients were recruited as and when they were seen

for their routine outpatient clinic visits, as long as they met all

recruitment criteria. The patients’ characteristics and the medica-

tions they were on are detailed in Table 1. The mean body mass

index (BMI) of the SLE patients (29.9) was not significantly

different from that of the general population in Dallas (mean

BMI = 29; N = 6101), from which all healthy controls were drawn

[16]. Healthy control individuals in the Dallas Autoimmune

Disease Registry [17] were recruited from the Dallas area and

screened to be sure that the donor did not have autoimmune

disease personally or in first-degree relatives; 78% of the controls

were African American or Hispanic females. The mean BMI of

the healthy controls used in this study was 26.9, not significantly

different from that of the SLE patients studied (P.0.10), while

their mean age was 36. For all validation assays, an independent

cohort of SLE patients (N = 38; average age = 38; average

BMI = 28.7; average SLEDAI = 7) was used, drawn from the

rheumatology clinic at Albert Einstein College of Medicine, New

York. More than 80% of these subjects were either of African-

American or Hispanic origin. Disease activity was gauged using

SLEDAI (SLE disease activity index) [18]. All Rheumatoid

Arthritis (RA) patients were also drawn from the Albert Einstein

College of Medicine, New York, and were age, gender and

ethnicity matched to the SLE patients.

All human research was approved by the UT Southwestern

institutional review board (IRB). All research was conducted with

informed written consent, and all clinical investigation were

conducted according to the principles expressed in the Declaration

of Helsinki.

Metabolomic Profiling - Sample Preparation
The metabolomic profiling procedures have been detailed

previously [19]. Human sera were obtained from healthy controls

(N = 9) and SLE patients (N = 20). Serum samples were collected

using BD vacutainer serum tubes (Ref 367820), spun at 1500 RCF

for 10 minutes at room temperature. The retrieved serum was

then aliquoted and stored in 280. For the metabolomic analysis,

frozen serum aliquots were thawed, and processed using an

automated MicroLab STARH system (Hamilton Company), using

a series of organic and aqueous extractions to remove the protein

fraction in sera while allowing maximum recovery of small

molecules. Recovery standards were added prior to the first step in

the extraction process for QC purposes. The resulting extract was

divided into two fractions; one for analysis by LC and one for

analysis by GC. Samples were placed briefly on a TurboVapH
(Zymark) to remove the organic solvent, and then frozen and dried

under vacuum. Samples were then prepared for the appropriate

instrument, either LC/MS or GC/MS.

Liquid Chromatography/Mass Spectrometry (LC/MS, LC/
MS2)

The LC/MS portion of the platform was based on a Waters

ACQUITY UPLC and a Thermo-Finnigan LTQ-FT mass

spectrometer, which had a linear ion-trap (LIT) front end and a

Fourier transform ion cyclotron resonance (FT-ICR) mass

spectrometer backend. The sample extract was split into two

aliquots, dried, then reconstituted in acidic or basic LC-

compatible solvents, each of which contained 11 or more

injection standards at fixed concentrations. One aliquot was

analyzed using acidic positive ion optimized conditions and the

other using basic negative ion optimized conditions in two

independent injections using separate dedicated columns.

Extracts reconstituted in acidic solvents were gradient eluted

using water and methanol both containing 0.1% formic acid,

while the basic extracts, which also used water/methanol,

contained 6.5 mM ammonium bicarbonate. The MS analysis

alternated between MS and data-dependent MS2 scans using

dynamic exclusion. For ions with counts greater than 2 million,

an accurate mass measurement could be performed. Accurate

mass measurements could be made on the parent ion as well as

fragments. The typical mass error was less than 5 ppm.

Fragmentation spectra (MS/MS) were typically generated in

data dependent manner, while targeted MS/MS was employed

in the case of lower level signals.

Gas Chromatography/Mass Spectrometry (GC/MS)
The samples destined for GC/MS analysis were re-dried under

vacuum desiccation for a minimum of 24 hours prior to being

derivatized under dried nitrogen using bistrimethyl-silyl-triflour-

oacetamide (BSTFA). A 5% phenyl-based GC column was used,

with the temperature being ramped from 40u to 300uC over a 16

minute period. Samples were analyzed on a Thermo-Finnigan

Trace DSQ fast-scanning single-quadrupole mass spectrometer

using electron impact ionization. The instrument was tuned and

calibrated for mass resolution and mass accuracy on a daily basis.

Compound Identification
Identification of known chemical entities was based on

comparison to a metabolomic library with .2000 entries of

purified standards. The combination of chromatographic proper-

ties and mass spectra gave an indication of a match to the specific

compound or an isobaric entity in the library. Additional entities

could be identified by virtue of their recurrent chromatographic

and mass spectral nature. These compounds have the potential of

being identified by future acquisition of matching purified

standards or by classical structural analysis.

Validation Assays
All validation studies were performed using orthogonal methods

other than GC/MS or LC/MS. Glutathione (GSH) was measured

using a Glutathione Assay kit purchased from Cayman Chemical,

Ann Arbor, MI. Serum MDA was determined using a TBARS

Assay kit purchased from Cayman Chemical, Ann Arbor, MI.

Free Fatty Acids (FFA) were measured using a Free Fatty Acid

Quantification kit purchased from Abcam, Cambridge, MA.

Serum GGT1 was measured using a Human Gamma Glutamyl-

transferase 1 (GGT1) ELISA kit purchased from USCN Life

Sciences InC., Wuhan, China. Serum vitamin B6 was assayed by

AntiCancer, Inc., San Diego, CA. All assays were performed

following the manufacturer’s instructions.

Statistical Calculation
For pair-wise comparisons, Welch’s t-tests and/or Wilcoxon’s

rank sum tests were used. For classification of the best

discriminators, Random Forest analysis was used. Random

Forests give an estimate of how well we can classify individuals

in a new data set into different study groups (e.g., SLE versus

healthy controls) [20] in contrast to a t-test, which tests whether
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the unknown means for two populations are different or not.

Random Forests create a set of classification trees based on

continual sampling of the experimental units and compounds.

Then each observation is classified based on the majority votes

from all the classification trees [5]. Statistical analyses were

performed using ‘‘R’’ from the Free Software Foundation, Inc.

(http://cran.r-project.org/) or Array Studio (Omicsoft, Inc.).

Supporting Information

Figure S1 Serum phosphocholine levels in SLE. Plotted

are the serum levels of phosphocholines in 9 healthy controls and

20 SLE subjects, as determined by the metabolomic scan.

Presentation details are as in Fig. 1. The SLE patients have been

segregated into 2 groups - mild SLE (SLEDAI ,6; N = 10) and

active SLE (SLEDAI .5; N = 10). These results are detailed in

Supplementary Table S1.

(TIF)

Table S1 Mean metabolite levels in SLE and healthy
control sera.

(DOCX)
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