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There is strong evidence for a link between numerical and spatial processing. However,
whether this association is based on a common general magnitude system is far from
conclusive and the impact of development is not yet known. Hence, the present study
aimed to investigate the association between discrete non-symbolic number processing
(comparison of dot arrays) and continuous spatial processing (comparison of angle
sizes) in children between the third and sixth grade (N = 367). Present findings suggest
that the processing of comparisons of number of dots or angle are related to each other,
but with angle processing developing earlier and being more easily comparable than
discrete number representations for children of this age range. Accordingly, results favor
the existence of a more complex underlying magnitude system consisting of dissociated
but closely interacting representations for continuous and discrete magnitudes.
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INTRODUCTION

Differentiation Between Different Aspects of Number and
Space Processing
A strong association between numbers and space has been reported over the last years of research.
However, reported findings refer to different aspects of numbers and space. Therefore, it is very
important to differentiate between various characteristics of numerical and spatial processing
and their interrelation to gain further understanding and disentangle the complex number-
space association. In this vein, Patro et al. (2014) proposed a more differentiated discussion
of the number-space interaction since different numerical and spatial tasks target different
underlying representations. According to their four level system of spatial-numerical associations,
the authors suggest two categories with a non-directional number-space mapping: (1) cross-
dimensional magnitude processing (number: cardinal, space: non-directional), and (2) association
between spatial and numerical intervals (number: interval, space: non-directional). The other
two categories refer to directional number-space mapping requiring spatial directionality in
a sense that larger numbers are generally associated with the right side in Western cultures,
while smaller numbers are associated with the left: (3) associations between cardinalities

Abbreviations: M, mean; N, number; p, statistical p-value; r, Pearson correlation coefficient; SD, Standard Deviation; t,
Student’s t-test value.
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and spatial directions (number: cardinal, space: directional),
and (4) associations between ordinalities and spatial direction
(number: ordinal, space: directional). The present study focuses
on cross-dimensional magnitude processing. This includes
the examination of interrelations between cardinal aspects of
non-symbolic numerosities (e.g., arrays of dots) and non-
directional spatial dimension (e.g., line lengths, angles, sizes).
Accordingly, when we talk about or discuss the number-
space link in the present study, we exclusively refer to the
above-mentioned numerical and spatial characteristics. In detail,
number processing was explored by non-symbolic number
comparison including two sets of dot clouds and spatial
processing by comparison of two angles. Both tasks demand a
magnitude judgment, which is based either on the evaluation
of discrete quantity estimation of numerosity (number) or on
continuous spatial processing (space).

A General Cognitive Magnitude System
Associations between such different kinds of magnitude
processing have led to the hypothesis of the existence of a
shared general cognitive magnitude representation. Walsh
(2003) proposed in “A Theory of Magnitude (ATOM)” that
quantity, space, and time are part of a general magnitude system.
Recent research has investigated to what extent and why these
representational systems are shared. According to the content
of the present study, we are mainly providing examples of
cardinal numerical and non-directional spatial interactions. For
an overview about associations between all dimensions (number,
space, time, size, speed) according to ATOM see the review by
Bueti and Walsh (2009).

Crucial contributions to the origin and existence of cross-
dimensional magnitude processing stem from recent research
in infants, brain imaging studies in adults, and single-cell
recordings in primates or animals. Different studies highlight
that a predisposition to relate numerical information to spatial
magnitudes emerges very early in life (de Hevia and Spelke,
2010; Lourenco and Longo, 2010; de Hevia et al., 2012a,b).
For instance, de Hevia and Spelke (2010) could show that
infants as young as 8 months are sensitive to the association
between non-symbolic numerical magnitudes and spatial line
lengths. Moreover, also when continuous spatial variables are
held constant, infants still attend to numerical change, indicating
that number is spontaneously represented by young infants and
both spatial and number information are probably integrated
in an early magnitude representation (Brannon et al., 2006;
Cordes and Brannon, 2009; Starr and Brannon, 2015). Finally,
de Hevia et al. (2014) provided evidence that representations of
space, time, and number are interrelated in even 0 to 3-day-old
neonates.

Studies in adults corroborate a strong relation between
number and space on both the behavioral and neuronal levels.
Repeatedly a behavioral interference between the judgment of
different magnitudes has been reported (Hurewitz et al., 2006;
Longo and Lourenco, 2010; Dormal and Pesenti, 2013). On
the neuronal level, several studies depicted an overlay of brain
activation localized in the parietal lobes for different magnitudes
(e.g., Fias et al., 2003; Dormal et al., 2012; for review see

Pinel et al., 2004; Hubbard et al., 2005; Kaufmann et al., 2008).
And particularly, the right intraparietal sulcus moved into focus
as locus of a possible general magnitude system (for review see
Sokolowski and Ansari, 2016). More recently, McCaskey et al.
(2017) identified in adolescents the occipito-parietal stream as a
common magnitude system for numerical and spatial magnitude
comparisons assessed with the same task used in the present
study.

Finally, animal behavior suggests that many animal species
show a representation of space, number, and time (for review see
Gallistel, 1989) and single-cell recordings in primates revealed
identical neurons within the posterior parietal cortex that code
for discrete non-symbolic numerosities (arrays of dots) and
continuous spatial quantity (length) (Tudusciuc and Nieder,
2007).

Taken together, various sources of evidence suggest that
number and space are processed by a general magnitude system
that is claimed to develop very early in life and comprises
identical brain areas of the parietal lobules. However, Bueti and
Walsh (2009) emphasize in their latest review that although
the parietal lobe may be considered as the “primary magnitude
cortex,” it is only one locus of magnitude processing and that
there is a magnitude system and not a single magnitude area.
Therefore, it is also not surprising that only some activation
sites for number, space, and time overlap and a few do not.
Furthermore, Bueti and Walsh (2009) point out that an over
simplistic view of a general magnitude system would assume
systematic interferences between number, space, time and all
kinds of magnitudes. This is clearly not the case. In fact,
Dormal and Pesenti (2007) reported only an interference effect
of space with numbers, whereas Nys and Content (2012) showed
the reciprocal interference. Moreover, Hurewitz et al. (2006)
demonstrated interference between discrete and continuous
stimulus dimensions in both directions. Not only are reported
findings inconsistent about the directions of interferences
between different magnitudes, Agrillo et al. (2013) and Barth
(2008) found absolutely no correlations among non-symbolic
estimations (number/space/time or number/space) contradicting
the existence of a general magnitude system. Similarly, behavioral
and neuronal findings from Cappelletti et al. (2014) also point
to distinct systems for quantifying different magnitudes. Their
results showed that the proficiency in numerical and continuous
quantity tasks was not correlated in participants with a specific
math learning disorder (dyscalculia) (e.g., impaired number but
spared time and space processing), and moreover, performance
in these tasks was partly dissociated in subjects without math
problems, both behaviorally and anatomically. Similar findings
from populations with specific impairments in one quantitative
domain reported preserved abilities in other magnitude domains
(Mussolin et al., 2011; Rousselle et al., 2013; Crollen and
Noël, 2015). Lourenco et al. (2012) also reported only partly
overlapping representations of numerical and spatial magnitudes
by showing that number and spatial performance correlated
with higher mathematical competence, but number precision
contributed uniquely to advanced arithmetic and spatial
precision uniquely to geometry in adult subjects. Similar work
in children by Lourenco and Bonny (2017), however, revealed no
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differentiation between number and spatial performance – the
precision of both tasks contributed exactly to the same math
measures (calculation and geometry). On the other hand, there
is also evidence speaking for a correlation between number and
spatial processing, as expected under a general magnitude system.
Lourenco and colleagues revealed positive correlation between
the performance of comparisons between non-symbolic number
arrays and cumulative area in typically developing children
(Lourenco and Bonny, 2017) and adults (Lourenco et al., 2012).

Results from DeWind and Brannon (2012) are contradictory
to ATOM, which predicts that improving abilities in one domain
(e.g., number) would improve other quantitative domains (e.g.,
space). In this regard, DeWind and Brannon (2012) administered
a simple numerical training, reporting an improvement in
numerical skills but not in a spatial task. Due to this lacking
transfer effects, training only one domain and hoping for
improvements in the untrained domain makes no sense.
However, interventions focusing on the improvement of the
association between number and space are supposed to be more
beneficial for basic geometrical and numerical understanding
(reviewed by Cipora et al., 2015; Hawes et al., 2017).

In sum, there is no doubt about a strong connection between
number and space, however, if both representation originate from
a single general magnitude system is contradictious and further
research is needed.

Development
An important determinant in the explanation of different
findings could be characteristics of investigated populations such
as age. Regarding development, findings suggest that we are
born with the ability to relate numerical and spatial factors (de
Hevia et al., 2014), which probably get further integrated over
development as can be observed by directional biases in spatial
or numerical line bisection tasks in younger children (7 years
of age) to an adult-like behavior in 13-year-old children (van
Vugt et al., 2000; Hausmann et al., 2003; Göksun et al., 2013).
Hence, it can be inferred from these findings that school-age
might be still a critical period in the development of numerical
and spatial skills. However, only very little knowledge is available
today at this age-range. To our knowledge, only one study
examined the relation between spatial and numerical skills over
development in school aged children and concluded rather
differing mechanisms underlying physical and numerical space
in childhood that might integrate in adulthood (Göksun et al.,
2013).

Speaking about development, it has to be kept in mind that
not only the mere existence of a general magnitude system is
disputable, but also different possible developmental trajectories
are currently discussed (for review please see Lourenco and
Longo, 2011; Lourenco, 2015). According to the classic approach
of learning by Gibson and Gibson (1955), the differentiation view
suggests strongest cross-dimensional associations earlier in life
and an increase in differentiation of representations of magnitude
dimensions over development. In line with this differentiation
view, Newcombe et al. (2015) come to the conclusion in their
review that infants begin with a general magnitude system which
differentiates into distinct dimensions over developmental time.

In contrast, the enrichment view assumes an increase in strength
of different magnitude representations over development.

Aim of the Present Study
The goal of the present study was to examine the relation between
discrete non-symbolic number processing (arrays of dots) and
continuous spatial magnitude processing (angles) taking the
important aspect of development into consideration. Therefore,
we investigated typically achieving children spanning different
school grade levels. Izard and Spelke (2009) have shown that
sensitivity to detect relationships of line length and angles
shows steady improvement over childhood, reaching asymptote
at about 12 years of age. However, the authors also reported
differences in the developmental trajectories of length and angle
sensitivity, while the sensitivity to length is mature by the
age of 8, sensitivity to angle continues to mature until 10.
In addition, and as mentioned above, adult-like behavior has
been observed in 13-year-old children in spatial or numerical
line bisection tasks. Accordingly, the current work focusses on
children between 8 and 13 years, as this age range seems to
be an interesting developmental stage to test higher cognitive
processing of angle and dot comparison. According to Walsh
(2003) an interference between both tasks would support ATOM.
Regarding development, we expect improvements in numerical
and spatial quantitative skills. As the development of numerical
and spatial representation is a complex process, different
developmental trajectories are possible. The investigation of these
developmental courses could provide further evidence for the
existence of a general magnitude system or for separate cognitive
representations for discrete and continuous magnitudes. On
the one hand, a strong cross-dimensional transfer in earlier
grade levels and/or parallel development for number and space
abilities would support ATOM (proposed by Walsh, 2003).
On the other hand, increasing integration among numerical
and spatial magnitudes over development and/or dissociated
developmental pathways would rather support the idea that
quantitative thinking begins with the ability to discriminate
between continuous properties. Over development, children
learn the correlation between continuous and discrete features
suggesting that discrete and continuous magnitude processing
are two separate, but interacting systems underlying a general
magnitude system (proposed by Leibovich and Henik, 2013a).

To address these hypotheses we decided to test non-symbolic
number processing by the comparison of number of dots and
spatial magnitude processing by a clearly different stimulus type,
namely angle size. This is in contrast to some studies that use
exactly the same arrays of dots for both dimensions by asking
two different questions: which of two arrays is greater in number
(numerical estimation) or cumulative area (spatial estimation).
Although such a design has the advantage of using exactly the
same stimuli for the two tasks, it has the disadvantage that
participants have always to keep in mind which question they
have to answer at the moment and even more importantly,
they have to inhibit the processing of the irrelevant dimension.
Both additional mental processes are not of interest in our
study and put a supplementary challenge especially for children.
Finally, research with infants proved that they are already able
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to discriminate 2-dimensional angles (Slater et al., 1991) and
findings from preschool children corroborated generally high
performance levels of angle comparisons and provide evidence
that the dimension of angle is even more salient than length for
children (Izard and Spelke, 2009). Therefore, the present study
design testing children’s magnitude processing skills uses dot
array versus angles.

MATERIALS AND METHODS

Subjects
In total 369 children participated in the present study, of which
2 were excluded due to incomplete task performance, resulting
in a group size of 367 children between 8.2 and 12.9 years of age
(M = 10.6; SD = 1.1), including 39% girls and 61% boys. Children
attended third to sixth school grades, such that 87 children were
in the third grade (8.2–10.2 years of age: M = 9.3; SD = 0.4), 140 in
the fourth grade (9.3–11.8 years of age: M = 10.3; SD = 0.4), 110
in the fifth grade (10.1–12.7 years of age: M = 11.4; SD = 0.5), and
30 in the sixth grade (11.0–12.9 years of age: M = 12.3; SD = 0.4).

The study was approved by the local ethics committee
(Kantonale Ethikkommission Zürich) based on guidelines from
the World Medical Association’s Declaration of Helsinki (WMA,
2002). According to the local ethical committee, written parental
consent was not required as no risk for the children existed,
voluntariness and privacy was guaranteed at all times. Data
collection was fully anonymised and took place in the scope
of a lecture of the Children’s University of Zurich to illustrate
our research field, research question, and research experiments.
Children’s University of Zurich gave also their consent to analyze
obtained data.

Non-symbolic Number Comparison Task
Non-symbolic number comparison performance was tested with
a paper-and-pencil task including a total number of 28 different
trials (see Figure 1A). In each trial two groups of dots including
a range from a minimum of 8 to a maximum of 32 dots were
presented horizontally. Children were asked to indicate on which
side more black dots were presented. Presentation of dots was
controlled for individual size of dots (no judgment possible due
to individual dot size), total displayed area (no judgment possible
due to total black area), distribution of dots (no judgment
possible due to total covered area), the total number of presented
dots for each numerical distance between sets (control for size
effect), the side of correct answer, and comparable number of
trials for each numerical distance between presented magnitudes
were presented (distance 2 = 4 trials, distance 4 = 4 trials, distance
6 = 6 trials, distance 8 = 5 trials, distance 10 = 5 trials, distance
12 = 4 trials). Ratio between smaller and larger dot arrays was
0.4, 0.5, 0.6, 0.63, 0.67, 0.70, 0.71, 0.77, 0.8, 0.83, 0.9, or 0.91.
Detailed information about all 28 trials can be found in the
Supplementary Table S1. All children were carefully introduced
to the task and encouraged to solve all trials by comparison of
both sets of presented dots by numerical estimation and not
counting. To further prevent children from counting, time was
restricted to 2 min for all 28 trials. The ability of non-symbolic

magnitude comparison by dots requires a decision about discrete
quantity.

Spatial Comparison Task
In the spatial comparison task, a green and a blue Pacman
facing to the right side with varying mouth size was presented
horizontally (see Figure 1B). Children had to indicate by pencil
which of the two presented Pacmen has a bigger mouth,
whereas line length intersecting the angle was controlled and
corresponded always to radius of the circle. In contrast to the
non-symbolic number comparison task, this task requires a
visuo-spatial and continuous magnitude decision. The mouth
angle of one Pacman was always 45 degrees and the mouth angle
of the other Pacman varied between minimum 18 degrees to
maximum 72 degrees [18, 23, 27, 32, 36, 40, 42, 47, 49, 54, 59,
63, 68, 72 degrees (2 trials for each degree)]. Difficulty level was
controlled by varying the ratio between both presented mouth
angels across all trials. Detailed information about all 28 trials
can be found in the Supplementary Table S2. In addition, the
side of the correct answer and color of Pacman were balanced.
Similar to the number comparison task, children were carefully
instructed and advised to solve the spatial comparison task by
simple estimation of mouth sizes and not to use for instance
their fingers or any other tool to measure the mouth sizes. Again,
children had 2 min time to solve all 28 trials.

Data Analyses
For both tasks, the non-symbolic number and the spatial
comparison task, the percentage of correctly solved trials was
calculated. Subsequent statistical analyses were performed with
IBM SPSS Statistics Version 22. As accuracy levels of number and
spatial comparisons were negatively skewed and the assumption
of normality was therefore violated, non-parametric tests were
used. First, we were interested to see which task is more
difficult. Therefore, the percentage of correctly solved trials
between both tasks was compared by the Wilcoxon signed-rank
test. Subsequently, post hoc Wilcoxon signed-rank comparisons
between both tasks were performed for each grade level
individually. Second, to test if numerical and spatial processing
are related, Spearman’s correlation coefficients were calculated
between both tasks over all grade levels and for each grade
level individually. Third, development across grade levels was
evaluated by Kruskal–Wallis test, and the post hoc Mann–
Whitney test was conducted to test for developmental differences
between grade levels. Finally, effect sizes are reported for all
major findings with the denomination r for dependent Wilcoxon
tests and Spearman’s correlations, and the denomination q that
permits to interpret the difference between two correlations.

RESULTS

All 367 children were able to solve all 28 trials of both tasks
within the allotted time of 2 min for each condition and
performed clearly above chance level. The median accuracy for
the non-symbolic number task ranged from 61–100% across
grade levels (third grade Mdn = 92.9 (IQR 89.3–96.4); fourth
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FIGURE 1 | Numerical and spatial task. (A) In the non-symbolic number comparison task, children were asked to indicate which set includes more dots. (B) In the
spatial comparison task, children had to mark the Pacman with the bigger mouth. Both tasks consisted of 28 different pairs, each of which were controlled for
factors not of interest. Children had 2 min time for each task to tick the correct solutions. All trials of a task were printed on a double-sided A4 page.

grade Mdn = 96.4 (IQR 92.9–96.4); fifth grade Mdn = 96.4 (IQR
92.9–100); sixth grade Mdn = 96.4 (IQR 92.9–100). Similarly, the
median accuracy for the spatial comparison task ranged from
57.1–100% (third grade Mdn = 92.9 (IQR 89.3–96.4); fourth
grade Mdn = 92.9 (IQR 89.3–96.4); fifth grade Mdn = 92.9 (IQR
89.3–96.4); sixth grade Mdn = 96.4 (IQR 92.9–100). Please see
Figure 4.

For any statistical comparisons between both magnitude
dimensions, only identical ratios were included in the analyses
to prevent any confounding effects due to subtle differences in
ratios between tasks. Examining only trials with matched rations
in both conditions resulted in 25 different trials for the number
task and 24 trials for the space task. Ratios included in this
balanced analysis were as follows: 0.4/0.5–0.51/0.6/0.63/0.66–
0.67/0.71/0.76–0.077/0.8/0.83/0.89–0.9/0.91–0.92. Please see
Supplementary Table S3 for detailed information. Including

only matched ratios, the median accuracy for the non-symbolic
number task ranged from 60–100% across grade levels [third
grade Mdn = 92 (IQR 88–96); fourth grade Mdn = 96 (IQR 92–
96); fifth grade Mdn = 96 (IQR 92–100); sixth grade Mdn = 96
(IQR 92–100)]. Similarly, the median accuracy for the spatial
comparison task ranged from 63–100% [third grade Mdn = 95.8
(IQR 91.7–100); fourth grade Mdn = 100 (IQR 95.8–100); fifth
grade Mdn = 97.9 (IQR 95.8–100); sixth grade Mdn = 100 (IQR
95.8–100)]. Please see Figure 2.

Number or Space Comparison: Which
Task Is More Difficult?
Results of the Wilcoxon test for identical ratios revealed that
spatial comparison (Mdn = 100) is generally easier (z = −6.771,
p < 0.001, r = −0.25, N = 366) compared to non-symbolic

FIGURE 2 | Accuracy. Illustrated are median, interquartile range (IQR = length of box) and lowest and highest values which are no greater than 1.5 times the IQR
(whiskers) of percentage correctly solved trials for non-symbolic number comparison (green) and spatial comparison (blue) from the third to the sixth grade. Outliers
are marked by circles (1.5–3 times the IQR from the quartile) or asterisks (a value >3 times the IQR from the quartile). Wilcoxon test showed that spatial comparison
is in general significantly easier compared to non-symbolic number comparison (p < 0.001). Analyses between individual grades indicated difference between the
number and spatial task in the third (p < 0.001), fourth (p < 0.001), fifth grade (p < 0.01), and sixth (p < 0.05) grade. Only trials with matched ratios between
conditions were included.
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number comparison (Mdn = 96). Analyses between tasks for
different grade levels individually revealed significant difference
between the number and spatial task in the third z = −3.534,
p < 0.001, r = −0.27, N = 87; fourth grade z = −4.940, p < 0.001,
r = −0.29, N = 139; fifth grade z = −2.7, p < 0.01, r = −0.18,
N = 110; and sixth grade z = −2.083, p < 0.05, r = −0.27, N = 30.
Please see Figure 2.

In addition Figure 3 illustrates that accuracy levels decreased
significantly for both conditions with increasing ratio between
magnitudes, whereas bigger ratios stand for smaller distances
between magnitudes and are therefore more difficult to compare
(Spearman’s correlation for number comparison: rs = −0.961,
N = 25, p < 0.001; and for spatial comparison: (rs = −0.880,
N = 24, p < 0.001). Differences between conditions for different
ratios did not reach significance. Please see Figure 3.

Are Non-symbolic Number and Spatial
Abilities Related?
Spearman’s correlation over all grade levels showed that the
accuracy for both tasks with matched ratios are significantly and
positively related with each other rs = 0.264, N = 366, p < 0.001,
also when partialling out age (r = 0.257, N = 363, p < 0.001)
or grade level (r = 0.250, N = 363, p < 0.001) or age and grade
together (r = 0.247, N = 362, p < 0.001). Post hoc analyses
within grade levels supported a relation between both magnitude
dimensions. Significant and positive correlations between the
number and spatial task were also found within third, fourth, and
sixth grade (third grade rs = 0.295, N = 87, p < 0.01; fourth grade
rs = 0.305, N = 139, p < 0.001; sixth grade rs = 0.386, N = 30,
p < 0.05), but not within fifth (fifth grade rs = 0.124, N = 110,
p = 0.196).

Further, we were interested to evaluate if the strength of
correlation between both tasks decreases with development,
as the analyses of correlations between both tasks for each
grade level pointed into this direction. Therefore, we performed
comparison of correlation coefficients between grade levels, using
Fisher r-to-z transformation. This revealed significant differences
between correlation coefficients of number and space between
third and fifth grade (one-tailed p < 0.05, Cohen’s q = 0.267)
and between fourth and fifth grade (one-tailed p < 0.01,
Cohen’s q = 0.337), pointing to a weaker correlation between
magnitude dimensions in fifth grade compared to lower grades.
Comparisons between the strength of correlations between
number and space of the sixth grade and lower grades turned out
not to reach significance.

Development of Non-symbolic Number
and Spatial Skills
The developmental course from the third to the sixth grade level
of both tasks was evaluated by Kruskal–Wallis test including
the performance of all ratios of the two tasks (non-symbolic
number task and spatial comparison task) as dependent variable
and grade level as independent variable. Results indicated
that only for non-symbolic number comparison a significant
developmental effect over grade levels could be observed
[H(3) = 15.688, p < 0.005], but not for spatial comparison

performance [H(3) = 6.848, p = 0.77]. Post hoc Mann–
Whitney test comparison for non-symbolic number comparison
performance showed a significant difference between third and
fourth (U = −1.980, p < 0.05), third and fifth (U = −3.235,
p < 0.01), third and sixth (U = −3.364, p < 0.01), and between
fourth and sixth (U = −2.079, p < 0.05) grade levels. Please see
Figure 4.

Comparable developmental effects were found when
calculating Spearman’s correlations between task performance,
age, and grade level. Only non-symbolic number comparison
correlated significantly with age (rs = 0.157, N = 367, p < 0.01)
and grade level (rs = 0.205, N = 367, p < 0.001). Spatial
comparison did not reach significance with age (rs = 0.034,
N = 364, p = 0.514), or grade level (rs = 0.063, N = 364, p = 0.229).

DISCUSSION

The present study aimed to further elucidate the association
between number and space, which has been proposed to rely
on a common general magnitude system (Walsh, 2003; Bueti
and Walsh, 2009). However, conflicting research findings called
into question whether processing of different dimensions of
magnitudes can be attributable to such a general magnitude
system. To extend the current body of literature, we investigated
the relationship between discrete non-symbolic number
processing and continuous spatial magnitude encoding, taking
the impact of development into consideration. To our knowledge,
this represents the first attempt to investigate a developmental
association between these quantity skills in children between the
third and sixth grade. Discrete non-symbolic number processing
was tested by means of a comparison task of arrays of dots and
continuous spatial processing by the comparison of angle sizes.

In sum, results indicated that angle comparisons were
generally easier compared to non-symbolic numerical
comparisons for children between the third and sixth grade.
Moreover, the larger the ratio between magnitudes that had
to be compared the more difficult both conditions became.
Second, both tasks were significantly related with each other
over the entire examined age range, also when controlling for
age and/or grade level. However, third, and lastly, our findings
suggest differences in the developmental course of discrete and
continuous magnitude processing: significant improvements of
discrete numerical processing from the third to the sixth grade
can be found, whereas continuous spatial representation might
have already reached ceiling levels at this age range.

Number or Space Comparison: Which
Task Is More Difficult?
Overall, both tasks got more difficult as the ratio between
the two magnitudes increased. This is consistent with the well
described distance and size effects which are characterized by
increasing difficulty with smaller numerical distances and the
larger total numbers of dots to be compared (Moyer and
Landauer, 1967). Both effects can be explained by the assumption
that our representation of quantitative dimensions become
increasingly imprecise and noisy with increasing magnitudes
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FIGURE 3 | Ratio effect. With increasing ratio between magnitudes, task difficulty increases for both tasks, which is reflected in decreasing accuracy levels for spatial
comparison (blue) p < 0.001 and number comparison (green) p < 0.001. Illustrated are medians and interquartile ranges for each ratio. Only trials with matched
ratios between conditions were included.

FIGURE 4 | Development. Illustrated are median, interquartile range (IQR = length of box) and lowest and highest values which are no greater than 1.5 times the IQR
(whiskers) of percentage correctly solved trials for non-symbolic number comparison (green) and spatial comparison (blue) from the 3rd to the 6th grade.
Kruskal–Wallis test showed an increase in mean accuracy over grade levels only for non-symbolic number comparison (p < 0.005) (gray dotted line). Post hoc
analyses revealed significant performance differences between 3rd and 4th (p < 0.05), 3rd and 5th (p < 0.01). Third and 6th (p < 0.01) grade and between 4th and
6th grade (p < 0.05). Trials of all ratios were included.

(Feigenson et al., 2004). This seems to be true for both, discrete
non-symbolic magnitude and angle processing.

It is important to take into account that ratios between smaller
and larger magnitudes differed slightly between both conditions.
This might lead to difficulty differences between tasks due to
task design in favor to the non-symbolic number comparison
task. Therefore, we included only trials with identical ratios of
both conditions in order to compare accuracy levels between
conditions. Results showed that for matched ratios between
tasks spatial judgment of angle size is easier compared to non-
symbolic magnitude comparison. This result is consistent with

findings from Leibovich and Henik (2013a), who also showed
higher accuracy levels for a continuous spatial task compared
to non-symbolic dot comparison. They hypothesize that the
superiority of processing continuous magnitudes, together with
the fact that evolutionary ancient species such as fish and bees
are also able to process continuous magnitudes, might indicate
that the system for continuous magnitudes is older than the
system for processing discrete magnitudes. Our data can lend
support to this assumption that the system for continuous
quantity might develop earlier during childhood than the discrete
quantity system. In addition, present findings are in line with
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results by Odic et al. (2013), who also showed higher acuity for
area representation than number representation in 3- to 6-year-
old children by comparison of discrete non-symbolic number
processing (comparison of dot arrays) and continuous spatial
processing (comparison of area sizes).

In addition, both tasks were constructed in a way that
confounding factors, such as visual cues, could be excluded to
a large degree since many studies have shown that especially in
non-symbolic dot comparison tasks results could be biased by
visual perceptual cues (e.g., Gebuis and Gevers, 2011; Cleland and
Bull, 2015).

Taking these considerations into account, the present findings
demonstrate that continuous spatial judgments seems to be easier
for school children between third and sixth grade than non-
symbolic number discrimination.

Finally, consideration should be given to general angle
perception. In the present study, we have assumed that spatial
processing of continuous angles is similar to other types of
continuous spatial functions, whereas comparison between two
angles is getting more difficult the closer both angles are (distance
effect) and is getting more difficult with increasing angle sizes
for a given distance between angles (size effect). In line with the
distance effect, angle comparison got more difficult as the ratio
between the two angles increased. However, future studies should
test size effects in angle perception particularly.

Are Non-symbolic Number and Spatial
Abilities Related?
Present findings reveal that non-symbolic number processing
is positively related to continuous spatial abilities in school
children. However, since performance of number comparison
increased significantly over age or grade levels this relation
might have been driven rather by developmental processes.
This possibility could be excluded by controlling the effects of
age and/or grade level and additionally, correlations between
both tasks were also found for third, fourth, and sixth grade
level separately. This is in line with behavioral reports of
significant interference between numerical and spatial processing
in adults (Hurewitz et al., 2006; Longo and Lourenco, 2010;
Dormal and Pesenti, 2013). In particular, both Hurewitz et al.
(2006) and Dormal and Pesenti (2013) also reported a link
between non-symbolic number comparison and continuous
spatial processing in adults. Although research in childhood
provides strong evidence of mapping numbers and space on
a mental number line with a particular scaling (e.g., Siegler
and Opfer, 2003; Siegler and Booth, 2004; Booth and Siegler,
2008; Moeller et al., 2009; Kucian et al., 2011) and direction
(e.g., Patro and Haman, 2012; Hoffmann et al., 2013; Ebersbach
et al., 2014), very little and critically discussed knowledge
about children’s representation of symbolic numerosities and
continuous space is available (de Hevia and Spelke, 2009; de
Hevia, 2011; Gebuis and Gevers, 2011; Göksun et al., 2013; Odic
et al., 2013; Cleland and Bull, 2015). To our knowledge, no
study in terms of discrete non-symbolic numerical quantities in
respect to continuous space mapping in school aged children
exists to date. Therefore, the present findings could extend the
current limited body of literature in school children, showing

an interrelation between cardinal aspects of non-symbolic
numerosities and non-directional spatial dimension processing.
In contrast, Odic et al. (2013) could not find a significant
correlation between number and area acuity in their sample
of children once age was controlled. Hence, their results favor
rather separate representations of number and area. Contrasting
findings might be due to age differences, since children in Odic
et al. (2013) study were much younger (3–6 years) compared to
the present study (8–13 years). However, it has to be mentioned
that reported findings in younger children are mixed and
for instance Lourenco and Aulet (2018) reported in a recent
study cross-magnitude interactions in infancy and at 3.7 years
of age.

Comparison of correlation strength between different grade
levels pointed rather to weaker relation between numerical and
spatial representations in the fifth grade compared to lower
grades. This lower strength of cross-dimensional correlation
might hint to an increasing differentiation among magnitude
dimensions from third to fifth grade, favoring the differentiation
view of development. Similarly, Lourenco et al. (2012) reported
a differentiated relation of numerical and spatial magnitude
processing on arithmetic and geometry in adulthood, whereas
no such differentiation was found in children (Lourenco and
Bonny, 2017). However, in the present study, the tendency
from third to fifth grade could not be extrapolated into the
sixth grade. The comparison of correlation strength of sixth
graders with lower grades reached not significance. This might
be an effect of the smaller sample size in the sixth grade
(N = 30). Correlations calculated on data collected from a
small sample (30 or fewer subjects) can be affected substantially
by dissimilar distribution shapes (Goodwin and Leech, 2006).
Whereas in larger sample sizes, there is no direct bearing of
sample size to the size of the correlation coefficient (Goodwin
and Goodwin, 1999). Accordingly, it might be possible that
the examination of a larger sample in the sixth grade would
lead to significant differences in correlation strength between
sixth and lower grades. However, we cannot tell if correlation
strength in sixth grade would be weaker or stronger compared
to lower grades. Fact is, that we found no differences between
sixth grade and lower grades in the present study and therefore
when we consider the total examined age range from third
to sixth grade, present data does not legitimate a conclusion
in favor of the differentiation or the enrichment view. Future
studies should use identical stimuli, as in the present work, in
broader age ranges with comparable sample sizes to test the
hypothesis of differentiation between magnitude dimensions,
because it might also be possible that decreased correlation
between dimensions is due to increased general task performance
over development.

Development of Non-symbolic Number
and Spatial Skills
Various attempts have been made to investigate the
development of non-symbolic number processing, but
far fewer have examined the development of continuous
spatial skills in children. The present study allows not only
insights into the developmental course of both skills to be
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drawn, but also lends insight into the relationship between
them.

Regarding number development, our results are in line with
existing knowledge showing that children became more accurate
when two non-symbolic magnitudes have to be compared with
increasing grade level or age. The nature of children’s non-
symbolic magnitude representation is thought to index the
precision to process numerical quantity information in an
approximate way (Dehaene et al., 1999; De Smedt et al., 2013).
Halberda and Feigenson (2008) showed that the resolution of this
system continues to increase throughout childhood – children
perform more accurately and faster on magnitude comparison
tasks with increased precise representation.

However, it has also to be taken into account that non-
symbolic magnitude comparison tasks in an experimental design
as used in the present and other scientific studies control for as
many visual nuisance factors as possible to prevent that subjects
are able to base their magnitude judgment not on number, but on
other magnitude dimensions such as spatial extent. At the same
time, such a controlled presentation of non-symbolic magnitudes
does usually not correspond to natural surroundings, where more
apples take up more space. Therefore, it needs cognitive demands
to suppress irrelevant magnitude dimensions in a controlled
experimental setting and hence, increased performance in non-
symbolic discrete magnitude comparison might also be explained
by increased abilities of children in these rather domain-general
cognitive capacities than pure numerical abilities (Szucs et al.,
2013).

In contrast to numerical magnitude judgment, our findings
suggest that from third to sixth grade, children seem not to
improve in continuous spatial processing, which is indicated
by no correlation between spatial performance levels and
age or grade level. Accordingly our data rather indicate no
improvements over developmental time in the capacity to
compare continuous spatial dimensions at this age range.
Alternatively, these data might also be interpreted in a way that
discrete numerical magnitude representation is still developing
from the third to the sixth grade, whereas continuous spatial
processing already reached ceiling level in this age range. In
line, Odic et al. (2013) reported similar growth pattern across
development for number and area processing in preschool
children, but with improvements in area acuity occurring more
quickly than in number acuity. The authors argue that these
results suggest both an underlying similarity and an important
difference between discrete non-symbolic number processing
and continuous spatial processing.

General Magnitude System
At large, the present study aimed to gain knowledge about
the relation between discrete non-symbolic number encoding
and continuous spatial magnitude processing accounting for
developmental effects. To date, research has revealed a largely
inconclusive picture with respect to an underlying common
magnitude system to process both quantity dimensions.

Regarding ATOM, it has been proposed that children
with difficulties in one quantitative domain, e.g., numerical
processing, should have difficulties in all magnitude domains,

e.g., spatial and temporal encoding. Applied to our study, a
child with problems in the number task should also be weak in
the spatial task, resulting in equal performance levels between
both quantitative tasks. However, in our point of view the mere
difference in accuracy levels is a very weak indicator of the
relation between two tasks and does not justify the support
or contradiction of ATOM. Moreover, it is possible that a
single processing system is more prone to one or the other
input modality, e.g., due to familiarity, leading to performance
differences. In the same vein, acuity of a given magnitude depends
on the format of the stimuli, and differences in accuracy levels
between different stimuli types, as used in the present study,
are probably driven by the stimuli type and not explicable by
different magnitude representations (Price et al., 2012; Gilmore
et al., 2015). In this sense, interferences such as transfer effects
of training one competence on another (as has been carried out
for instance by DeWind and Brannon, 2012), priming effects or
correlative analyses between tasks are more meaningful.

In the present study, correlation analyses between both tasks
pointed to a relation between number and space processing. This
link was independent of age or grade level, as the correlation
between number and space was still significant when controlling
for both factors. Accordingly, we can conclude that discrete non-
symbolic number processing and continuous spatial processing
are related in school-aged children, but if both skills are processed
by a single magnitude system or by two closely interacting
systems remains unclear. However, when we take observed
differences in the developmental courses of number and space
processing into account, the present study provides stronger
evidence for two dissociated, but closely related magnitude
systems.

On the grounds of current literature and present findings, the
description of ATOM as initially proposed by Walsh (2003) seems
to be over simplistic as also pointed out by Bueti and Walsh
(2009) themselves. Present findings favor suggested models
by Leibovich and colleagues (Leibovich and Henik, 2013a,b;
Leibovich et al., 2017), who postulate that we are born with
the ability to discriminate between continuous properties. As a
matter of fact, continuous and discrete properties of arrays of
dots for instance are inseparably linked (for review see Leibovich
and Henik, 2013b). This is also the case in the present study.
Although we have tried to control as many visual confounds as
possible in the non-symbolic magnitude comparison task, such
as the total surface area of the dots, size of dots, their density,
etc., the arrays always contain continuous properties as well.
Non-symbolic number comparisons always carry continuous
properties that are correlated with numerosities and a separation
is physically not possible. Consequently, over development we
learn the correlation between continuous and discrete features,
which allows us to use both properties to estimate magnitudes.
In line with their assumption, our results point to developmental
differences of continuous spatial and discrete non-symbolic
number processing, with continuous representation being
sufficiently developed in third grade children. In contrast,
discrete number estimation is still developing and generally
more demanding for school children. Moreover, Leibovich and
Henik (2013a) suggest that discrete and continuous magnitude
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processing are two separate, yet interacting systems underlying
a general magnitude system (see also Leibovich et al., 2013).
Similarly, current findings showed a link between both number
and space processing, also when controlling for age and/or
grade level effects, supporting an interaction between systems.
On the other hand, differences in general performance levels
and developmental trajectories found in the present study also
point to partly independent systems. Such a complex interrelated
representation of space and number might also explain why
the ability to create number–space connections provides only
limited links to mathematical learning (reviewed by Cipora et al.,
2015). Moreover, Lourenco and Longo (2011) emphasized that
characterizing the development of a general magnitude system
is complicated and developmental accounts, which consider only
differentiation or integration of different magnitudes over time
are likely to be incomplete.

Finally, as we have emphasized in the introduction section, it
is very important to differentiate between various characteristics
of numerical and spatial processing and their interrelation
to gain further understanding and disentangle the complex
number–space association. In particular, many studies examine
the comparison of dot arrays (as in the present study) with
area, total cumulative area or line length. In this sense, the
present findings add further knowledge on another dimension
of continuous spatial processing, namely angles. Accordingly,
differences in stimuli type should be considered in the
interpretation of different findings. Future research is needed
to particularly investigate the relation of discrete non-symbolic
number comparison with a variety of continuous types of spatial
judgments (area, total cumulative area, angle, length, etc.) to gain
a differentiated picture about their relations over development
and a possible underlying general magnitude system.

Limitations
As mentioned earlier, present findings are not able to explain
the principle of a possible general magnitude system conclusively
and some limitations have to be considered. First, although
there is lots of evidence showing a relation between different
magnitude dimensions, which has been argued to originate from
a common general magnitude system, also other explanations
for such a crosstalk are possible. Van Opstal and Verguts (2013)
for instance propose instead of a general magnitude system that
different magnitude representations are processed separately,
but share a decision/response procedure or working memory
demands which lead to observed similarities between different
magnitude dimensions. Similarly, we are not able to distinguish
if errors in either task are based on difficulties in number
and/or spatial processing or are rather a result of diminished
executive functions, like reduced attentional or inhibitory
control. However, as our task required no working memory,
a relation between dimensions based on common working
memory procedures can be excluded. Moreover, the expected
and observed increase in difficulty with increasing ratio between
sets also speaks against effects of general decision/response
procedures or differences in executive processes. Nevertheless,
future studies examining numerical and angle processing
with a task (e.g., habituation task or priming task) that

is not dependent on domain-general functions and does
not require a decision or a response would provide more
information regarding this debate. For the relation between
non-symbolic numerosity and total cumulative area, Lourenco
et al. (2016) tested transfer effects across magnitudes in
a subliminal priming paradigm. Their findings suggest that
number and area are not fully differentiated, as primed
numerals had an effect on performance of cumulative area
judgments.

Second, it has to be noted that the present study served
as survey of children’s non-symbolic numerical and spatial
magnitude discrimination abilities to develop a sophisticated
paradigm examining also underlying neuronal processes
(McCaskey et al., 2017). This is the reason why continuous
ratios for numerical and spatial comparisons were chosen to
map children’s performance levels as thoroughly as possible,
but included also slightly different ratios between dimensions.
Therefore, it is mandatory to include only identical ratios
of number and space judgments as soon as you do any
comparison between both magnitude dimensions. Accordingly,
we performed separate analyses, including only matched ratios
between both tasks to draw clear-cut conclusions regarding
comparisons between magnitude dimensions. Correspondingly,
Figure 2 including only matched ratios illustrates higher
accuracy levels for spatial comparisons. In contrast, when
including all ratios this effect seemed to be reversed, please see
Figure 4. However, this is falsified by the fact that the spatial
comparison task included more trials with higher ratios, which
are more difficult to be compared. Therefore, it is important
to compare difficulties between conditions only for identical
ratios.

Third, performance levels were generally high, why
possible ceiling effects have to be considered. However,
non-parametric statistical analyses revealed significant
differences between both tasks, even when controlling for
age or grade level effects, corroborated that difficulty increases
with smaller distances between magnitudes that had to
be compared, and finally showed improved performances
from third to sixth grade for number comparison. None
of these effects would be expected if strong ceiling effects
were present. However, decreased strength of correlation
between number and space from third to fifth grade might
be explained by increased general performance up to ceiling
levels.

Finally, although children were instructed to compare the
angles between both Pacmen, they might solved the task instead
by comparing the distance between both mouth sides. In
other words, they compared length instead of angles. Since
both dimensions depend on continuous spatial processing no
differences are expected (please see also Fias et al., 2003).
Moreover, many studies use the comparison of length to examine
continuous spatial representation (de Hevia and Spelke, 2010; de
Hevia et al., 2012b; Dormal and Pesenti, 2013). However, in the
present study, children were instructed to compare angles and it
can be assumed that the majority did pay attention to angles and
not to line length. A further advantage of angle comparison is the
similarity to dot comparison as both tasks need spatial processing
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in two-dimensions that comprise comparable spatial extent. In
contrast, spatial line length elongation is smaller compared to the
spatial extent of arrays of dots why angle comparison is favored
in the present study.

Finally, to gain a clearer picture of the developmental
trajectories of continuous and discrete magnitude processing,
future studies should also investigate younger children and
measure reaction times to obtain a finer and continuous
dimension of performance levels. Moreover, it would be very
interesting to relate reaction times or accuracy levels to individual
basic numerical and mathematical skills. To do so, future studies
should assess a wide range of basic numerical and mathematical
abilities that rely more or less on visuo-spatial magnitude
processing and relate these skills to individual continuous and
discrete magnitude functions.

CONCLUSION

Research has revealed a largely inconclusive picture with respect
to the association between numerical and spatial magnitude
processing and a common underlying general magnitude system.
Our findings provide new insights about the relation of discrete
non-symbolic number processing (comparison of dot arrays)
and continuous spatial processing (comparison of angle sizes)
in children from the third to the sixth grade. Specifically, our
results suggest that continuous spatial and discrete number
processing are related to each other, but that continuous spatial
representations might develop earlier than discrete number
representations and are easier to be compared for children at
this age range. In conclusion, present findings favor the existence
of a more complex underlying magnitude system consisting

of dissociated but closely interacting parts for continuous and
discrete magnitude processing.
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