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the C5a receptor leads to
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impairment in a murine model
of familial Alzheimer’s disease
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Alzheimer’s disease (AD) is a progressive neurodegenerative disease of the

brain causing either familial or sporadic dementia. We have previously

administered the modified C5a receptor agonist (EP67) for a short period to

a transgenic mouse model of AD (5XFAD) and have observed not only

reduction in b-amyloid deposition and gliosis but also improvement in

cognitive impairment. Inquiring, however, on the effects of EP67 in an

already heavily burdened animal, thus representing a more realistic scenario,

we treated 6-month-old 5XFAD mice for a period of 14 weeks. We recorded a

significant decrease in both fibrillar and pre-fibrillar b-amyloid as well as

remarkable amelioration of cognitive impairment. Following proteomic

analysis and pathway association, we postulate that these events are

triggered through the upregulation of b-adrenergic and GABAergic signaling.

In summary, our results reveal how inflammatory responses can be employed

in inducing tangible phenotype improvements even in advanced stages of AD.
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Introduction

Alzheimer’s disease (AD), the most common form of

dementia worldwide, is a progressive neurodegenerative

disorder characterized by amyloid plaque aggregation,

cognitive impairment, and memory loss (1). More than 50

million people are currently living with this incurable disease,

which is the fifth leading cause of mortality in the world, while

10 million people are newly diagnosed yearly (2, 3). The

symptoms of AD are caused by brain degeneration mainly in

the area of the cerebral cortex and hippocampus, brain areas

highly associated with memory (4).

The microscopic neuropathological hallmarks of AD are the

extracellular accumulation of amyloid plaques (senile plaques)

and the intracellular formation of neurofibrillary tangles (NFTs).

NFTs are composed of hyperphosphorylated Tau protein while

the amyloid plaques are made of amyloid precursor protein

(APP)-derived Ab-peptides (5). Monomer Ab-peptides are

highly toxic and aggregate initially as oligomers while further

aggregation results in amyloid plaque formation (6). Regarding

the amyloid cascade hypothesis, the central feature of AD is the

formation and deposition of amyloid plaques around neurons

leading to neuroinflammation, synaptic loss, oxidative stress,

neuronal death, and NFT formation (7).

Amyloid plaques consist of not only pre-fibrillar and fibrillar

forms of Ab but also proteins such as apolipoprotein E (ApoE)

(8, 9) and complement cascade components, such as

complement component 1q (1q), cleaved parts of complement

component 3 (C3), and complement component 5 (C5), as well

as the terminal factors generating the membrane attack complex

(MAC) (9, 10). The complement system, a significant mediator

of the immune response, has been highly associated with

different stages and progression of AD as well as various other

neurodegenerative diseases (10, 11). It has previously been

shown that the fibrillar form of Ab-peptide can initiate

complement cascade activation (12); however, the exact

purpose of the complement’s activation in neurodegeneration

has not been fully elucidated yet as both detrimental and

beneficial outcomes have been reported (3, 13, 14).

Complement system activation (irrespective of pathway)

results in cleavage of the C5 component into complement

component 5a (C5a) and complement component 5b (C5b)

(15). The C5a peptide is a potent anaphylatoxin that binds the

CD88/C5a receptor (C5aR), a member of the G protein-coupled

receptor family expressed in various types of cells (16–19),

including the central nervous system (CNS) and leukocytes

(20). The C5aR is expressed on the membrane of microglia

(19, 20) as well as on the membranes of monocytes,

macrophages, and neutrophils (8, 21). While microglia are the

brain’s resident phagocytes (22), monocytes, macrophages, and
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neutrophils are the main phagocytes of the periphery (23). The

C5a complement component acts as a chemoattractant peptide

that recruits C5aR bearing cells in an area with high levels of

C5a. C5aR activation results in the active recruitment of these

cells, thus enabling phagocytosis and clearance of an area with

increased inflammation (20, 24).

Phagocytic cells have been shown to co-localize with amyloid

plaques in AD. Both resident microglia and infiltrating phagocytes

from the periphery accumulate in areas with amyloid plaques to

eliminate pre-fibrillar and fibrillar Ab-peptides as well amyloid

plaques by phagocytosis (25, 26). Peripheral infiltrating monocytes/

macrophages go through the blood–brain barrier (BBB) to enter the

brain and assist local microglia in amyloid clearance (27). Invasion

of infiltrating phagocytic cells in the CNS is a phenomenon

extensively observed in many neurodegenerative diseases due to

the disruption of the BBB (28, 29). The exact role of phagocytic cells,

both resident and invading, in AD has not been fully described.

Although phagocytosis itself, through microglia/macrophages,

enables catabolism of amyloid plaques, the resulting excessive

inflammation may lead to a range of adverse effects (27).

We have recently shown that activation of microglia and

macrophages in 5XFAD, a mouse model of AD, eliminates

fibrillar and pre-fibrillar amyloid from the brain of affected

animals (14). The same effect was observed in a mouse model

with peripheral amyloid polyneuropathy, ATTR amyloidosis type I,

where recruitment of phagocytic cells in the vicinity of amyloid

plaques was followed by pre-fibrillar and amyloid clearance (30).

Phagocytic activation was triggered through intermittent

administration of a modified C5a agonist molecule, EP67. EP67 is

a decapeptide [Tyr-Ser-Phe-Lys-Asp-Met-Pro-(N-methylLeu)-D-

Ala-Arg], synthesized based on the last 10 amino acids of the

C5a anaphylatoxin. The N-methylation in the leucine amino acid

results in conformational changes enabling the molecule to

exclusively bind monocytes/macrophages and microglia but not

neutrophils. Elimination of its anaphylactic activity, makes EP67 a

potent and favorable C5aR agonist molecule since acute

inflammation is efficiently bypassed (19, 31, 32).

The exact role of C5a anaphylatoxin and the significance of

extended phagocytic activation in AD progression have not been

clear since both have been exposed to cause both positive and

negative effects in the development and progression of the

disease. We have carried out extensive treatment of older

5XFAD mice with the EP67 C5aR agonist. We have found that

EP67 administration decreased fibrillar and pre-fibrillar b-
amyloid levels while at the same time significantly increased

cognition by approximately 280%. Our data indicate that this

tremendous upsurge in cognition results from activating the

memory-involved b-adrenergic and g-aminobutyric acid

(GABA)ergic pathways, which could provide a feasible strategy

in addressing cognitive impairment in AD.
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Methods

Mice treatment and tissue harvesting

The 5XFAD AD mouse model [Tg6799 on a B6SJL genetic

background: Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/

Mmjax] has been used in this study. The current mouse model

expresses human APP and PSEN1 (Presenilin-1) transgenes having

in total five common AD-linked mutations, three on the APP gene

[the Swedish (K670N/M671L), Florida (I716V), and London

(V717I) mutations] and two on the PSEN1 gene (the M146L and

L286V mutations). The 5XFAD mice exhibit most of the features

that are related to the AD pathology, in an early and aggressive

pattern, including amyloid accumulation, neuronal loss, and gliosis

without forming any neurofibrillary tangles (33). The 5XFAD mice

have been cross-bred with wild-type (WT) B6SJL hybrid mice and

the hemizygous offspring animals were collected for treatment. The

WT mice from the same generation were used as age/sex-matched

healthy controls. The animals were kept in regular 12-h light/12-h

dark cycles and were given free access to water and food, under

specific pathogen-free (SPF) conditions. All animal-involving

experiments were carried out following the 86/609/EEC Directive.

Female and male mice were kept in separate cages until the age of 6

months when treatment was initiated and mice were separated

further based on the treatment. The C5aR agonist EP67 (Thermo

scientific: P7501-1) was received in the form of lyophilized peptide

and given to mice in their drinking water at a concentration of 20

mg/ml. The EP67 peptide was administered to mice the 1st week of

their 6th month of age. Following 1-week treatment, the drug was

replaced with drinking water until the next treatment, as shown in

Table 1. The intermittent treatment was carried out following this

pattern for 14 weeks until mice completed their 9th month of age.

Mice were anesthetized using tribromoethanol (Avertin)

through intraperitoneal (IP) injection at a dose of 250 mg/kg,

sacrificed, and then exsanguinated using 1× phosphate buffered

saline (PBS). Brain tissues were harvested, while the two

hemispheres were separated. The one hemisphere was frozen

at −80°C to be used for techniques requiring frozen tissue, while
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the other one was paraffin-embedded after fixation in 4%

paraformaldehyde (PFA) to be used for immunofluorescence

analysis and Thioflavin-S staining.
Electrophysiology

Pre-processing and analysis of local field potential (LFP)

recordings from the CA1 region of the hippocampus was

performed on the MATLAB environment (MATLAB r2021b,

The MathWorks Inc., Natick, MA, 2015) using custom-made

scripts. The sampling frequency was first down-sampled to 1,000

Hz (from 2,000 Hz), before applying a band-stop filter at 50, 100,

150, and 200 Hz. The 10-min-long recordings were segmented to

2-s-long epochs. The power spectral density (PSD) was

estimated by fast Fourier transform (FFT) and Bartlett’s

method (Bartlett, 1950) using the 2-s-long epochs and a

Hamming window, allowing for a frequency resolution of

0.5 Hz. The mean PSD/power ± standard deviation (SD) was

calculated across epochs/time for each frequency band of

interest: delta (2–6 Hz), theta (6–12 Hz), gamma (30–100 Hz),

and sharp-wave ripple (SWR; 120–200 Hz), as these manifest

under Avertin-induced anaesthesia (Liu et al, 2020). The spindle

frequency range (8–15 Hz) was also characterized. The mean

peak power ± SD as well as the frequency at which the peak

power occurred ± standard deviation (SD) were also calculated

across epochs for each frequency band. Lastly, single spindle

events as well as SWR events were detected as described by

Stylianou et al. (2020) (34), in order to describe their amplitude,

frequency at which they occurred, and instantaneous frequency.
Immunofluorescence, thioflavin-S
staining, and b-amyloid quantification

Sagittal sections (5 mm) from paraffin-embedded brain

hemispheres were prepared using a microtome. The sections on

the slides were then deparaffinized following the process of
TABLE 1 Mice treatment protocol.

Mouse age

6th month 7th month 8th month 9th month

Weeks Weeks Weeks Weeks

Treatment group 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

WT H2O (n = 9) S

WT EP67 (n = 9) E E E E S

5XFAD H2O (n = 8) S

5XFAD EP67 (n = 9) E E E E S
fron
tiersin.o
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overnight incubation at 55°C and then incubation in xylene (3 ×

5 min each). Tissue rehydration was obtained by incubation in

different concentrations of ethanol (2 × 100%, 90%, and 70%), for

5 min and blocked in 5% bovine serum albumin (BSA) in 1× PBS at

room temperature for 1 h. Overnight incubation of the primary

antibody [b-Amyloid (B-4), Santa Cruz: sc-28365] was performed

followed by 1-h incubation at room temperature of the secondary

antibody [Goat anti-Mouse IgG (H+L) Alexa Fluor Plus 555,

Invitrogen: A32727]. Thioflavin-S staining was carried out at the

same sections, where 1% Thioflavin-S powder (Sigma: T1892)

diluted in water was added on the slide for 5 min. Slides were

then washed with 50% ethanol for 5 min, rinsed twice with water,

and mounted in cover slips using fluorescence mounting medium

(DAKO: S3023). Amyloid plaques stained with Thioflavin-S

(represented with green color) and Ab monomers/oligomers

stained with the antibody (represented with red color) in the

areas of cortex and hippocampus were captured in 5×

magnification using a fluorescence microscope (Zeiss Axionvision

software, Carl Zeiss Microimaging, Oberkochen, Germany). The

images that covered the areas of hippocampus and cortex were

jointed in Photoshop to create a single image, and the positive area

was quantified using the ImageJ software. The measured staining is

represented as a percentage of the red or green positive surface area.

Measurements were obtained from five sections per animal and the

average was used.
Enzyme-linked immunosorbent assay for
Ab40 and Ab 42 amyloid peptides

ELISA was performed in order to measure the levels of Ab40
and Ab42 amyloid peptides. For the ELISA experiment, 100 mg

from the frozen brain hemispheres was used. Tissues were

homogenized and lysed for protein extraction, as explained in

detail in the kit’s manuscript (Ab40, Invitrogen: KMB3481 and

Ab42, Invitrogen: kmb3441). Briefly, the tissue was initially

homogenized by sonication in guanidine-HCl containing lysis

buffer, and the supernatant, which was collected upon

centrifugation, was further diluted 10 times with 1× PBS

supplemented with protease inhibitors (Roche: 11836170001).

The samples were further diluted using the standard diluent

buffer and applied on the coated plate at the final dilution of

1:20,000 for Ab42 and 1:500 for Ab40 measurement. The standards

were prepared by performing serial dilutions as described by the

protocol, while absorbance was obtained at 450 nm for standards

and samples. Samples were used in duplicates or triplicates.
ELISA for epinephrine (adrenaline), GABA,
and insulin

ELISAs were conducted to measure the levels of epinephrine

(Assay Genie: MOEB2509), GABA (Assay Genie: MOFI01269),
Frontiers in Immunology 04
and insulin (Assay Genie: MOFI00142) in the brain, as described

by the kit’s manuscript. Mice brains were sonicated for

homogenization in 1× PBS supplemented with protease

inhibitors. The samples were further diluted using the dilution

buffer in 1:100, 1:25, and 1:150, for epinephrine, GABA, and

insulin, respectively. The assay was performed at 37°C, and the

absorbance of standards and samples was measured at 450 nm.

For each ELISA, samples were applied in duplicate.
Y-maze spontaneous alternation test

Y-maze is a behavioral test that is used to assess short-term

spatial and working memory, which is associated with the

activity of the hippocampus and represents the cognition

status of animals. It is based on mice’s curiosity to explore an

unknown place. The animals are placed in the middle of a Y-

shaped maze and allowed to explore the maze for 6 min. Ideally,

a healthy mouse chooses an alternative arm to enter rather than

the one that previously visited, while the one who develops

dementia tends to repeat the same arm entry. Mice pre-trial

training is not required for the Y-maze test. The arms that mice

select to enter are recorded and the percentage of the

spontaneous alternations is calculated based on the following

formula: number of correct triads/(total number of arms

entered − 2) × 100. A correct triad is considered the one that

does not include any repeated arm entry (correct triad: BCA,

ABC, CAB, etc.) (35).
Flow cytometry

For the flow cytometry experiment, female 5XFAD and WT

mice were treated with EP67 or H2O (four animals per group

were used) as described in Table 1. Whole brain dissociation was

performed, immediately upon brain collection, as described in

the protocol of Lelios and Greter (2014) (36). The brain was

dissociated by dissection in 0.4 mg/ml of collagenase type IV

from Clostridium (Gibco: 17104-019), followed by 45-min

incubation at 37°C. Before passing the cell suspension through

a 70-mm cell strainer, further homogenization was performed by

passing several times the dissected tissues through an 18 × 1½ G

needle. One wash was performed with 1× PBS, while the

separation of leukocytes was obtained by Percoll density

gradient medium. Centrifugation for 30 min at 15,000 × g at

4°C resulted in the formation of three layers where the middle

one contained the desired leukocytes. At the last steps, the top

layer was discarded while the other two layers were filtered and

the leukocytes were pelleted after 5 min of centrifugation at

450 × g at 4°C. Leukocytes were re-suspended in 1 ml of PBS to

be used for flow cytometry staining. A modified protocol by Li

et al. (2019) (37) was used for cell staining and flow cytometry

results analysis.
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Before antibody and isotype control staining, viability dye

staining was performed in 50 ml of the cells using the Fixable

Viability Dye eFluor™ 780 (Thermo Fisher Scientific: 65-0865-14).

The cells were then blocked in 1% goat serum supplemented with

0.5% BSA and 2 mM EDTA diluted in 1× PBS at 4°C. Following

10 min of incubation, 5 ml of each of the antibodies or the isotypes

were added and 30 min of incubation at 4°C was carried out. For

antibody staining, PE-Cy™7 Rat Anti-CD11b (BD: 552850),

BV421 Rat Anti-Mouse CD45 (BD: 563890), and APC Rat Anti-

Mouse Ly6G (BD: 560599) were used. As isotype controls, the

following were selected: Rat DA (BD: 552849), Rat LOU (BD:

562603), and Rat LEW (553932). The stained samples were then

washed with flow buffer (1× PBS, 1% BSA, 0.05% sodium azide) and

pelleted with certification at 1,500 rpm for 5 min at room

temperature. Cells were finally re-suspended in flow buffer and

run at a BD FACSAria III flow sorter. Compensation bead staining

(Anti-Rat and Anti-Hamster Ig k/Negative Control Compensation

Particles Set, BD: 552845), heat-killed cells stained with a viability

dye, and unstained cells were used as controls. Analysis was

performed using the FlowJo software.
Gene expression assay in brain tissue

Two-step reverse transcription quantitative real-time PCR (RT-

qPCR) was carried out to quantify the expression levels of various

markers in the brain. Brain sections (10 mm) from the paraffin-

embedded hemispheres were used to extract total RNA, as

described in the manufacturer’s protocol (RNeasy FFPE Kit,

QIAGEN: 73504). RNA concentration was assessed by Nanodrop

2000 and maximum 100 ng/ml was used for cDNA synthesis as

indicated by protocol. The SuperScript™II Reverse Transcriptase

kit (Invitrogen: 18064–022) was used to synthesize first-strand

cDNA according to the manufacturer’s instructions. TaqMan

Gene Expression Assays for the genes of interest, containing a

pair of unlabeled PCR primers and a TaqMan probe with a FAM™

dye label on the 5’ end and a minor groove binder (MGB) non-

fluorescent quencher (NFQ) on the 3’ end, were used.

The probes for TaqMan assays that were used are the following:

mouse interleukin 6 (IL-6, Thermo Fisher: Mm00446190_m1) and

glial fibrillary acidic protein (GFAP, Thermo Fisher:

Mm01253033_m1). The glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, Thermo Fisher: Mm99999915_g1) gene

was used as an endogenous control in delta Ct normalization of

samples. For each brain sample, duplicate reactions were run.
Liquid chromatography with tandem
mass spectrometry for brain proteomics
discovery and analysis

For LC-MS/MS, about 40 mg of frozen brain tissue was

powderized in liquid nitrogen using a mortar and pestle. Brain
Frontiers in Immunology 05
powder was then homogenized in lysis buffer [8 M urea and 50

mM Tris (pH 8.5)], supplemented with protease inhibitor

cocktail at a ratio of 600 µl of lysis buffer per 40 mg of brain

powder. Homogenates were allowed to stand at room

temperature for 1 h, before being sonicated with a probe-tip

sonicator for one up to three 10-s cycles of 1 s on and 1 s off.

Homogenates were centrifuged at room temperature for 15 min

at 13,000 × rpm. The supernatant was subjected to reduction,

alkylation, and quenching with 10 mM DTT, 25 mM

iodoacetamide, and 25 mM DTT, respectively. Twenty

microliters of the resulting solution was diluted five times in

trypsin digestion buffer, containing 50 mM Tris (pH 8.5), 5%

CH3CN, 0.01% ProteaseMAX (Promega), and 1 µg of modified

trypsin (Pierce). After overnight digestion at 37°C, the samples

were brought to 1% TFA and centrifuged for 10 min at 14,000

rpm. The supernatant was subjected to desalting with C18 Micro

Spin tips (Harvard Apparatus), and 1/60 of the sample was

loaded on an Ultimate 3000 UPLC system (Dionex, Thermo

Scientific) equipped with an Acclaim PepMap100 pre-column

(C18, particle size 3 mm, pore size 100 Å, diameter 75 mm, length

20 mm, Thermo Scientific) and a C18 PepMap analytical

column (particle size 2 mm, pore size 100 Å, diameter 50 mm,

length 500 mm, Thermo Scientific) using a 4-h linear gradient

(300 nl/min) coupled to a Q Exactive Orbitrap mass

spectrometer (Thermo Scientific) operated in data-dependent

acquisition mode.

Peptides were identified by Mascot (Matrix Science) using

UniProt Mus musculus concatenated with the CRAPome

contaminant database (115,142 sequences) as a database.

Carbamidomethylation (C) was included as a fixed

modification and oxidation was included (M) as a variable

modification. Two missed cleavages were allowed, and peptide

tolerance was set at 10 ppm and 20 mmu for MS and MS/MS,

respectively. Progenesis software (Nonlinear Dynamics) was

used for relative quantification of proteins using the Proteome

Discoverer 2.2 Percolator node for peptide validation

(FDR < 1%).

Pathway enrichment analysis was performed using the

Metascape tool (https://Metascape.org/). Furthermore, terms

with a p-value of <0.05, a minimum count of 3, and an

enrichment factor of >1.5 (the ratio between the observed

count and the counts expected by chance) are grouped into

clusters based on their membership similarity. p-values are

calculated based on the accumulative hypergeometric

distribution and the q-values are based on the Benjamini–

Hochberg method for multiple testing. The Kappa scores are

used for the similarity metrics to perform hierarchical clustering

on the enriched terms obtained, and the subtrees with a

similarity of >0.3 are clustered together; only the most

statistically significant terms are chosen to be represented

within the cluster (38).

Metascape was used to perform enrichment analysis on the

untargeted proteomics data obtained for 5XFAD H2O vs.
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5XFAD peptide; the Protein Accession ID from UniProt (39)

(https://www.uniprot.org/) was used to obtain the gene symbol

for each protein. The gene symbol was used as input into

Metascape and the organism selected was Mus musculus. The

KEGG and Gene Ontology (GO) Biological Processes libraries

were selected for enrichment analysis; for the identification of

biological pathways and processes, the p-value cutoff was set

to <0.05.

The Reactome online database tool (http://reactome.org)

was also used in parallel to Metascape analysis as a means of

visualization and data interpretation but was not extensively

used as human datasets are mainly used (40, 41).
Statistical analysis

Statistical analysis was performed using GraphPad Prism

version 8.00 for Windows (GraphPad software, San Diego,

California, USA) where unpaired Student’s t-test was carried

out. Using this information, graphical charts representing the

data were prepared.
Results

Extended intermittent EP67
administration in older mice
decreases both amyloidosis
and cognitive impairment

Starting at 6 months of age, 5XFAD mice were treated in an

intermittent manner (as explained in the Methods section) for a

period of 14 weeks (Table 1). The 5XFAD mice exhibit rapid and

severe cerebral amyloidosis as early as 2 months of age. By 6 months

of age, this murinemodel of AD exhibits amyloid plaques throughout

the cortex and hippocampus, as well as the brainstem, thalamus, and

the olfactory bulb (33). We have previously noted marked cognitive

impairment from the age of 3 months (14). Following the duration of

treatment, behavioral testing via the Y-maze spatial recognition

memory assessment was carried out on all mice, including 5XFAD

treated and untreated mice, as well as their WT counterparts. We

have recorded a noteworthy increase in cognitive acuity in the mice

treated with EP67 when compared to untreated 5XFAD mice

(Figure 1F). Interestingly, WT control mice also treated with EP67

for the same duration as the test group were also positively affected

(Figure 1F). At the end of treatment, extracted brain samples were

then used to quantitate the amounts of b-amyloid and amyloid

plaques (Thioflavin-S) through immunohistochemistry (Figure 1E).

In addition, the amounts of Ab40 and Ab42 were also quantified via
ELISA. Our results show that there is a significant reduction in pre-

fibrillar amyloid (Figure 1A), Thioflavin-S-positive amyloid plaques

(Figure 1B), and the Ab42 b-amyloid species (Figure 1D) in mice

treated with EP67 for 14 weeks. On the other hand, Ab40 b-amyloid
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species (Figure 1C) were unaffected by treatment as expected since

these species are not prevalent in the mouse model used (33).
Infiltrating peripheral macrophages/
monocytes responsible for amyloid
catabolism

Having recorded the significant decrease in amyloid and

having previously noted an increase in phagocytosis following

treatment with EP67 (14), we set out to conclusively uncover

whether this event is a result of resident microglia activation or

whether infiltrating peripheral macrophages/monocytes are

recruited to assist in the catabolism of b-amyloid plaques.

Microglia are the resident macrophages of the brain, and

their role in AD has long been a controversial issue of discussion.

Both microglia and astrocytes in the brain are significant

modulators of b-amyloid clearance, and both are also known

to increase the secretion of IL-6 as a response of their actions. IL-

6 is a remarkable cytokine that can have both a pro-

inflammatory and an anti-inflammatory effect, depending on

the site and conditions of expression (42). In the periphery,

macrophages are also known to give rise to the increased

expression of IL-6 following phagocytosis (43).

Following treatment of the 5XFAD mice with EP67, we have

noted a significant increase in IL-6 (Figure 2A) but, at the same

time, a significant decrease in the expression of the astrocyte

marker GFAP (Figure 2B), indicating little involvement of

astrocytes. In order to distinguish, if possible, whether resident

phagocytes or infiltrating macrophages are thus involved with b-
amyloid clearance, we have chosen a flow cytometry strategy

(Supplementary Figure 1) that allowed us to isolate and count

the CD45high/CD11b+ population (monocytes/macrophages)

versus the C45int/CD11b+ population (resident microglia)

(Figure 2C). Our data indicate a significant increase in the

infiltrating monocyte/macrophage population (Figure 2D) but

an unchanged microglia population (Figure 2E).
EP67 treatment triggers GABAergic and
b-adrenergic signaling

While the amyloid cascade hypothesis implicates amyloid as

the driving force behind the symptomology observed in AD,

data suggest that it may not be the driving force behind cognitive

impairment since b-amyloid plaques have been found in

patients with familial AD at least two decades before any

symptoms (44). Our behavioral analysis indicated a significant

improvement in cognition; therefore, we carried out RT-qPCR

analysis to measure whether the neuronal population was

increased following EP67 administration through the

developing neuronal marker doublecortin (Figure 3C) and the

pan-neuronal marker tubulin-b3 (Figure 3D). Our results
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revealed that the neuronal population has remained unchanged

throughout treatment.

Therefore, in order to explore whether pathways related to

memory consolidation and cognition have been activated

through EP67 administration, discovery proteomics were

carried out in brain samples of untreated and treated 5XFAD

mice. Despite the great number of proteins obtained, we have

narrowed down the list to proteins with a p-value <0.05

(Supplementary Table 1). These proteins were then used for

pathway enrichment analysis, which returned a number of

results. In terms of involvement in cognition and memory

consolidation, we have identified two pathways of interest,

adrenergic and GABAergic signaling, using Metascape

(Figure 3A). Proteins returning a p-value <0.05 were used to

input for analysis in the online Reactome pathway analysis tool;

interestingly, the data again returned pathways related to both

the adrenergic and GABAergic receptors (Figure 3B).

Additionally, we carried out ELISAs and found a significant

increase in the amounts of GABA (Figure 3F) and epinephrine

(adrenaline) (Figure 3G), but no differences were detected in the

amount of insulin expressed in contrast to the expected pathway

from the Reactome database analysis (Figure 3E).
Frontiers in Immunology 07
EP67 treatment triggers increased
CA1 activity

Having recorded the significant increase in spatial cognition,

as well as the upregulation in b-adrenergic and GABAergic

signaling, we have carried out preliminary LFP recordings in the

CA1 region of the hippocampus in order to establish whether the

observed results would correlate with increased synaptic

function. Following recordings from a treated and an

untreated 5XFAD animal, our data revealed an increase in

spectral power and peak power in sleep-related rhythms,

particularly in the slow-oscillation (<2 Hz) and delta (2–6 Hz)

frequency ranges in the treated mouse (Figure 4B). Of great

interest is an increase in peak power in the theta frequency range

(6–12 Hz; Figure 4B). As this activity did not reflect rapid eye

movement (REM) sleep that manifests at this range, we

investigated whether it corresponds to hippocampal spindles

(45). Indeed, the peak power was also increased in the spindle

frequency range (8–15 Hz; Figure 4), while we were also able to

identify hippocampal spindles with an instantaneous frequency

of 10.79 Hz in the treated and 11.04 Hz in the untreated animal.

Although the number of spindles does not appear greater in the
B C D

E F

A

FIGURE 1

Amyloid load decrease and cognitive impairment amelioration in EP67 treated animals. (A, B) Sagittal brain sections from 5XFAD- and 5XFAD
EP67-treated mice were co-stained with Thioflavin-S (green; excitation l: 430; emission l: 550) and an anti-amyloid-b antibody (red; excitation
l: 555; emission l: 580). (A) Measurements depicting b-amyloid staining were recorded separately, (B) as well as measurements representing
Thioflavin-S-positive plaques. (C, D) Whole hemisphere brain homogenates from 5XFAD and 5XFAD mice treated with EP67 (via ELISA) were
used to measure the amount of Ab 40 (C) and Ab 42 (D). (E) Representative sections indicating Thioflavin-S and b-amyloid staining in the cortex
and hippocampus (composite figures from 200× images). (F) 5XFAD- and 5XFAD EP67-treated mice were given the spontaneous alternation
behavioral test using a Y-maze. 5XFAD, n = 8; 5XFAD EP67,= 9; mean ± SD. **P value ≤ 0.01, ***P value ≤ 0.001; ns, Not Significant.
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treated (12 spindles/min) vs. the untreated animal (13 spindles/

min), the spindles are of greater amplitude in treated (0.43 mV)
vs. untreated (0.33 mV) animals.
Discussion

A persisting issue with AD is that despite the great number

of molecules and compounds developed that have the propensity

to reduce amyloid load, there seems to be no positive effect on

cognitive impairment, to such an extent that puts the amyloid

cascade hypothesis in question (44, 46). Disease-modifying

agents for AD must delay or halt the progression of the

disease, both in terms of clinical phenotype and in terms of

neurodegeneration. For a period of 12 years (starting in 2002),

99% of the agents tested have failed to successfully cross that

threshold with only one drug having been approved for further

clinical trials during that time frame (47).

We have previously shown that short, intermittent treatment

of young 5XFAD mice with a modified C5aR agonist resulted in
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the reduction of b-amyloid, decrease in gliosis, and marked

improvement in spatial working memory (14). Here, we have

treated older 5XFAD mice (6 months old), with substantial

cerebral amyloidosis, as well as considerable gliosis cognitive

impairment in the same intermittent manner for over 3 months.

Our results show that treatment of mature 5XFAD mice with

EP67 did induce a 60% decrease in Thioflavin-S-positive b-
amyloid plaques, as well as in the prominent Ab42 species

(Figure 1D), and gliosis, another pathogenic feature of the

disease in both mice and humans (Figure 2B). We did,

however, observe a significant increase in the expression of the

pro-inflammatory cytokine IL-6 following EP67 administration

(Figure 2A). IL-6 is known to be secreted by phagocytes

following their interaction with exogenous pathogens and

while repairing tissue damage resulting from either trauma or

infection (48). Considering that our flow cytometry analysis

showed that there are no significant changes in the population of

microglia in any of the brain samples examined (with or without

EP67 treatment and 5XFAD and WT) but did record a

significant increase in the macrophage/monocyte population
B

C

D EA

FIGURE 2

Peripheral infiltrating macrophages assist in amyloid catabolism. (A, B) RT-qPCR in 5XFAD- and 5XFAD EP67-treated animals (n = 3 both groups,
mean ± SEM); transcript levels represent average fold change of treated animals over their controls. Interleukin-6 expression was found to be
increased (A), while GFAP expression was decreased (B). (C–E) Representative gating exemplifying separation between peripheral macrophages/
monocytes (CD45high/CD11b+) and resident microglia (C45int/CD11b+) (C) and respective quantification indicating an increased amount of
macrophages/microglia (D) in the brain and an unchanged amount of resident microglia (E). n = 4 both groups, mean ± SD. **P value ≤ 0.01;
ns, Not Significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.947071
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fella et al. 10.3389/fimmu.2022.947071
BA

FIGURE 4

Improved activity in CA1 hippocampal neurons following EP67 treatment. (A) PSD of the LFP signal from the CA1 of the hippocampus of one treated
(blue) and one untreated animal (orange). (B) The mean power spectral density ± SD over epochs, the mean peak power ± SD over epochs and the
mean frequency at peak power ± SD over epochs, for the slow oscillation (SO), delta, theta, spindle, gamma, and SWR frequency ranges in the CA1
region of the hippocampus of a treated and an untreated mouse.
B

C D E F

A

G

FIGURE 3

Proteomic analysis implicating b-adrenergic and GABAergic signaling on AD-related cognitive impairment. (A, B) Pathway enrichment analysis identifying
two major signaling pathways involved with memory consolidation (highlighted), using the Metascape tool (A) and the Reactome online database
(5XFAD, n = 6; 5XFAD EP67, n = 6) (B). (C, D) RT-qPCR in 5XFAD- and 5XFAD EP67-treated animals (n = 3 both groups); transcript levels represent
average fold change of treated animals over their controls (n = 3, mean ± SEM). (C) Unchanged levels of the nascent neuronal cell marker, doublecortin,
and non-significant increase in the neuron specific Tubulin-b3 (D). (E–G) Whole hemisphere brain homogenates from 5XFAD and 5XFAD mice treated
with EP67 (via ELISA) were used to measure the amount of insulin (E), GABA (F), and epinephrine (G), which were found to be increased following
treatment with EP67 apart from insulin, which remained unchanged. 5XFAD, n = 7; 5XFAD EP67, n = 9; mean ± SD. **P value ≤ 0.01, ***P value ≤

0.001; ns, Not Significant.
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following treatment with EP67 indicates that enhanced b-
amyloid clearance is probably a result of peripheral infiltrating

monocytes (Figures 2C–E). We have utilized sequential gating

strategy that would allow us to successfully distinguish

macrophages/monocytes and microglia (CD11b+ and Ly6G-)

but exclude neutrophils and then select C45int/CD11b+ cells to

represent resident microglia and CD45high/CD11b+ cells

representing infiltrating monocytes/macrophages (37). Even

though activated microglia in the brain may be considered

indistinguishable from peripheral macrophages, due to the

damaged BBB, there is an increased infiltration from the

periphery. Several lines of evidence suggest that resident

microglia take on a pro-inflammatory role, whereas peripheral

macrophages appear to instead assist with clearance of the b-
amyloid (49), as corroborated here.

As aforementioned, there is considerable criticism

surrounding the ability of b-amyloid to promote the cognitive

impairment phenotype observed in AD and the ineffectiveness

of b-amyloid-reducing compounds to successfully reverse or

improve cognitive effects. We thus hypothesized that apart from

EP67 affecting b-amyloid clearance, other mechanisms could be

affected, ultimately substantially improving spatial memory as

observed through behavioral testing. Discovery proteomics

followed by pathway-association analysis revealed that

pathways involved with cognition become upregulated

following EP67 administration. Notably, the b-adrenergic and

GABAergic pathways have consistently been over-represented.

b-adrenergic receptors in the brain have been associated with the

AD cognitive phenotype. These receptors belong to the G-

prote in-coupled family , responding to most ly the

catecholamines epinephrine and norepinephrine and in turn

activating the sympathetic nervous system (50). All subtypes of

b-adrenergic receptors link to Gs proteins, which are, in turn,

linked to adenylate cyclase so that their binding results in an

increase in cyclic adenosine monophosphate (cAMP) and

eventually protein kinase A (PKA). In AD, Ab interaction

with b2-adrenergic receptors results in the internalization and

subsequent degradation of the receptors, causing a decrease in

adrenergic signaling (51, 52). Furthermore, treatment with the

b2-adrenergic agonist clenbuterol was shown to improve

working memory in aged monkeys and rats (53). Recent

epidemiological data, one from a study involving 4 million

people and another involving 117 million, show that in terms

of neurodegenerative diseases, a deteriorating phenotype in

pathophysiology is observed following the use of b-blockers
(54, 55).

The association between C5a and adrenergic receptors has

previously been investigated, mostly in vitro, indicating

relationships between the a and b receptors (56, 57). In both

cases, while the association is clear, and C5a appears to activate

the adrenergic system, it remains uncertain whether the effects

are direct or indirect. Monocytes have also been shown to

express b-adrenergic receptors, and their activation is
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considered to be mostly anti-inflammatory (58). Whereas we

have not explicitly set out to investigate the association of the

modified C5a molecule with adrenergic receptors, we have

noticed a specific association of the molecule to the b2-
adrenergic receptors through the protein prediction database

SwissTarget (59) (Supplementary Figure 2). As aforementioned,

we have also noted a significant upregulation in the proteins

associated with GABAergic signaling (Figure 3B). GABA is the

principal inhibitory neurotransmitter in the brain that appears

to be highly involved in the pathology and development of AD.

Data from AD patients show diminished GABAergic signaling

in both the temporal cortex and the cerebrospinal fluid (CSF),

associated with dysfunctional synaptic transmission (60, 61).

Furthermore, adrenergic receptors have been shown to regulate

GABAergic signaling whereby pharmacological activation of b-
adrenergic receptors coupled to Gs increases cAMP levels

through adenosine triphosphate (ATP) conversion via adenylyl

cyclase, thus activating PKA and triggering GABA transporter 1

(GAT-1) phosphorylation, which, in turn, increases the uptake

and release of GABA (62). This interaction perhaps describes

how an increase of both the adrenergic and GABAergic

pathways results in the significant improvement in cognition

in the mouse model of AD following treatment with the

modified C5aR agonist EP67.

Theta activity in the CA1 region of hippocampus is mostly

characteristic of REM activity; however, we have no evidence of

REM sleep in these recordings while a strong SO rhythm is

evident, which is characteristic of non-REM slow-wave sleep.

Hence, we propose that this increased activity in the theta range

reflects thalamus-generated spindles that manifest in the cortex

and which can also reach the hippocampus via the nucleus

reuniens or through the entorhinal cortex, both in mice (45) and

in humans (63). Cortical spindles directly interact with

hippocampal SWRs during non-REM slow-wave sleep and

facilitate the process of memory consolidation (64). In fact,

increased spindle activity in terms of amplitude and frequency

has been directly linked to improved memory consolidation in

humans (65, 66), while AD pathology has been associated with a

decrease in sleep spindles and in cortical–hippocampal

communication during slow-wave sleep (67). Although we

have only performed electrophysiological analysis in two

animals, we were able to identify some possibly interesting

future leads for our research. Hence, we plan to continue this

work in more animals using a different anaesthetic, as we

postulate that our inability to detect SWRs is likely the result

of the suppressive effects of Avertin, as seen, for example, with

isoflurane (68).

The role of C5a and its receptors has been shown to be quite

contentious in regard to AD pathology. Fonseca et al. have shown

that following a 2- to 3-month continuous treatment period with

the C5aR antagonist PMX205, a marked reduction in amyloid load

and an improvement in cognitive performance were observed (69).

In addition, AD mice vaccinated against C5a during the early stage
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of the disease exhibited reduction in amyloid load, but not those

vaccinated during the late stages (70). This result indicates that

microglial activation through the C5aR is especially inimical in the

early stages of the disease rather than the later stages. On the other

hand, complement activation (C3aR) has also been shown to

contribute to the clearance of Ab through microglial activation

(71). Our results clearly show that following the intermittent

treatment of a transgenic mouse model of AD with a modified

C5aR agonist not only reduces fibrillar and pre-fibrillar amyloid

load in the brain but also enhances spatial memory in a meaningful

capacity, thus exerting a significant improvement in the animals’

AD-related pathology. This is a substantial observation in terms of

utilizing the body’s inflammatory responses in such a way as to elicit

a positive response and addressing cognitive improvement in AD.
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Glossary

Ab amyloid-bpeptide

AD Alzheimer’s disease

APOE apolipoprotein E

APP amyloid precursor protein

ATP adenosine triphosphate

BBB blood–brain barrier

BSA bovine serum albumin

C1q complement component 1q

C3 complement component 3

C5 complement component 5

C5a complement component 5a

C5b complement component 5b

C5aR complement component 5a receptor

cAMP cyclic adenosine monophosphate

CNS central nervous system

CSF cerebrospinal fluid

ELISA enzyme-linked immunosorbent assay

FFT fast Fourier transform

GABA gamma-aminobutyric acid

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GAT-1 GABA transporter 1

GFAP glial fibrillary acidic protein

GO Gene Ontology

IL-6 interleukin 6

IP intraperitoneal

LC–MS/MS liquid chromatography with tandem mass spectrometry

LFP local field potential

MAC membrane attack complex

MGB minor groove binder

NFTs neurofibrillary tangles

NFQ non-fluorescent quencher

PBS phosphate buffered saline

PFA paraformaldehyde

PKA protein kinase A

PSD power spectral density

PSEN1 Presenilin-1

REM rapid eye movement

RT-qPCR reverse transcription quantitative real-time PCR

SD standard deviation

SPF specific pathogen-free

SWR sharp-wave ripple

WT wild type
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