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Abstract

Background: Gaining a better understanding of the probability, timing and prediction of rehospitalisation amongst
preterm babies could help improve outcomes. There is limited research addressing these topics amongst extremely
and very preterm babies. In this context, unplanned rehospitalisations constitute an important, potentially
modifiable adverse event. We aimed to establish the probability, time-distribution and predictability of unplanned
rehospitalisation within 30 days of discharge in a population of French preterm babies.

Methods: This study used data from EPIPAGE 2, a population-based prospective study of French preterm babies.
Only those babies discharged home alive and whose parents responded to the one-year survey were eligible for
inclusion in our study. For Kaplan-Meier analysis, the outcome was unplanned rehospitalisation censored at 30 days.
For predictive modelling, the outcome was binary, recording unplanned rehospitalisation within 30 days of
discharge. Predictors included routine clinical variables selected based on expert opinion.

Results: Of 3841 eligible babies, 350 (9.1, 95% CI 8.2–10.1) experienced an unplanned rehospitalisation within 30 days.
The probability of rehospitalisation progressed at a consistent rate over the 30 days. There were significant differences in
rehospitalisation probability by gestational age. The cross-validated performance of a ten predictor model demonstrated
low discrimination and calibration. The area under the receiver operating characteristic curve was 0.62 (95% CI 0.59–0.65).

Conclusions: Unplanned rehospitalisation within 30 days of discharge was infrequent and the probability of
rehospitalisation progressed at a consistent rate. Lower gestational age increased the probability of rehospitalisation.
Predictive models comprised of clinically important variables had limited predictive ability.

Keywords: Prematurity, Newborn, Neonatology, Rehospitalisation, Discharge, Prediction, Survival analysis, Epidemiology,
Cohort study

Background
Preterm births affect approximately 9% of live births in
Europe [1], and have substantial repercussions for a new-
borns’ short and long term health outcomes, as well as for
health systems and wider society [2–4]. In this context, un-
planned rehospitalisations can be useful markers for ser-
ious pathologies, and also represent potentially modifiable
adverse events. Preventing unplanned, and in some cases

avoidable, rehospitalisations can potentially reduce costs,
the risk of iatrogenic effects and wider burdens on babies
and their families. A better understanding of rehospitalisa-
tion rates, timing and predictive models aiming to provide
objective estimates of a preterm baby’s risk could poten-
tially complement clinical judgment and inform decision
making [5–9].
Limiting rehospitalisations is a key challenge facing

health systems as they are associated with large costs and
inconvenience to patients and providers [10–12]. Thirty-
day rehospitalisations are a particular focus for health pro-
viders [13–15]. Rehospitalisation rates amongst preterms
have been found to be significantly higher than those of
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full-term infants [16–18]. Factors previously found to be
associated with rehospitalisation are male sex [19–22],
lower gestational age [23–25], low birth weight or being
small for gestational age (SGA) [26], feeding problems
[27–30], bronchopulmonary dysplasia (BPD) [31, 32] and
lower socioeconomic status [21, 27, 33, 34]. To the best of
our knowledge, the literature on the early rehospitalisation
of preterms discussed explanatory models only and not
validated predictive models. As explanatory models
often do not provide optimal predictions, the literature
cannot directly address one of our aims of predicting
rehospitalisations [35–37].
In this study, using data from a large, prospective,

population-based cohort study of newborns of 22–34
weeks gestation (EPIPAGE 2) [38] we examined early
(≤30 days) unplanned rehospitalisations following initial
discharge. Our first objective was to look at the probabil-
ity and timing of unplanned rehospitalisations during
the 30-day period following initial discharge. Our second
objective was to assess the ability of a set of important
clinically relevant variables to predict unplanned rehos-
pitalisation within 30 days of discharge.

Methods
Study design and population
This study used data from the EPIPAGE 2 cohort, a
French national prospective study. The eligible popula-
tion of EPIPAGE 2 included all babies born at 22–34

weeks gestation in all maternity units in 25 regions of
France. The study began on March 28, 2011, and ended
on December 31, 2011 and recruited from all maternity
units in participating regions. The one region that did
not participate in the study accounted for just over 18,
000 births in 2011, around 2% of all births in France. Ba-
bies with a gestational age of 22–26, 27–31 and 32–34
weeks had recruitment periods of 8 months, 6 months
and 5 weeks respectively [38]. All babies discharged
home alive following birth hospitalisation and whose
parents completed the one-year survey were eligible for
inclusion in our study. Babies who died during the initial
birth hospitalisation or between discharge and one-year
follow-up were excluded. Babies of parents that either
did not consent to, or failed to complete, the one-year
follow-up survey were also excluded. A flow chart of the
selection of the study population can be seen in Fig. 1.
The EPIPAGE 2 study collected data at birth and at

follow-up at one, two and 5.5 years corrected age. We
used data collected at birth and the one-year follow-up.
Birth data were collected during the neonatal period in
maternity and neonatal units using medical records and
questionnaires for obstetric and neonatal teams. Neo-
natal data collection addressed the baby’s birth condi-
tion, disease status and treatments received. Interviews
and self-administered questionnaires were used in the
neonatal unit to obtain information on a mother’s socio-
economic status, health and the care her baby received

Fig. 1 Flow chart of the study population derived from the EPIPAGE 2 cohort
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prior to discharge. The one-year follow-up survey com-
prised a questionnaire sent to the parents to collect details
of post-neonatal care, hospitalisations, growth, sequela,
treatments, maternal health, and socioeconomic details.

Outcome
We looked at both the overall probability of early
(≤30 days) unplanned rehospitalisations and the timing
of unplanned rehospitalisations during the 30 days fol-
lowing initial discharge of newborns from the hos-
pital. Unplanned rehospitalisation status (URH) was
defined according to the recorded cause of rehospita-
lisation. This information was collected from parents
via the one-year follow-up survey requesting the date
and cause of their baby’s three longest rehospitalisations.
For cause, parents could select from bronchiolitis or asth-
matic bronchitis, gastroenteritis, diarrhoea or dehydration,
poor weight gain, convulsion, injury, malaise, surgery or
other (‘vaccination’ or ‘for observation’ for example). Rehos-
pitalisations for surgery and vaccinations were classified as
planned, all other causes were considered unplanned. Any
baby with both an unplanned cause (e.g. gastroenteritis)
and planned cause (e.g. surgery) of rehospitalisation
was classified as having a URH. The number of days be-
tween initial discharge and the first URH was used to
determine whether a baby had an URH within 30 days
of initial discharge (URH30). In cases where a baby had
multiple URH30 the earliest of these was selected and
used in analysis.

Predictor variables
A model containing the predictor gestational age alone
was constructed initially to provide a performance base-
line. Following a review of the literature and discussion
with expert clinicians, 48 predictors (Additional file 1)
were then considered for inclusion in a ten predictor
and 20 predictor model. Selection was informed by ex-
ploratory analysis, cross tabulation, consideration of a
variable’s reliable availability and further discussion with
clinicians. For the ten predictor model, emphasis was
placed on selecting a parsimonious model, potentially
practical for clinical use. The ten predictor model con-
tained: sex (binary), gestational age in weeks (categorical;
22–26, 27–31 and 32–34), SGA status (binary; weight
below the 10th percentile for gestational age), exposure
to nitric oxide (binary), surfactant (binary), bronchopul-
monary dysplasia (BPD) (categorical; none, mild (≥28
days oxygen and breathing room air to week 36), moder-
ate (≥28 days oxygen and mechanical ventilation or con-
tinuous airway pressure/ FiO2 > 21% at week 36) or
severe (≥28 days oxygen and mechanical ventilation or
continuous airway pressure/ FiO2 > 30% at week 36)),
early onset neonatal infection (binary; no infection or ei-
ther a probable infection with antibiotics started before

72 h of life and duration ≥5 day or certain infection with
positive blood or cerebrospinal fluid culture before 72 h
of life), post-menstrual age at discharge (PMA) in weeks
(four categories of approximately equal size; <36, 36- <
37, 37- < 38 and ≥ 38), discharge weight in grams (four
categories of approximately equal size; ≤2200, 2201-
2600, 2601–3000 and > 3000) and breastfeeding status at
discharge (categorical; recording whether baby was re-
ceiving either no breast milk, mixed feeding or exclusive
breastfeeding at discharge).
To investigate the impact of model complexity and the

influence of wider clinical, maternal and socioeconomic
factors on prediction, a 20 variable model comprised of
all predictors from the ten predictor model plus an add-
itional ten was developed. The additional predictors
were: multiple pregnancy (binary), level of birth unit
(categorical; 1, 2a, 2b or 3), congenital abnormalities
(binary), late onset neonatal infection after >72 h of life
(binary), necrotising enterocolitis (binary), intraventricu-
lar hemorrhage (IVH) (Stage 3 IVH or intraparenchymal
hemorrhage) (binary), mother’s age in years (continu-
ous), mother born outside France (binary), family socio-
economic status (categorical; professional, intermediate,
administrative/public service, self-employed/students,
shop assistants, service workers, manual workers or no
profession) and smoking during pregnancy (binary).

Statistical analysis
We compared the characteristics of babies with URH30
to those without, using the Kruskal-Wallis test for con-
tinuous variables and chi-squared test or Fisher’s exact
test for categorical variables.
To investigate the timing and proportion of babies

with URH over the first 30 days we produced Kaplan-
Meier curves for URH status censored at 30 days alone
and also according to gestational age category. Ninety-
five percent confidence intervals and the log-rank test
were used to establish whether there were any differ-
ences between Kaplan-Meier curves.
A p value of <0.05 was considered statistically significant.

All analysis was conducted using R version 3.4.2 [39].

Predictive model building and validation
Three predictive models for URH30 were constructed
using complete-cases (babies with no missing values for
the outcome or exposure). The first model contained the
gestational age predictor alone, the second contained ten
predictors and the third model contained 20. Multivari-
ate logistic regression analysis was used to construct the
models. The performance of each model was validated
with 10-fold cross-validation [40, 41]. This involved div-
iding the complete-cases into ten equally sized subsets.
Each time, nine of the subsets were used to train an in-
dependent regression model. The coefficients derived
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from the training stage were then used to predict URH30
on the one remaining test subset. This was repeated ten
times until each subset had been used as the test once.
Coefficients for the model were derived by training the
model on the entire data set as the performance measured
with the cross-validation subsets is assumed to be an ap-
proximation of the performance of the model trained on
all samples [42]. Model performance was assessed using
measures of discrimination and calibration. Discrimin-
ation was measured using area under the receiver operat-
ing characteristic curve (AUROC) with 95% confidence
interval, sensitivity, specificity and Tjur’s coefficient of
determination [43]. Calibration was assessed via the
Hosmer-Lemeshow goodness-of-fit test and correspond-
ing calibration curve. The classification threshold for pre-
dictive modelling was adjusted to optimise the false
positive and true positive rates [44–46]. The impact of the
categorisation of continuous variables such as gestational
age and birth weight on prediction was assessed through a
sensitivity analysis for the predictive models.

Missing data
To establish the impact of missing data upon prediction
we used multiple imputation and rebuilt the predictive
models using the imputed data [47]. Imputation was con-
ducted using 20 imputations and 100 iterations. The full
list of variables used as predictors during imputation and
their rate of missingness can be seen in Additional file 2.
Pooled model coefficients were derived using Rubin’s rule
[48] and performance measures presented using the me-
dian and inter-quartile range [49–51].

Results
There were 5567 live born babies eligible for inclusion
in the EPIPAGE 2 study; 703 died during the initial hos-
pitalisation and 4467 were discharged home alive, of
these, 3841 babies (86% of those babies discharged home
alive) had parents that completed the one-year follow-up
survey (Fig. 1). Compared to the 3841 babies included in
our eligible population, those that were excluded due to
their parents not completing the one-year follow-up sur-
vey (449 babies) had significantly higher median birth
weight (1410 g v 1350 g, p = 0.040) and levels of mater-
nal unemployment (9.6% v 2.3%, p < 0.001). Median ma-
ternal age was also lower compared to the eligible
population (28 years v 30 years, p < 0.001), and there
were lower levels of exclusive breastfeeding amongst ba-
bies excluded for lack of survey completion (18.4% v
28.2%, p < 0.001). Babies that died between discharge
and the one-year follow-up, and were therefore excluded
from the analysis, had lower levels of exclusive breast-
feeding compared to the eligible population (9.0% v
28.2%, p = 0.047). They also had higher rates of severe
BPD (18.0% v 6.0%, p = 0.017).

There were 399 30-day rehospitalisations for any cause
in our sample, a rate of 10.4% (95% CI 9.4–11.4). Three
hundred and fifty (9.1% (95% CI 8.2–10.1)) newborns in
the study population experienced an unplanned rehospita-
lisation within 30 days of index discharge. A proportion
of these URH30 were due to specific diagnoses such as
bronchiolitis (26.6%), gastroenteritis (5.7%), poor weight
gain (2.3%). The remainder of the URH30 were due to
broader causes such as malaise, convulsions, accidents
and unspecified illnesses or events (64.9%).
Table 1 shows the distribution of the ten primary pre-

dictors amongst the eligible population of 3841 babies
by URH30 status. The rate of URH30 was greater in ba-
bies of 22–26 weeks gestation, with 72 (15.2%) compared
to 238 (10.1%) in 27–31 weeks and 40 (4.0%) in 32–34
week babies (p < 0.001). The rate was also higher for
those in receipt of nitric oxide (p = 0.02) or surfactant
(p < 0.001), diagnosed with BPD (p < 0.001). There were
also more URH30 with increasing PMA at discharge
(p < 0.001), increased discharge weight (p = 0.001) and
lower levels of breastfeeding (p = 0.002). Of the ten add-
itional clinical, mother and socioeconomic predictors,
level of birth unit as well as rates of late onset infection
and smoking were significantly different according to
URH30 status. The cross-tabulation for all additional
variables can be seen in Additional file 3.

Timing of unplanned rehospitalisation over the first 30 days
The cumulative probability of URH progressed at a rela-
tively consistent rate over the first 30 days following dis-
charge (Fig. 2 and Additional file 4). The probability of
URH was 2.8% (95% CI 2.3–3.3) at day 10, 6.3% (95% CI
5.5–7.1) at day 20 and 9.2% (95% CI 8.3–10.1) by day 30.
In the three gestational age categories, the probability

of URH remained similar initially and began to diverge
around day 10. By day 30, the URH probabilities for ba-
bies of 22–26, 27–31 and 32–34 weeks gestation were
15.4% (95% CI 12.0–18.6), 10.2% (95% CI 9.0–11.4) and
4.0% (95% CI 2.8–5.2) respectively (Fig. 3 and Add-
itional file 5). Differences between the three Kaplan-Meier
curves for the gestational age groups were significant
(log-rank test, p < 0.001).

Predictive model performance
Complete-cases were used for the logistic regression
model building. Of the 3841 eligible babies, 2707 (70.5%)
were complete-cases.
Univariate regression analysis of the ten primary pre-

dictor variables shown in Table 2 show gestational age
less than 32 weeks, nitric oxide, surfactant, BPD, PMA of
36 weeks or more, discharge weight greater than 3000 g
and breastfeeding status were all independently associ-
ated with URH30. After adjustment in the multivariate
regression predictive model, two variables were found to
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be significant risk factors (Table 2). These were gestational
ages of 22–26 weeks (aOR 1.44 (95% CI 1.18–1.77) and
27–31 weeks (aOR 1.47 (95% CI 1.17–1.84)) compared to

32–34 week babies, and PMA of both 36 to less than
37 weeks (aOR 1.34 (95% CI 1.06–1.70) and 37 to less
than 38 weeks (aOR 1.32 (95% CI 1.05–1.65) com-
pared to less than 36 weeks. Results of regression ana-
lysis for the 20 predictor model are shown in
Additional file 6.

Discrimination
The discriminatory performance of all three models
was similar. The model containing gestational age
alone gave an AUROC of 0.60 (95% CI 0.57–0.62).
For the ten predictor model, the AUROC across the
ten cross-validated sets was 0.62 (95% CI 0.59–0.65).
Figure 4 shows the cross-validated ROC resulting
from the predictions on the ten test sets. At a classi-
fication threshold of 0.08, sensitivity and specificity
for the ten predictor model were 0.77 and 0.42 re-
spectively. Tjur’s coefficient was 0.019.
A more complex model, containing twenty predic-

tors gave an AUROC of 0.62 (95% CI 0.58–0.72). Full
discrimination performance results for each of the
three predictive models can be seen in Table 3. The
inclusion of continuous versions of variables such as
gestational age and birth weight (in place of their
categorised equivalents) did not improve the predict-
ive power of the models.

Calibration
Figure 5 and Table 3 show the calibration curve and
p value derived from the Hosmer-Lemeshow test for
the ten predictor model. The test offered sufficient
evidence to reject the null hypothesis that, across risk
deciles, actual and observed URH30 event counts were
similar to predicted counts. Full discrimination per-
formance results for each of the three predictive
models can be seen in Table 3.

Sensitivity to missing data
A total of 1134 (29.5%) had missing data on explana-
tory variables. Rates of missingness by variable are
shown in Additional file 2. The ten predictor model
built with multiply imputed data gave a median
AUROC of 0.63 (IQR 0.004), sensitivity of 0.75 (IQR 0.01),
specificity of 0.45 (IQR 0.01) and a Tjur’s statistic of 0.019
(IQR 0.001) (Table 3).

Discussion
Using data from a prospective, population-based co-
hort study of 3841 newborns of 22–34 weeks gestation
(EPIPAGE 2), we found that the overall risk of early
unplanned rehospitalisation within 30 days of dis-
charge was approximately 9%. The timing of rehospi-
talisations during the 30-day period had a fairly
uniform distribution with an approximately linear

Table 1 Distribution of ten primary characteristics of 3841
eligible babies in the EPIPAGE 2 cohort by 30-day unplanned
rehospitalisation (URH30) status. Including missing values.
P values derived from the chi-squared test

Variables Total URH30 URH30 (%) (95% CI) p value

Sex

Female 1818 152 8.4 (7.1–9.7)

Male 2001 198 9.9 (8.6–11.2) 0.11

Gestation age (weeks)

32–34 997 40 4.0 (2.8–5.2)

27–31 2349 238 10.1 (8.9–11.3)

22–26 473 72 15.2 (12.0–18.4) <0.001

Small for gestational age

Yes 1325 134 10.1 (8.5–11.7)

No 2494 216 8.7 (7.6–9.8) 0.16

Nitric Oxide

Yes 163 24 15.0 (10.0–20.0)

No 3594 324 9.0 (8.1–9.9) 0.02

Surfactant

Yes 1888 225 11.9 (10.4–13.4)

No 1885 119 6.3 (5.2–7.4) <0.001

Early onset neonatal infection

Yes 609 61 10.0 (7.6–12.4)

No 3086 275 8.9 (7.9–9.9) 0.43

Bronchopulmonary dysplasia

None 2915 224 7.7 (6.7–8.7)

Mild 431 65 15.1 (11.7–18.5)

Moderate 106 18 17.0 (10.0–24.0)

Severe 222 30 13.5 (9.0–18.0) <0.001

Post-menstrual age at discharge (weeks)

< 36 639 25 3.9 (2.4–5.4)

36 – <37 960 83 8.6 (6.8–10.4)

37 – <38 763 70 9.2 (7.2–11.3)

≥ 38 1442 172 11.9 (10.2–13.6) <0.001

Discharge weight (grams)

≤ 2200 706 46 6.5 (4.7–8.3)

2201–2600 1484 134 9.0 (7.5–10.5)

2601–3000 977 90 9.2 (7.4–11.0)

> 3000 579 76 13.1 (10.4–15.9) 0.001

Breastfeeding status

None 1719 189 11.0 (9.5–12.5)

Mixed 839 70 8.3 (6.4–10.2)

Exclusive 1004 72 7.2 (5.6–8.8) 0.002
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Fig. 2 Kaplan-Meier curve with shaded 95% confidence interval and risk table for unplanned rehospitalisation over the first 30 days amongst 3841
eligible babies in the EPIPAGE 2 cohort

Fig. 3 Kaplan-Meier curves with shaded 95% confidence interval and risk table for unplanned rehospitalisation over the first 30 days amongst
3841 eligible babies in the EPIPAGE 2 cohort, by gestational age of babies. P value relates to log-rank test, with a null hypothesis that the survival
curves are the same
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progression of rehospitalisation risk during the period.
Compared to babies of 32–34 weeks gestation, those
of 22–26 and 27–31 weeks gestation had a statistically
important increased probability of URH within 30
days. Lower gestational age and increased PMA at
discharge were associated with URH30 in the ten pre-
dictor model. The association with increased PMA at
discharge might reflect difficulties at home, leading to
delayed discharge and a subsequent increased risk of
rehospitalisation when a baby is finally discharged. A
predictive model based on ten clinically important
variables chosen after a review of the literature and
input from expert clinicians, as well as models con-
taining a more extensive set of predictors, showed
relatively poor discrimination and low indices of pre-
dictive ability. Moreover, the added value of other
variables compared to a predictive model based on
gestational age alone was quite limited. Given the key
role gestational age plays in determining physiological
immaturity, and that lower gestational age is a recog-
nised risk factor for rehospitalisation, this finding was
not unexpected [23, 24, 52]. The limited predictive

ability of our models is in line with the literature on
predictive models for rehospitalisation in adults, in
which a majority fail to achieve clinically useful per-
formance [53].

Strengths and limitations
Using data from a large population-based study these re-
sults provide useful insight into the probability and tim-
ing of early unplanned rehospitalisation in preterms,
especially amongst less extensively studied extremely
and very preterm babies. This study is, to the best of our
knowledge, the first validated predictive model for early
rehospitalisation in preterm babies. The range of infor-
mation collected meant that established risk factors, and
more unique variables, were available for analysis and
consideration in predictive modelling. The wide range of
available variables and subsequent selection in consult-
ation with clinical experts increased the likelihood that
clinically relevant predictors were included in the
models. Our choice of a 30-day follow-up period for our
outcome was based on its established use in the litera-
ture and as a quality measure in health systems such as

Table 2 Unadjusted (uOR) and adjusted odds ratios (aOR) for the ten predictors in the primary predictive logistic regression model
for unplanned rehospitalisation within 30 days (URH30) amongst 2707 eligible, complete-case babies in the EPIPAGE 2 cohort

Variable uOR 95% CI p value aOR 95% CI p value

Female 0.84 0.65–1.08 0.176 0.92 0.81–1.05 0.22

Gestational age (weeks) (ref. 32–34)

27–31 2.83 1.82–4.42 <0.001 1.47 1.17–1.84 0.001

22–26 4.88 2.95–8.08 <0.001 1.44 1.18–1.77 <0.001

Small for gestational age 1.11 0.85–1.45 0.440 1.12 0.96–1.30 0.16

Nitric oxide 1.71 1.01–2.92 0.047 1.03 0.92–1.16 0.58

Surfactant 2.10 1.60–2.75 <0.001 1.16 0.99–1.36 0.07

Early onset neonatal infection 1.18 0.85–1.64 0.313 0.99 0.88–1.13 0.91

Bronchopulmonary dysplasia (ref. none)

Mild 2.26 1.62–3.14 <0.001 1.12 0.98–1.27 0.09

Moderate 2.32 1.30–4.13 0.004 1.05 0.93–1.17 0.45

Severe 1.78 1.12–2.84 0.015 0.98 0.85–1.12 0.73

Post-menstrual age at discharge (weeks) (ref. <36)

36 - <37 2.22 1.29–3.80 0.004 1.34 1.06–1.70 0.02

37 - <38 2.48 1.43–4.30 0.001 1.32 1.05–1.65 0.02

≥ 38 3.04 1.83–5.05 <0.001 1.29 0.97–1.72 0.08

Discharge weight (grams) (ref. 2,201–2600)

≤2200 0.79 0.53–1.19 0.260 0.91 0.77–1.08 0.28

2601 - 3000 1.22 0.89–1.69 0.220 1.02 0.88–1.19 0.79

> 3000 1.60 1.13–2.28 0.008 1.05 0.90–1.23 0.52

Breastfeeding status (ref. none)

Mixed 0.79 0.57–1.10 0.160 0.95 0.82–1.09 0.47

Exclusive 0.69 0.50–0.94 0.019 0.88 0.76–1.02 0.10
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the UK National Health Service [54] and Medicare and
Medicaid Services in the United States [55]. The period
is considered appropriate as it is short enough to limit
the influence of factors outside the immediate control of
clinicians, thus potentially making such rehospitalisa-
tions more amenable to preventive adjustments in treat-
ment or discharge decisions for example.
We chose to focus on unplanned rehospitalisation

as planned causes are less likely to be preventable.
We acknowledge the decision to classify all surgical
rehospitalisations as planned may have led to the ex-
clusion of surgical interventions that were unplanned.
The construction of our outcome also relied upon
mothers recalling the date and cause of their baby’s
three longest rehospitalisations. Though bias was
minimised through verification using the child’s hand-
held record, some errors still persist. It is also

possible that shorter rehospitalisation for transient ill-
nesses may be under represented in our sample. It is
difficult to say whether these limitations might have
impacted the predictive power of our models. Fur-
thermore, we excluded 22 babies who died between
discharge and one-year follow-up. It was not possible
to establish the exact dates of these deaths and
whether they occurred within 30 days of discharge.
However, although only a very small proportion of
the babies discharged home alive died (0.5%), exclud-
ing them might have introduced bias: babies that died
were more likely to have severe illness, and thus more
likely to have been rehospitalised within 30 days of
discharge.
Unplanned rehospitalisation within 30 days in this

study was relatively infrequent and is in line with much
of the literature on early rehospitalisations in preterm

Fig. 4 Receiver operating characteristic curve (ROC) of cross-validated predictions and corresponding area under the curve (AUROC) for the ten
predictor model for unplanned rehospitalisation within 30 days developed on 2707 eligible, complete-case babies in the EPIPAGE 2 cohort

Table 3 Predictive performance measures for logistic regression models constructed on 2707 eligible, complete-case babies in the
EPIPAGE 2 cohort and validated using 10-fold cross-validation

Model AUROC 95% CI Sensitivity Specificity Tjur’s Coefficient Hosmer-Lemeshow

One predictor 0.60 0.57–0.62 0.91 0.23 0.015 0.003

Ten predictor 0.62 0.59–0.65 0.77 0.42 0.019 <0.001

20 predictor 0.62 0.58–0.72 0.72 0.46 0.020 <0.001

Ten predictor (imputed data)a 0.63 (IQR 0.004) – 0.75 (IQR 0.01) 0.45 (IQR 0.01) 0.019 (IQR 0.001) <0.001
aPerformance measured over 20 imputed data sets and measures reported as median and inter-quartile range (IQR)
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babies [19, 33, 56]. Building predictive models on infre-
quent outcomes presents difficulties for classification
and the default 0.50 classification threshold can be
inappropriate [44, 57]. Regression models built using in-
frequent event data can produce negatively biased inter-
cepts with underestimated predicted probabilities in the
direction of the majority outcome [58–60]. To address
this, we used a prevalence dependent threshold of 0.08
to optimise the false positive and true positive rates, as
recommended [44–46].
We acknowledge that performance measures de-

rived through cross-validation are inferior to those
derived from external validation methods using inde-
pendent data. However, obtaining external data can
often be challenging and cross-validation represents
a powerful alternative, especially compared to tech-
niques such as split-sampling which can significantly
reduce the size of the training and test samples. Fu-
ture model building might require the identification
of a wider range of predictors. Alternative machine
learning techniques, for example penalised regression
or random forest analysis, would allow for the con-
sideration of many more variables whilst limiting
over-fitting.

Conclusion
We conclude that early, unplanned rehospitalisations
of very preterm babies affect approximately 9% of our
population. Over the 30 days following initial dis-
charge there was a generally linear progression of
rehospitalisation risk. Ultimately, predicting unplanned

rehospitalisation with a range of clinical, maternal,
and socioeconomic predictors proved challenging in
our study. Given the cost and burden associated with
rehospitalisations, it remains important that we main-
tain efforts to better understand and predict such
outcomes. This may in turn facilitate the implementa-
tion of strategies to prevent unplanned rehospitalisa-
tions in preterm babies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12887-019-1827-6.

Additional file 1. Forty-eight potential predictors of unplanned rehospi-
talisation in preterm babies considered for inclusion in predictive models
in consultation with field experts. All predictors were derived from the
EPIPAGE 2 study.

Additional file 2. Thirty variables included as predictors in multivariate
imputation by chained equations for missing data amongst 3841 eligible
babies in the EPIPAGE 2 cohort.

Additional file 3. Distribution of ten additional predictor variables
amongst 3841 eligible babies in the EPIPAGE 2 cohort by 30-day un-
planned rehospitalisation (URH30) status. Including missing values. P-
values derived from the chi-squared test for categorical variables and
Kruskal-Wallis test for continuous.

Additional file 4. Cumulative probability of no unplanned
rehospitalisation (URH) (and the inverse) over the first 30 days following
discharge from birth hospitalisation, amongst 3841 eligible babies in the
EPIPAGE 2 cohort. Derived via Kaplan-Meier analysis.

Additional file 5. Cumulative probability of no unplanned
rehospitalisation (URH) (and the inverse) over the first 30-days following
discharge from birth hospitalisation by gestational age (GA) category,
amongst 3841 eligible babies in the EPIPAGE 2 cohort. Derived via
Kaplan-Meier analysis.

Fig. 5 Calibration curve for the cross-validated ten predictor model comparing the observed probability of unplanned rehospitalisation within 30
days with predicted probability across risk deciles developed on 2707 eligible, complete-case babies in the EPIPAGE 2 cohort. Hosmer-Lemeshow
test p < 0.001
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Additional file 6. Unadjusted (uOR) and adjusted odds ratios (aOR) for
the 20 predictor predictive logistic regression model for unplanned
rehospitalisation within 30-days (URH30), amongst 2707 eligible
complete-case babies in the EPIPAGE 2 cohort.
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