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ABSTRACT
Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is 
a promising approach to link transcriptional changes to cellular phenotype and function, requiring 
new computational methods to define cellular subtypes and states based on multiple data types. 
Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the 
transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi 
omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional 
representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate 
these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of 
the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear 
Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single- 
cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune 
cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we 
introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combina
tions. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow 
Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent 
performance in identifying cell subtypes and states for multimodal omics data. We suggest that the 
flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The 
complete source code and dataset of the CITEMO framework can be obtained from https://github. 
com/studentiz/CITEMO.
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Introduction

Many types of single-cell sequencing technologies have 
been proposed with the development of molecular biology, 
microfluidics, and nanotechnology [1,2]. The existing sin
gle-cell sequencing experimental technology focuses on the 
measurement of independent modalities, especially the 
transcriptome. Single-cell transcriptome sequencing has 
been developed with many powerful analytical methods, 
which are widely used in cell type identification [3–6], 
trajectory inference [7–10], regulatory network inference 
[11–14], single-cell transcriptome dynamics analysis 
[15,16], etc [17]. These analysis methods based on the 

independent modalities have promoted our understanding 
of cellular diversity and developmental landscapes [18–21].

Nowadays, it is more interesting to detect and analyse 
multimodal omics simultaneously in individual cells to build 
a more comprehensive molecular view of cells [22–26]. For 
example, in 2017, CITE-seq was proposed, which can simul
taneously measure single-cell transcriptome and cell-specific 
protein data [27,28]. In the same year, REAP-seq was intro
duced, which is similar to CITE-seq, using oligonucleotide 
cross-linked antibodies to detect cell protein and transcript 
levels [29]. These two technologies have similar principles. 
They capture the transcriptome while capturing Antibody- 
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Derived-Tags (ADT) to count proteins. Other technologies, 
such as PLAYR (proximity ligation assay for RNA), can also 
detect the expression level of specific proteins at the single-cell 
level [30–34]. Compared with other technologies, CITE-Seq 
and REAP-seq have mature commercial solutions, and they 
are one of the most popular single-cell multimodal omics 
technologies. Since the multimodal omics data format of 
REAP-seq and CITE-seq are similar and their analysis proce
dures are also similar, the following will use CITE-seq to 
collectively refer to these two technologies.

Several single-cell multimodal analysis methods have been 
proposed for the CITE-seq technique by now. In 2018, Satija 
Lab launched Seurat v3, which can analyse the transcriptome 
and ADTs data separately but could not integrate them [3]. 
Later, the updated Seurat v4 introduced the weighted-nearest 
neighbour analysis that sets the weights for transcriptome and 
ADT respectively and then constructed a weighted nearest 
neighbour graph to integrate these modalities [6]. In 2021, 
Gayoso et al. developed totalVI based on the deep learning to 
construct two variational autoencoders for transcriptomic 
data and ADT data, respectively, in which the two autoenco
ders share their mean parameters as an integrated character
ization of multimodal omics for downstream analyses such as 
cell clustering [35].

There remain several challenges for multimodal omics 
analysis, although there are a few methods for analysing the 
multimodal omics data. First, the process of preprocessing 
and integrating multimodal omics data may introduce false 
signals [36]-38. Secondly, transcriptome and ADT data have 
different biological properties and functions, and the analysis 
process of multimodal omics should retain their characteris
tics [2,22–24,26,37]. Finally, the analysis results of multimodal 
omics should be able to correspond to the analysis results of 
independent modalities.

Here, we design a flexible framework, CITEMO, to 
comprehensively explore the single-cell multimodal 
omics. CITEMO framework covers a series of processes 
designed for multimodal data and simultaneously outputs 
the transcriptome, ADT and multimodal omics analysis 
results. Using CITEMO, we perform a multimodal analysis 
on a dataset of Cord Blood Mononuclear Cells (CBMC) 
which was annotated by previous work [27]. The out
comes indicate that our multimodal omics integrated ana
lysis method can identify cell subtypes and have a good 
correspondence with independent modalities. In addition, 
we find some special immune cells that express several 
different types of immune cell markers and propose co- 
expression entropy to analyse them. To further validate 
the robustness of CITEMO, we analyse the Human Bone 
Marrow Cell (HBMC) samples [3] and further identify the 
different states of the same cell type. In short, CITEMO 
framework is an excellent flexible analysis method for 
single-cell multimodal omics, which can accurately iden
tify the cell subtypes and states.

Results

Flexible multimodal omics analysis framework

The CITEMO framework consists of three main steps (Fig. 1). 
First, in the preprocessing stage, we simultaneously extract the 
raw transcriptome and the raw ADT data from the CITE-seq 
experiment, separately. After quality control, the remained 
raw transcriptomic data and raw ADT data are performed 
preprocessing, separately. We perform logarithm normaliza
tion on transcriptome data, while apply the centred logarith
mic ratio (CLR) algorithm to normalize ADT data. 
Subsequently, the transcriptome and the ADT data are 
rescaled to the range of 0 to 1 by MinMaxScale, respectively.

Then, we consider dimensionality reduction to obtain 
the low-dimensional representations. Because of the huge 
difference in the feature dimensions of transcriptome and 
ADT data, compressing their features to similar dimensions 
can eliminate the influence of the difference in feature 
dimensions for downstream analysis. For example, the tran
scriptome modality has more than 10,000 features, but the 
ADT modality only has less than 500 features. We use 
Principal Component Analysis (PCA) to reduce their fea
tures to similar sizes. After dimensionality reduction, the 
transcriptome data and ADT data are transformed into 
low-dimensional transcriptome representation and low- 
dimensional ADT representation, respectively, which repre
sent the relative utility of independent modalities. 
Subsequently, the low-dimensional transcriptome represen
tation and the low-dimensional ADT representation are 
scaled to the range of 0 to 1 by MinMaxScale, respectively. 
Then these low-dimensional representations are integrated 
by PCA again to obtain low-dimensional multimodal repre
sentations. It is worth noting that the algorithms for 
dimensionality reduction and data integration in the 
CITEMO framework are all PCA. This strategy of using 
the same algorithm as much as possible between different 
modal data can further avoid the introduction of the error 
caused by algorithm differences.

Next, we perform Leiden clustering algorithm for the low- 
dimensional representations of transcriptome, ADT and mul
timodal omics, respectively. Finally, we use the low- 
dimensional representation of multimodal omics to generate 
uniform manifold approximation and projection (UMAP) 
visualizations. Such UMAP of multimodal omics is also 
applied to the transcriptome and ADT data to visualize the 
position of cells in a two-dimensional plane. Although tran
scriptome, ADT and multimodal omics have the same UMAP 
visualization, they still retain their respective cell subpopula
tions and are represented by different colours. By sharing the 
same UMAP visualizations, the cell subpopulations between 
different modalities can be compared easily. With these ana
lysing steps, the CITEMO framework can capture the hetero
geneous states of cells at the levels of transcriptome, ADT and 
multimodality simultaneously.
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Cell subtypes of multimodal omics data captured by 
CITEMO

To investigate the performance of the above pipeline, we 
analyse the CBMC sample sequenced by Stoeckius et.al. [27]. 
In this dataset, the small quantities of 3T3 and 4T1 mouse 
cells are mixed into CBMC samples to assess the sensitivity of 
the CITE-seq technique [27]. We simultaneously identify cell 
populations from the perspectives of transcriptome, ADT and 
multimodal omics, and find that all the three perspectives are 
able to reveal the heterogeneity of CBMC sample 
(Figs. 2A-2C).

First, the transcriptome and ADT data are separately per
formed PCA to obtain the low-dimensional representation. 
We use the elbow method to set the PCA parameters. In this 
study, the top 10 principal components (PC) are selected as 
the low-dimensional representation for CITEMO transcrip
tome data (Fig. 3A). Since only 10 ADTs are involved in the 
study after quality control, all of 10 ADTs are considered as 

the low-dimensional representation for CITEMO ADTs 
(Fig. 3B).

Next, the cell clustering process is performed for the low- 
dimensional representations of the transcriptome and ADT 
data, respectively. Then the cell types are manually annotated 
based on the cell markers (Supplementary Figure 1A&1B). 
CITEMO transcriptome and CITEMO ADT analysis identify 
most of the known CBMC cell types consistently, leaving 
several differently annotated cell subtypes (Fig. 2A, 
Supplementary Figures 1a&1b&2a&2b). For example, the 
CITEMO transcriptome successfully identifies the mixed 
mouse cells in CBMC samples, while the CITEMO ADT 
could not detect these mouse cells (Fig. 2D). The CITEMO 
transcriptome further divides the mouse cells into 3T3 and 
4T1 cells according to the gene expression of Hmga2 (Fig. 2D) 
[27]. Since the abundance of mouse-associated ADT is not 
measured in CBMC samples, the mouse cells could not be 
identified by ADT information alone.

Figure 1. The workflow of CITEMO framework. The multimodal omics data obtained from the experiment are divided into raw transcriptome and raw ADT. They are 
normalized after preliminary quality control, and then applied PCA dimensionality reduction, respectively. On the one hand, the low-dimensional representations of 
the transcriptome and ADT are used for clustering. On the other hand, they are used for multimodal omics clustering by PCA dimensionality reduction. Finally, the 
clusters of transcriptome, ADT and multimodal omics are visualized using UMAP of multimodal omics.
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At the same time, relying only on genetic information may 
also miss some important cell subtypes. For example, only 
a population of NK cells are found with the transcriptome 
analysis, while the ADT analysis successfully identifies three 
subtypes of NK cells, including CD56bright NK [38–40], 
CD8- NK [41,42] and CD8+ NK [42–44] (Fig. 2E and 
Supplementary Figure 1A). These three subtypes are also 
supported by the previous studies [45].

The different recognition ability of cell subtypes for tran
scriptome and ADT analysis is caused by the difference in 
PCA analysis. We use PCA to convert the expression of genes 
and ADT into PCs. The distributions of PCs of cell subtypes 
in transcriptome and ADT modalities are specific, which 
implies that PCs represent specific information about cell 
subtypes (Figs. 3D&3E). For example, PC1 in the transcrip
tome modality is closely related to mouse genes 

Figure 2. Characterizing heterogeneity with CBMC sample. (A-C) UMAP visualizations of clustering results. The annotation of cell clusters was analysed by CITEMO 
using transcriptome modality (A), ADT modality (B) and multimodal omics (C) data. (D) Violin plots of Hmga2 gene expression in mouse cell clusters. (E) Violin plots 
of CD56 (up) and CD16 (down) ADT abundance in NK cell clusters. Different background colours in (D) and (E) indicate that different modalities were used for 
clustering analysis by CITEMO. (F) The clustering results of NK cells and Monocytes obtained by CITEMO multimodal omics on the left, and the box plots on the right 
showing the different ADT abundance of the NK cells markers of CD56 and CD16, the Monocytes markers of CD11c and CD14, and a proliferating marker CD45RA in 
six distinct clusters. (G) A feature plot of CD45RA ADT abundance with CITEMO multimodal omics UMAP shown on the left, and the density distributions of CD45RA 
ADT in CD4+ Memory T cells and CD4+ Naïve T cells under the indicated modalities given on the right.
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(Figs. 3G&3 J), while the distribution of PC1 in ADT mode is 
consistent with the distribution of CD4 + T cells 
(Figs. 3H&3 K).

Integrating the low-dimensional representation of the tran
scriptome and ADT data can obtain a multimodal omics 
representation, giving a more comprehensive characterization 
of the heterogeneity of cells. To avoid the error introduced by 
different algorithms, we keep using the PCA algorithm to 
integrate multimodal omics. We apply the elbow method to 
select the first 15 PCs as the low-dimensional representation 
of multimodal omics (Fig. 3C). Then, the cell clustering pro
cess is performed for the low-dimensional representation of 

multimodal omics, followed by the manual annotation of cell 
types. The results given by the CITEMO multimodal omics 
cover all cell subtypes identified by CITEMO transcriptome 
and CITEMO ADT separately (Fig. 2C, Supplementary 
Figures 1A&2C). CITEMO multimodal omics successfully 
identifies 3T3 and 4T1 mouse cells, as given by CITEMO 
transcriptome (Fig. 2D). Moreover, CITEMO multimodal 
omics also successfully identifies three subtypes of NK cells 
(Fig. 2E and Supplementary Figure 1A), as given by 
CITEMO ADT.

Another noteworthy finding is that CITEMO multimodal 
omics identified CD16+ CD45RA+ monocyte which was 

Figure 3. The low-dimensional representations of the heterogeneity in the CBMC sample. (A-C) The variance of the transcriptome principal components (A), the ADT 
principal components (B), and the multimodal omics principal components (C) explained by each selected principal component. The variance estimation uses 
n_samples-1 degree of freedom. The arrows indicate the reduced dimension set by the elbow method. (D-F) Heat maps of cell clusters and selected principal 
components. The average value of each principal component of the cell clusters divided by transcriptome (D), ADT (E) and multimodal omics (F). (G-I) The projections 
of the features along the principal component PC1 direction sorted from the small to the large PC value for the gene in the transcriptome (G), the ADT (H), and the 
transcriptome PC and ADT PC in the multimodal omics analysis (I). (J-L) UMAP visualization of principal component PC1 for transcriptome (J), ADT (K) and multimodal 
omics (L), respectively. In (J-L) the circles with dashed line indicate mouse cell clusters (J) and CD4 + T cell clusters (K&H), respectively.
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annotated as NK cells by a previous study (Fig. 2F) [46,47]. 
CD16+ CD45RA+ monocytes are similar to some NK cells, in 
that they all express CD16 (Fig. 2F and Supplementary 
Figure 1A). This may be the reason why it was identified as 
NK cells by previous methods [3]. However, CD16+ CD45RA 
+ expresses CD14 and CD11c, which are markers of mono
cytes (Fig. 2F and Supplementary Figure 1A) [48]. Therefore, 
we believe that it is not an NK cell but a special type of 
monocyte. Alternatively, CD16+ CD45RA+ monocytes may 
be the activated monocytes due to their higher CD45RA 
expression than other types of monocytes (Fig. 2F). This 
implies that CITEMO framework can detect the cell states.

We further compare the results given by CITEMO mul
timodal omics with previous studies [3]. CITEMO multi
modal omics identifies naive CD4 T cells and memory CD4 
T cells from the CD4 T cells according to the abundance of 
CD45RA ADT (Fig. 2G and Supplementary Figure 1A) 
[49,50]. The CITEMO ADT also identifies two CD4 T cell 
subtypes, i.e. native CD4 T and memory CD4 T (Fig. 2G). 
As a comparison, the CITEMO transcriptome fails to dis
tinguish the naive CD4 T cells from memory CD4 T cells, 
which is similar to the annotation of CBMC cells in pre
vious study [3]. In summary, the CITEMO multimodal 
omics shows an ability to identify more cell subtypes than 
previous methods [3].

Each PC of CITEMO multimodal omics also shows 
a specific distribution in the cell clusters. For example, multi
modal omics has only 10 PCs, among which PC1 is closely 
related to ADT PC1 (Fig. 3I), and is closely related to CD4 
cells, resulting in the distribution of multimodal omics PC1 
closely related to CD4 + T cells (Fig. 3L).

Discovery of immune cell units with co-expression 
entropy

We find some interesting immune cells in the CBMC samples, 
and they are detected to express multiple types of immune cell 
markers on the cell surface (Fig. 4A and Fig. 4B). We propose 
four-quadrant probabilities to analyse the combination distri
bution of cell clusters in the 2-dimensional ADT plane. In 
addition, we define the co-expression entropy to detect poten
tial co-expressed ADT combinations for clustered cells with 
high throughput.

Using the quadrant probability, we observe a cluster of 
cells that highly express CD4 (a marker of T cells) and 
CD19 (a marker of B cells) (Fig. 4C). Such cells with the 
double-positive combination of CD4 and CD19 are called 
T-B conjugates [51–54]. It has been reported that 
T-B conjugates exist in peripheral blood and are necessary 
for follicular helper T cells development in germinal centres 

Figure 4. Analysis of potential co-expression cells in CBMC samples. (A) Feature plot with colour dots showing the indicated cell clusters with special co-expression. 
(B) Heat map of cell clusters with expressions of specific ADTs. (C-G) The ADT co-expression of CD4 and CD19 in T-B conjugates cluster (C), CD8 and CD11c in 
CD4 + T/Mono cluster (D), CD56 and CD16 in CD8 + T/Mono cluster (E), CD8 and CD11c in CD4+ CD8bright DP T cluster (F), and CD4 and CD8 in CD4+ CD8dim DP 
T cluster (G), respectively. The entropy (En) value shown in the top left corner of each figure is the corresponding co-expression entropy for each cell cluster. (H) The 
comparison of the evaluations of ADT combinations given by different methods, including Pearson correlation, Spearman correlation, Kendall correlation and the co- 
expression entropy, for cell clusters in (C-G) .
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[54]. As a comparison, the previous methods could not detect 
T-B conjugates in CBMC samples, indicating that CITEMO 
has more sensitive detection capabilities [3]. More examples 
of double-positive express of ADTs are shown in 
Supplementary Figure 3A.

In addition to double-positive expression, the quadrant 
probability also covers the combination of single-positive/sin
gle-negative or double-negative expression. For example, we 
find two types of T/Mono cells in CBMC, among which 
CD4 + T/Mono cells have a low level of CD8 (CD8 + T cell 
marker) and a high level of CD11c (monocyte marker) 
(Fig. 4D), and CD8 + T/Mono cells have double-negative 
expressions of CD56 and CD16 (Fig. 4E) [55]. More examples 
of single-positive /single-negative express of ADTs are shown 
in Supplementary Figure 3B, while more examples of double- 
negative express of ADTs are shown in Supplementary 
Figure 3C.

It is worth noting that some ADT combinations may span 
multiple quadrants. For example, for the two types of double- 
positive T cells (DP T) found in CBMC samples, the CD4 
+ CD8bright DP T highly expresses CD8 (Fig. 4F and 
Supplementary Figure 3A), while the CD4+ CD8dim DP 
T expresses CD8 widely with a small percentage of cells 
showing a relatively high expression of CD8 and most cells 
expressing CD8 at low levels (Fig. 4G and Supplementary 
Figures 3B, 3D). The expression of CD8 in this state was 
defined as dim by previous work [56,57]. The DP T cells are 
reported in the blood and peripheral lymph tissues of many 
species and presented at the T cell developmental stage 
[56–59].

A discussion of quadrant probabilities for ADT co- 
expression distributions of cells can quantitatively reveal 
the heterogeneity of cells. But there are many ADT combi
nation modes in each cell cluster, resulting in a hardly 
direct-viewing presentation of co-expression distributions 
for high throughput data mining. A common solution is 
to calculate the correlation coefficient of the ADT combi
nation. However, we find that the common correlation 
coefficients, including Pearson correlation, Spearman corre
lation, and Kendall correlation, cannot characterize the 
distribution of ADT combinations (Fig. 4H and 
Supplementary Table 1).

To quantitatively measure the distribution of ADT combi
nations, we introduce the co-expression entropy based on the 
four-quadrant probabilities. The value of the co-expression 
entropy ranges from 0 to 1. The co-expression entropy close 
to 0 indicates that the majority of cells are only in one 
quadrant. For example, the co-expression entropy of CD4 
and CD19 in T-B conjugates cells is 0 (Fig. 4H and 
Supplementary Table 1), because all T-B aggregates cells are 
distributed in the double-positive quadrant with high expres
sion of CD4 and CD19 (Fig. 4C).

A common case is that the co-expression entropy of ADT 
combinations in cell clusters is relatively small but not zero 
and may span multiple quadrants. For example, although the 
CD8 and CD11c combination of CD4 + T/Mono cells spans 
three quadrants, the majority of CD4 + T/Mono cells are in 
the CD11c single-positive/CD8 single-negative quadrant 
(Fig. 4D). Here, the co-expression entropy of the combination 

of CD8 and CD11c in CD4 + T/Mono cells is 0.23 (Fig. 4H 
and Supplementary Table 1).

Another notable value of co-expression entropy is 0.5. 
A co-expression entropy around 0.5 means that the cells in 
the ADT combination may span mainly at 2 quadrants, pos
sibly indicating a special biological significance. For example, 
in the ADT combination of CD4+ CD8dim DP T, the entropy 
of CD4 and CD8 is 0.42 (Figs. 4G, 4 H and Supplementary 
Table 1), and the entropy of CD3 and CD8 is 0.62 
(Supplementary Figure 3D). According to our experience, 
the entropy value above 0.75 implies that it is difficult to 
discover the potential biological significance of the ADT 
combination. In summary, compared with the common cor
relation coefficients, the co-expression entropy can intuitively 
characterize the co-expression distribution of ADT combina
tions in a single quadrant.

Cell states characterized by CITEMO multimodal omics

To further examine the robustness of CITEMO multimodal 
omics in big samples, we analyse the Human Bone Marrow 
Cell (HBMC) sample sequenced by Stuart et.al [3]. CITEMO 
and Seurat use different strategies to integrate multimodal 
data. For the transcriptome and ADTs, Seurat selected 30 
and 18 PCs, respectively. In order to strictly compare the 
differences between CITEMO and Seurat in integrating multi
modal data strategies, we also select 30 and 18 PCs for the 
transcriptome and ADTs, respectively. These PCs are inte
grated as multi-modal data by CITEMO. We apply Leiden to 
multimodal data to generate 38 cell clusters. Then, we carry 
out differential analysis of transcriptome (Supplementary 
Table 2) and ADTs (Supplementary Table 3) on these 38 
cell clusters. After performing a manual merge of the two 
closest clusters (Cluster2/4 and Cluster3/23), we identify 36 
distinctive clusters based on the multimodal dataset (Fig. 5A, 
Supplementary Figures 4A&4B&5A&5B). The annotation of 
HBMC cells given by CITEMO framework is similar to that 
analysed by Seurat v4 (Fig. 5B) [6].

It is worth noting that the clustering method of CITEMO 
multimodal omics enables a detailed description of the differ
entiation and activation states of cells based on proteins 
(CD27, CD45RA, CD69, CD28 and so on). For example, 
cluster 31 and cluster 15 were annotated by Seurat as 
gamma delta T (gdT) cells (Figs. 5A&5B). Considering that 
gdT is abundant in the intestinal mucosa, they are also present 
in the thymus, peripheral lymphoid tissue and peritoneum, 
but the content in the bone marrow is limited under physio
logical conditions [60]. According to the expression of CD4 
and CD8, cluster 31 and cluster 15 are considered to be CD3 
+ CD4-CD8- T cells (double-negative T cells, DNTs) 
(Supplementary Figures 4B&5A) [61]. According to the dif
ference between CD45RA and CD27, they are identified as 
DNTs (CD45RA-CD27mid) and DNTs (CD45RA 
+CD27high) (Fig. 5C). Their differences are mainly reflected 
in the degree of differentiation and activation.

Another example is that CITEMO multimodal omics iden
tifies three states of effector CD8 + T cells based on the 
changes of CD45RA and CD27 (Fig. 5D, Supplementary 
Figures 4B&5A) [62,63]. CD45RAhighCD27mid, 
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CD45RAmidCD27mid, CD45RAmidCD27high mean that 
these three groups of cells are at different activation levels. 
This division plays a certain auxiliary role in analysing how 
effector CD8 + T cells exert their physiological functions. 
Similarly, clusters 13, 20, and 29 are identified as CD8+ effec
tor T cells by Seurat (Figs. 5A&5B). CITEMO multimodal 
omics classifies that cluster 13 is CD45RAhighCD27mid, clus
ter 20 is CD45RAmidCD27mid, and cluster 29 is 
CD45RAmidCD27high, indicating that these three groups of 
cells are at different activation levels (Fig. 5E, Supplementary 
Figures 4B&5A). Compared with Seurat, CITEMO multimo
dal omics further recognizes the status of CD8+ effector 
T cells, which may help to understand how effector 
CD8 + T cells exert their physiological functions and play 
a certain auxiliary role.

CD27 is also a marker of CD4 + T cell activation. 
According to the expression of CD27, memory CD4 + T 
cells are further divided into three states: CD4+ memory 
T (CD27+), CD4+ memory T (CD27-) and CD4+ memory 
T (CD27mid) (Fig. 5F, Supplementary Figures 4B&5A) [64– 
66]. The last example of cell state is CD69. As a signal trans
duction receptor, CD69 participates in the early activation of 
T cells, natural killer cells, monocytes and platelets [67]. CD8 
+ naive T are divided into CD8+ naive T (CD69-) and CD8 
+ naive T (CD69+) by CITEMO multimodal omics according 
to the different expressions of CD69 (Fig. 5G, Supplementary 
Figures 4B&5A) [68]. This classification allows a more effi
cient differentiation of different activation states of immune 
cells and thus a more detailed description of human 
immunity.

Figure 5. Multimodal omics analysis of HBMC samples. (A, B) UMAP visualizations of clustering results in HBMC sample with annotation of cell clusters analysed by 
CITEMO (A) and Seurat v4 (B), respectively. (C) The ADT abundance distributions of CD27 (Orange) and CD45RA (green) for DNT cells, giving two different states of 
DNT cells identified. (D) The ADT abundance distributions of CD28 (light green) and CD57 (blue) for CD8+ Memory T cells, giving two different states of CD8 
+ Memory T cells identified. (E) The ADT abundance distributions of CD27 (Orange) and CD45RA (green) for CD8+ Effector T cells, given three different states of CD8 
+ Effector T cells identified. (F) Different abundance distributions of CD27 ADT in CD4+ Memory T cells. (G) The box plots of different abundances of CD69 ADT in CD8 
+ Naive T cells, and (H) the box plots of the different abundances of CD45RA ADT in Treg cells, indicating the different cell subtypes. (I) Co-expression of CD3 and 
CD19 in Circulating B-T complex with the co-expression entropy of En = 0.16.
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It is worth noting that CITEMO multimodal omics can 
discover new cell subtypes and recognize the cell states. 
Both Seurat and CITEMO multimodal omics identify Treg 
cells [69]. However, different to Seurat, CITEMO multi
modal omics can further divide CD45RA into memory 
Treg and naïve Treg (Fig. 5H, Supplementary 
Figures 4B&5A) [70]. We also find the circulating 
B-T complex in HBMC samples (Fig. 5I, Supplementary 
Figures 4B&5A). These results suggest that CITEMO multi
modal omics can better recognize the cell states of cell 
subtypes than Seurat.

The integrating utility of CITEMO multimodal omics

The utility of CITEMO multimodal omics is essentially 
derived from its low-dimensional representation with PCA, 
which is closely related to the distribution of cell clusters 
(Supplementary Figure 6A&6B). For HBMC data, we select 
the top 30 PCs to represent transcriptome data and the top 18 
PCs to represent ADT data. The PC of multimodal omics 
comes from the integrated projection of these 30 transcrip
tome PCs and 18 ADT PCs in the principal component 
direction, which can represent the heterogeneity of cells [3,6].

To analyse the relationship between the feature and the 
PCs of multimodal omics, we select the feature value with the 
largest variance among all cells as the representative of the 
feature. We find that the contribution of the first 18 PCs of 
multimodal omics mainly comes from ADT PC, and the 
contribution of the following 12 PCs of multimodal omics 
mainly comes from transcriptome PC (Supplementary 
Figure 6A).

In PCA transformation, the higher order of the PC 
means the stronger ability to represent features. Just 
because the first 18 PCs of multimodal omics are closely 
related to ADT PCs, CITEMO multimodal omics can iden
tify ADT-related cell states more accurately than previous 
studies [3,6]. Although ADT PCs are closely related to the 
top-ranked PCs of multimodal omics, the number of ADT 
PCs is small and its ability to characterize cell heterogeneity 
is certainly limited. The transcriptome PC can make up for 
this defect by contributing to the following 12 PCs of 
multimodal omics PCs. In addition, we also notice that 
there is a weak correlation between the top-ranked tran
scriptome PC and ADT PC (Supplementary Figure 6C).

Furthermore, we find that the differences in cell subtype 
states are more pronounced at the ADT level than at the 
RNA level (Supplementary Figure 7A&7B). This may be 
due to the fact that the proteins characterized by ADT are 
closer to the cell phenotype than the transcriptome. Thus, 
ADT information in multimodal data is more suitable for 
characterizing the cell states, while the high latitude genetic 
information can identify cell subtypes. CITEMO multimo
dal omics combines these advantages.

Finally, we evaluate the efficiency of integrating multimo
dal omics data with the same preprocessing steps for 
CITEMO and the previous methods [6]. The PCA-based 
CITEMO framework shows higher running efficiency than 
previous methods (Supplementary Figure 8).

Discussion

Single-cell multimodal omics technology represents an excit
ing frontier in single-cell sequencing. In this study, we pro
pose a single-cell multimodal omics analysis framework, 
called CITEMO, to simultaneously perform single-cell analy
sis of transcriptomic, ADT and multimodal omics. The 
CITEMO framework adopts flexible design principles. We 
believe that excessive processing of biological information 
will inevitably introduce non-biological information, which 
will have an uncontrollable impact on downstream analysis. 
For example, for the same single-cell data, different algo
rithms may produce different results. and the CITEMO fra
mework applies the same analysis method for different modal 
data, which can effectively avoid the introduction of these 
factors.

In the data preprocessing stage, we only use the simplest 
logarithmic normalization to process the transcriptome data. 
This strategy helps to preserve true biological differences. 
Similarly, considering that it is controversial whether needs 
to supplement single-cell transcriptome data [71], CITEMO 
does not have a process for supplementing transcriptome 
data. For ADT data, we refer to the processing method of 
Stoeckius et al [27]. Compared with transcriptome data, ADT 
data have a larger data range and have no sparsity problem. 
To eliminate their differences in the data range, we implement 
MinMaxScale to scale the transcriptome and ADT data to the 
range of 0 to 1, respectively. Then the transcriptome and ADT 
data are reduced by the PCA algorithm to obtain their low- 
dimensional representations, respectively. Previous studies 
have shown that PCA has the ability to extract features of 
transcriptome and ADT data [3,4,6].

In this study, we use PCA to integrate transcriptome and 
ADT data. According to the principle of PCA, it maps the 
combined features of the transcriptome and ADT to the 
orthogonal feature space and extracts the feature projection 
of the principal component direction with the greatest differ
ence. PCA can overcome the extensive technical noise in any 
single feature of single-cell data. Each PC represents 
a collection of features. Usually, selecting more PCs means 
introducing more information for downstream analysis. 
However, selecting more PCs may also introduce noise for 
downstream analysis, which is contrary to our original inten
tion of using PCA. In this study, we use the elbow method to 
select the number of PCs (refer to ‘Dimensionality reduction 
of genes’ in ‘Materials and Methods’). Both the dimensionality 
reduction of single-cell transcriptomics and the integration of 
multiple omics use the PCA algorithm to further avoid errors 
introduced by algorithm differences. The analysis results of 
CBMC samples show that the multiple omics integrated by 
PCA can cover the heterogeneous information of single 
omics. Furthermore, the analysis of HBMC samples implies 
that, compared to the previous methods [6], the implementa
tion of PCA in the CITEMO framework to integrate multiple 
omics data can effectively capture the heterogeneity of cell 
states and subtypes. Moreover, the parameters of PCA are 
easy to set and have a wide range of practical values. In 
short, the CITEMO framework can successfully analyse the 
single-cell multimodal omics data.
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It is worth noting that during the analysis of CBMC sam
ples, we find some ADTs with specific co-expression. To 
better observe these specific co-expression behaviours, we 
propose the four-quadrant probabilities to quantitatively 
describe the double-positive state, the single-positive/single- 
negative state and the double-negative state of cell ADT dis
tributions. With the help of quadrant probabilities, we suggest 
that the co-expression ADTs may play an important role in 
immunity and disease development.

For example, in the CBMC samples, we find a type of DP 
T cell, showing a co-expression of the double-positive state of 
CD4 and CD8. They are susceptible to viral activation and 
clearance and play important roles in many diseases such as 
HIV and cancer [72]. Recently, JG et al. found that DP cells 
decreased significantly with the severity of the disease for the 
COVID-19 patients in 4–7 days [73], which implies that DP 
T cells have potential to become the target in the treatment of 
early COVID-19 patients. Another example is about the 
T-B conjugates, showing a co-expression of the double- 
positive state of CD4 and CD19. Zhang et al. noted that the 
special CD4+ CD19+ conjugates are more likely to bind to the 
HIV-1 virus compared with the regular CD4 + T cells, and so 
their number and percentage both decrease with the progress 
of HIV-1 disease [54]. This implies that the CD4+ CD19 
+ conjugate cells may be one of the targets for testing and 
treatment of HIV-1 disease symptoms.

In addition, we introduce co-expression entropy for high 
throughput mining of ADT co-expression for each cluster 
of cells. If a cluster of cells is distributed in one quadrant 
only in a 2-dimensional ADT plane, the corresponding co- 
expression entropy is close to zero. When the cells are 
distributed evenly in four quadrants in a 2-dimensional 
ADT plane, the co-expression entropy approaches 1, imply
ing that the division of cell clusters may be unreasonable, 
and there may be multiple types of cells inside the cell 
clusters. The application of co-expression entropy and four- 
quadrant probabilities can help us to quickly identify the 
status of the double-positive, single-positive/single-negative, 
or double-negative co-expression and the cell subtypes. 
With more ADT detected, we believe that the co- 
expression entropy and the quadrant probabilities may 
become an important index for cell subtype state 
recognition.

Most single-cell analysis methods only focus on the cell 
subtypes. However, cell subtypes do not provide a complete 
picture of cellular heterogeneity. Cells with the same subtype 
may have different cellular states, and they are closely related 
to cellular functions, especially in disease development. ADT 
can provide reliable information about the state of the cell. 
This implies that the ADT modality information may be more 
important in multimodal omics analysis. Unfortunately, the 
cost of measuring ADT is very high, which results in very few 
types of ADT information. After integrating the transcrip
tome and ADT modalities, CITEMO cannot only find more 
cell subtypes but also identify more cell states than previous 
methods [3].

Essentially, CITEMO maps the linearly reduced transcrip
tome features and linearly reduced ADT features to a new linear 

subspace through PCA. This method has three advantages. 
First, we use linear methods to extract important components 
between transcriptome features and ADT features, which makes 
the integrated multi-modal data have a better correspondence 
with the two types of features. Second, our integration model is 
adjustable and only the number of selected PCs needs to be 
adjusted. Finally, our method is more efficient than previous 
studies (Supplementary Figure 8), and can be widely used in 
large-scale data integration.

Although CITEMO is a powerful single-cell multimodal 
omics analysis framework, the current version of CITEMO 
is only suitable for integrating multimodal omics data col
lected by CITE-Seq/REAP-Seq. The analysis process of the 
CITEMO framework is optimized for CITE-Seq/REAP-Seq. 
We cannot guarantee that CITEMO is applicable to data 
collected by other single-cell multimodal omics experimental 
techniques. With the development of single-cell multimodal 
omics experimental technology, we will be compatible with 
a wider range of single-cell multimodal omics experimental 
technologies in the future.

Conclusion

In short, CITEMO is a reliable single-cell multimodal omics 
analysis framework, which can reveal immune cell heteroge
neity with wide applicability. CITEMO can be easily applied 
for large sample analysis with excellent robustness. With the 
development of multimodal omics sequencing technology, 
more and more multimodal omics data are accumulated, 
thus the CITEMO multimodal omics analysis may play an 
important role in future biomedical research.

Materials and Methods

CITEMO can simultaneously output the analysis results of 
transcriptome, ADT and multimodal omics. First, we intro
duce the process of CITEMO to analyse the transcriptome 
and ADT data separately. Next, we explain how CITEMO 
integrates multimodal omics data. Finally, we describe the 
downstream analysis methods of single cells involved in this 
study.

Datasets

In this study, two datasets, CBMC [27] and HBMC [3] are 
involved to evaluate the performance of CITEMO. The 
CBMC dataset contains 8617 cells in which the single-cell 
transcriptome measurements were paired with abundance 
estimation of 11 types of immune-related ADT. To test the 
sensitivity of CITE-seq technology, Stoeckius et al. mixed 
a small part of 3T3 and 4T1 Mouse cells in umbilical CBMC 
[27], which raises the difficulty for downstream analysis. 
Therefore, they removed these Mouse cells beforehand during 
the data analysis. In particular, the true single-cell raw data 
environment is extremely complex. Thus, it is not possible to 
fully guarantee that the tissue samples obtained in the experi
ment are pure. To further assess the ability of CITEMO, 
another data set, HBMC, which includes 30,672 scRNA-seq 
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profiles and 25 antibodies from Bone Marrow [3], is also used 
for discussion in the paper. In addition, we download 4 
multimodal omics data sets from the 10X webpage to evaluate 
the efficiency of integrating multimodal omics data.

Gene screening strategy

We introduce the analysis steps of the CITEMO transcrip
tome by using the CBMC sample as an example. Because 
CBMC is mixed with mouse cells, we pre-screen the top 100 
mouse genes with the largest coefficient of variation.

Due to the low mRNA copy initiation per cell of sequen
cing technology, the sequencing data of single-cell transcrip
tome usually suffer from the dropout phenomenon that 
many expressed mRNAs are not captured, resulting in zero 
or near-zero gene expression detected. Although various 
noise reduction methods for single-cell transcriptome data 
have been developed to remove the deletions, there is no 
guarantee that the single-cell transcriptome data reflect the 
true cellular state after the noise reduction [36,37,74]. 
Recently, Svensson et al. suggested that the excess of zero 
values in transcriptome data may be attributed to the biolo
gical variation rather than the technical defects [71]. The only 
thing that can be determined is that the highly expressed 
genes are relatively reliable. As a result, we consider 
a feature gene screening strategy by using the relatively 
highly expressed genes only for the downstream analysis. 
This strategy avoids the zero or near-zero impact and ensures 
the reliability of the screened genes.

In this study, we denote the transcription profile by, and 
define two indexes of total gene expression T and sparsity SP 
to measure the reliability of genes, which are given by

MI�J ¼ mij
� �

(1)  

TMi ¼
X

j
mij (2)  

SPMi ¼
X

j
1 � δ0;mij

� �
(3) 

Here as shown in Eq. 1, represents the gene-cell matrix ele
ment, in which is the value of transcription profile, also called 
UMI, i the index of the gene, and j the index of the cell, also 
called barcode. M represents a single-cell transcriptome 
matrix, which has I genes and J cells. Eq. 2 represents the 
total gene expression of gene i in all cells. Eq. 3 represents the 
sparsity SP of Mi, in which is Kronecker delta. In the CBMC 
data set, we select genes with T greater than 0.01*J and SP 
larger than 0.05*J for downstream analysis. In other words, 
these selected genes are expressed in at least 5% of cells and 
thus the expression level is not too low. HBMC samples are 
done by similar treatment with T greater than 0.01*J and SP 
greater than 0.01*J. These selected genes are less likely to 
suffer the dropout and are more reliable.

Single-cell transcriptome normalization

In scRNA-seq, due to the limited molecular weight of the 
initial transcription in each cell, the capture and amplification 
efficiency of transcripts have technical differences, and so it is 
difficult to ensure a high degree of consistency in library 
preparation between samples. This also causes the system 
differences in the sequencing data of multiple samples due 
to different library sequencing coverage. To eliminate these 
discrepancies, the normalization process is carried out for the 
sequencing data. In this study, the following simple method is 
applied to perform data normalization,

XRNAij ¼ log 1þmij
� �

(4) 

where is the normalized transcriptome data. Since m is very 
likely to be 0, it is necessary to add 1 to all transcriptome data 
for logarithm transformation.

Range rescale of transcriptome data

The range of the normalized transcriptome data is still uncer
tain, which will affect the accuracy of downstream analysis. 
Therefore, the following rescaled process, i.e. MinMaxScaler, 
is applied to rescale the normalized transcriptome data to the 
range of 0 to 1,

XScaled RNAij ¼
XRNAij � min XRNAið Þ

max XRNAið Þ � min XRNAið Þ
þmin XRNAð Þ (5) 

Here, denotes the rescaled value of the i-th gene in the j-th cell. 
min XRNAið Þ and max XRNAið Þ represent the minimum and max
imum of the i-th gene in the XRNA across all cells, respectively, 
while min XRNAð Þ is the minimum of all the elements in XRNA.

Dimensionality reduction of genes

For a given transcriptome dataset, many genes do not provide 
useful information and mostly contain only zero counts. Even 
after filtering out these zero-count genes in the quality control 
step, the feature space of the dataset may exceed 10,000 
dimensions. To reduce the computational burden of down
stream analysis, to reduce noise in the data and also to facil
itate data visualization, the common principal component 
analysis (PCA) is applied to reduce the dataset dimensionality. 
PCA can well explain the heterogeneity of the single-cell 
transcriptome [3,6,75]. The PCA-treated transcriptome data 
are noted as.

XPCA RNA ¼ PCA XScaled RNAð Þ (6) 

Here, the dimension of matrix XPCA RNA is k by J, in which the 
parameter k of PCA is set by the elbow method [3]. 
Specifically, a histogram of the variance (also known as 
explained variance) of each PC is plotted. The PCs before 
the elbow of the histogram are considered to capture most 
of the biological variation signals, and they are reserved for 
downstream analysis. The RNA modality data XPCA RNA are 
applied for downstream analysis of the transcriptome, such as 
visualization, differential analysis, and multimodal 
integration.

300 H. HU ET AL.



Processes of CITEMO ADT

Next, we introduce the analysis steps of CITEMO ADT, which 
are very similar to the processes of CITEMO transcriptome. 
The results obtained by CITE-seq also suffer from ADT 
pollution which is similar to that of protein fluorescence 
staining. In CBMC samples, three antibody-oligonucleotide 
conjugates of CCR7, CCR5 and CD10 did not specifically 
bind to proteins (i.e. no background signal threshold) [27]. 
For these potentially contaminated ADTs, we directly delete 
them from the preprocessing for CBMC samples, while we do 
not remove the low-quality ADT for HBMC samples.

In this study, we denote the ADT profile by QK�J ,

QK�J ¼ ðqkjÞ (7) 

where Q represents ADT abundance matrix with K types of 
ADT and J cells, qkj represents ADT matrix element with q for 
the abundance of ADT, k the index of the ADT, and j the 
index of the cells.

Then the following centred logarithmic ratio (CLR) trans
formation is applied to obtain the normalized ADT 
data XADT ,

XADTk ¼ ln
qk1

g qkð Þ

� �

; ln
qk2

g qkð Þ

� �

; ln
qk3

g qkð Þ

� �

; . . . ; ln
qkJ

g qkð Þ

� �� �

(8) 

which represents the CLR transformation of the k-th ADT 
with g the geometric mean.

Similar to the processes of the transcriptome, after ADT is 
normalized, the following rescale process with MinMaxScaler 
and PCA dimensionality reduction is also performed to 
obtain the heterogeneity of ADT samples,

XScaled ADTkj ¼
XADTkj � min XADTkð Þ

max XADTkð Þ � min XADTkð Þ
þmin XADTð Þ (9)  

XPCA ADT ¼ PCA XScaled ADTð Þ (10) 

The ADT modality data XPCA ADT are applied for downstream 
analysis of ADT, such as visualization, differential analysis, 
and multimodal integration.

Processes of CITEMO multimodal omics

Since transcriptomic modality and ADT modality data possess 
different statistical and biological characteristics, we need an 
effective method to achieve multimodal integration.

First, in order to eliminate the difference in the data range 
of the transcriptome modality and ADT modality, the 
MinMaxScaler process is executed again on XPCA RNA and 
XPCA ADT respectively to obtain a new matrix XMultimodal Omic 
with values ranging from 0 to 1,

XMultimodal Omic ¼
MinMaxScaler XPCA RNAð Þ

MinMaxScaler XPCA ADTð Þ

� �

(11) 

Then, the PCA dimensionality reduction operation is per
formed on XMultimodal Omic to obtain the heterogeneous 

representation XPCA Multimodal Omic from the perspective of 
multimodal omics,

XPCA Multimodal Omic ¼ PCA XMultimodal Omicð Þ (12) 

As a result, similar to XPCA RNA, and XPCA ADT , the multi
modal omics XPCA Multimodal Omic are applied to the down
stream analysis of multimodal omics.

Single-cell visualization

For high-throughput single-cell omics data, visually displaying 
the characteristics of cell data is a very important task. In this 
study, the uniform manifold approximation and projection 
(UMAP) algorithm is used to visualize the distribution of sin
gle-cell data on a two-dimensional plane, which is based on the 
theoretical framework of Riemannian geometry and algebraic 
topology [76]. At present, many single-cell analysis methods 
apply UMAP instead of t-SNE as a new visualization choice.

Cell clustering algorithm

Single-cell clustering is always an important work in the field 
of single-cell analysis, which allows us to infer the identity of 
cells. PhenoGraph is applied as the clustering method in 
CITEMO framework, which uses the Leiden algorithm as an 
emerging clustering method designed specifically for single- 
cell data [77,78]. Especially, PhenoGraph is optimized for the 
clusters with broken links in Leiden clustering distribution, 
giving a more reasonable clustering result with more 
subpopulations.

Differential analysis

The null hypothesis of differential gene analysis is that the 
overall gene expression values of the two groups of cells have 
the same distribution. However, since these two clustering 
groups are obtained based on the clustering results of gene 
expression changes, their gene expression profiles must be 
essentially different. Then, the possible differential types of 
cells are judged based on the gene expression profile combin
ing with the prior biological experience. In our study, 
Wilcoxon signed-rank test is used for differential gene analy
sis [79], which is a nonparametric test to determine whether 
the two dependent samples are selected from the populations 
in the same distribution. We also perform the same difference 
analysis on ADTs data. Similar to the difference analysis at the 
gene level, the difference analysis of ADTs can detect the type 
of ADT specifically expressed in each cell cluster. Through 
differentially expressed genes and ADT, researchers can infer 
the possible cell types of each cell cluster based on biological 
experience.

Co-expression entropy

For a given cluster of cells obtained by CITEMO multimodal 
omics, the distribution of any ADT can be calculated. Because 
the abundance of ADT is normalized to the scale of 0 to 1, we 
consider 0.5 as the threshold (i.e. Θ ¼ 0:5) to distinguish the 
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high and low ADT expression in the distribution. Practically, 
this threshold can be adjusted on-demand. As a result, two 
probabilities can be defined as follows,

PH ADTð Þ ¼
NADT�Θ

Ncluster
(13)  

PL ADTð Þ ¼ 1 � PH ADTð Þ (14) 

Here Ncluster represents the cell number in the given cluster, 
and NADT�Θ represents the cell number with a high ADT 
expression.

Then, the 2-dimensional distribution at the plane of any two 
different ADTs, e.g. ADT1 and ADT2, can be discussed for 
a given cluster of cells obtained by CITEMO multimodal omics. 
Divided by the threshold Θ, four quadrants can be defined in the 
2-dimensional plane of ADT1 and ADT2. Then, for a cluster of 
cells distributed on such 2-dimensional plane, one can observe 
the proportions of the double-positive co-expression of cells with 
ADT1 � Θ and ADT2 � Θ in the first quadrant, the single- 
positives and single-negative co-expression of cells with ADT1 �
Θ and ADT2<Θ, or with ADT1<Θ and ADT2 � Θ, the dou
ble-negative co-expression of cells with ADT1<Θ and 
ADT2<Θ in the third quadrant. Quantitatively, one can define 
the quadrant probabilities Pi (i = 1,2,3,4) to represent the propor
tions of cells distributed in each of four quadrants. For example, 
the probability P1 in the first quadrant is defined as follows,

P1 ¼
NADT1�Θ&ADT2�Θ

Ncluster
¼ PH ADT1ð Þ � PH ADT2ð Þ (15) 

Here NADT1�Θ&ADT2�Θ represents the cell number in the first 
quadrant. Similarly, we have P2 ¼ PL ADT1ð Þ � PH ADT2ð Þ, 
P3 ¼ PL ADT1ð Þ � PL ADT2ð Þ, 
and P4 ¼ PH ADT1ð Þ � PL ADT2ð Þ.

Furthermore, the following co-expression entropy can be 
defined,

S ¼ �
X

4
i¼1Plog4 Pið Þ (16) 

In our simulation, if Pi = 0, a very small number, such as 10−6, 
is considered to replace zero in order to avoid the logarithm 
calculation of zero. The co-expression entropy is closed to 
zero if a cluster of cells are distributed in one quadrant only in 
the 2-dimensional ADT plane, while S ¼ 1 can be obtained 
when the cells are distributed randomly in four quadrants.
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