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Abstract

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from
genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on
four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene
and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome
sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based
protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a
reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of
microbiomes using long-read sequencing data.

Key words: third-generation sequencing; long reads; Oxford Nanopore Technologies; hybrid assembly; functional omics;
meta-omics

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://doi.org/10.1093/bib/bbab330
http://orcid.org/0000-0002-4541-427X
http://orcid.org/0000-0001-7559-3400
http://orcid.org/0000-0002-3356-8562
http://orcid.org/0000-0002-6483-7489
http://orcid.org/0000-0003-2270-2217
http://orcid.org/0000-0002-1402-1254
http://orcid.org/0000-0001-8698-3770
http://orcid.org/0000-0002-6478-2924
http://orcid.org/0000-0002-1100-1282


2 Galata et al.

Background
Third-generation, single-molecule, long-read (LR) sequencing is
considered to be the next frontier of genomics [1], especially
in the context of studying microbial populations [2, 3]. Given
the ability to attain read lengths in excess of 10 Kbp [4] and
continuous sequence accuracy improvements [5], LR sequenc-
ing has been recommended for its ability to resolve GC-rich
regions, complex and repetitive loci, and segmental duplications
in genomes, among others [4]. However, LR applications to study
microbiomes have focused on genome assemblies [6, 7], closing a
select few bacterial genomes [8], haplotype and strain resolution
[9] as well as mock (low diversity) communities [3]. Stewart et al.
[10] recently were among the first to demonstrate the utility
of using LRs for improving upon existing protein databases
owing to a large collection of novel proteins and enzymes iden-
tified, thereby hinting at the benefits of LRs also for functional
microbiome studies.

Single base accuracy of raw LRs remains lower—for now—
compared with short-read (SR) methodologies [11]; however,
Nanopore LR quality is steadily increasing. Several approaches
including assembly based and/or including polishing steps have
been developed [11–13] to increase the reconstruction accuracy.
The impact of remnant errors in LR assemblies on gene calling
and thereby protein prediction was recently highlighted by Wat-
son et al. [14]. Hybrid (HY) assembly methods [15, 16] using both
SRs and LRs have been proposed to further reduce the error rates
compared with LR-only assemblies. Although Watson et al. [14]
showed that insertions/deletions (indels) play a critical role in
microbial protein identification, the overall impact of assembly
methods on understanding the functional potential of microbial
communities is lacking.

Here, we demonstrate that metagenomic assembly
approaches (SR, LR and HY) not only differ markedly in their
overall assembly performance, but also in the inferred functional
potential. We reveal the effects of the assembly approach on
predicted genes and proteins in samples ranging from low to
high diversity, from mock communities to human fecal and
rumen metagenomes. We find proteins which are exclusive to
respective assemblers and demonstrate using metatranscrip-
tomic and metaproteomic data available for the human fecal
sample the synergistic effect on protein verification. Our results
indicate that irrespective of sample diversity, the sequencing
and assembly strategies impact downstream analyses and that
complementary omics are a key for functional analyses of
microbiomes.

Results and discussion

To understand how sample diversity, assembly quality and
assembly approach are linked, we assembled published metage-
nomic (metaG) data from a mock community (Zymo), a natural
whey starter culture (NWC), a cow rumen sample (Rumen)
and a novel metagenomic dataset from a human fecal sample
(GDB). The latter was complemented with metatranscriptomic
(metaT) and metaproteomic (metaP) data. The samples’ diversity
ranged from low (Zymo and NWC) to high (GDB and Rumen).
As expected [10], the assembly approach strongly affected the
quality of the resulting assembly (Supplementary Figure S1).
LR and HY approaches generated fewer contigs with a larger
N50 value, supporting the added value of these approaches
for achieving increased contiguity and decreased redundancy,
thereby also improving the recovery of metagenome-assembled

genomes [8]. However, other assembly metrics, e.g. the total
assembly length, varied between the samples and assembly
types. The metaG read mapping rate (including multi-mapped
reads), as a proxy of data usage, was unaffected by the assembler
choice when considering all contigs, though the values for the
LR assemblies were a bit lower than for SR or HY assemblies
of the high-diversity samples (GDB and Rumen). However, the
mapping rates dropped markedly in SR assemblies, especially
in NWC and Rumen, when filtering out contigs below 5000 bp
(Supplementary Figure S2). In GDB, we observed higher metaT
read mapping rates in SR and HY assemblies than in LR assem-
blies. This indicates the complementarity of SR and LR data. The
mapping rates decreased considerably in SR assemblies when
removing short contigs (Supplementary Figure S3), suggesting
the presence of expressed genes located on these contigs. This
demonstrates the loss of information when contigs below a
certain threshold are removed, which is frequently done in
metagenomic studies.

Comparing assemblies pairwise, we observed higher dissim-
ilarities between the LR and SR/HY assemblies than within
the latter groups. In addition, OPERA-MS-based HY assemblies
clustered together with the SR assemblies on which they were
based (Supplementary Figure S4). To assess functional potential
overlap between the different assembly approaches, we studied
the proteins found in the individual metagenomes. The overall
number and quality of predicted proteins was highly influ-
enced by the assembly approach. In highly diverse metagenomes
(GDB and Rumen), the total number of proteins in SR and HY
assemblies was higher (by a factor of up to 3.67) than in LR
assemblies (Figure 1i). However, throughout all samples, the SR
and HY approaches produced more partial proteins [incomplete
coding sequence (CDS)]. Since SR and HY assemblies may be
more fragmented, the polished LR assemblies may have led
to an improved recovery of genes. We clustered the predicted
protein sequences and found a considerable number of proteins
exclusive to individual assemblies. We also found proteins that
were shared within a subset of the assemblies only, and that
increased sample diversity resulted in an overall increase in the
number of exclusive proteins (Figure 1ii).

As reported previously by Watson et al. [14], errors in LR
assemblies can have an impact on the predicted proteins. To
evaluate how the sample diversity might affect this, we mapped
the predicted proteins against the UniProtKB/TrEMBL nonredun-
dant (nr) protein database and computed the query-to-subject
length ratio [10]. In all cases, the density distribution of the
ratio values had two peaks (below 0.5 and around 1), though
the differences between the assembly methods varied across
the samples (Supplementary Figure S5). Considering the above
findings and despite multiple rounds of polishing, we cannot
disregard the impact of (remnant) errors in LRs affecting the
results. Furthermore, the results may also be affected by the
sequencing depth and gene prediction methods. One also has
to account for the microbial composition per sample, given that
a large proportion of proteins from the Rumen sample might not
have homologs within the UniProtKB/TrEMBL nr database.

Due to the differences in annotations, which we found to be
exclusive to individual assembly approaches, we subsequently
studied the effect of assembler choice on two well-defined,
functionally relevant classes of genes: ribosomal RNA (rRNA) and
antimicrobial resistance (AMR) genes. Overall, the total num-
ber of rRNA genes recovered by LR and HY approaches was
higher across all samples. Within the archaeal and bacterial
domains, LR and HY assemblies led to the prediction of more
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Figure 1. Discrepancy and uniqueness of predicted proteins in assemblies. (i) Number of proteins (total and partial) predicted by Prodigal in each assembly and sample.

The color corresponds to the metagenomic assembly approach. (ii) Number of shared predicted proteins which were clustered using MMSesq2 per sample. Each protein

cluster was labeled by the combination of assembly tools represented by the clustered proteins (i.e. the assembly where these proteins originated from). The depicted

number of shared proteins per assembly tool combination is the total protein count over all associated clusters. Top 20 combinations are shown. The number of proteins

found in clusters representing all assembly tools is highlighted in red; the number of proteins exclusive to an assembly is highlighted in orange.

complete genes compared with SR (Supplementary Figure S6).
Our findings are in line with Overholt et al. [17] and Xie et al. [18],
who reported improved recovery and contiguity of rRNA genes,
and improved gene completeness, respectively. When analyzing
AMR proteins and focusing only on ‘strict’ hits (i.e. excluding
loose hits flagged as ‘nudged’ by the Resistance Gene Identifier
(RGI) tool, see Methods), HY assemblers were more adept at

reconstructing these proteins compared with either SR or LR.
Moreover, LR assemblies contained more ‘nudged’ hits than SR
or HY assemblies, suggesting that error rates or other factors
might have affected the reconstruction of some AMR genes
(Figure 2i). Interestingly, we did not identify any AMR hits in the
NWC metagenome, possibly due to it being a food-grade additive
[19]. When comparing the overlap of the Antibiotic Resistance

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab330#supplementary-data


4 Galata et al.

Figure 2. Assembly effects on antimicrobial resistance gene identification. (i) Number of hits (‘all’, ‘strict’ and ‘nudged’) for each assembly and sample when searching

the assembly proteins in the CARD database using RGI. The NWC sample is not shown because no hits were found in any of its assemblies. ‘Nudged’ hits are loose hits

(distant/incomplete homolog) flagged as such by RGI; the remaining hits are ‘strict’ hits. (ii) Number of Antibiotic Resistance Ontologies (AROs), which were covered by

‘strict’ RGI hits by different assemblies per sample. The bar plot shows the number of shared AROs per assembly tools combination. (iii) Metatranscriptomic (metaT)

coverage of the two coding sequences (CDSs) from the long-read (LR) assembly constructed with Flye and having a ‘nudged’ RGI hit to ARO 3004454 (a chloramphenicol

acetyltransferase) in the GDB sample. The x-axis represents the contig coordinates and the y-axis the metaT coverage. The amino acid sequence of the two CDSs and

the ARO is included in the plot.

Ontology (ARO) terms covered by ‘strict’ hits, we found that some
AROs were only identified in SR and HY assemblies, but not in LR,
whereas no AROs were found in LR assemblies only (Figure 2ii).

To validate the exclusive AROs found in SR and HY assem-
blies, we assessed metaT and metaP coverage of the corre-
sponding genes and proteins in the GDB sample. The genes
mapping to the exclusive AROs had an average metaT coverage
above 14× in the SR and HY assemblies, suggesting that these

genes are expressed in situ; the few ‘nudged’ hits were below
6× (Supplementary Table S1). However, we did not identify these
genes in the metaP data potentially due to low expression levels,
variation in extraction protocols or posttranslational modifi-
cations affecting the peptide/proteomic recovery. Though no
‘strict’ hits were found in LR assemblies, some of their ‘nudged’
hits had an average metaT coverage above 10×. To understand
why these seemingly expressed genes obtained only a partial

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab330#supplementary-data
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hit, we focused on two ‘nudged’ hits assigned to ARO 3004454
(a chloramphenicol acetyltransferase) in the LR assembly con-
structed with Flye. We found that the CDSs were located on
the same contig and had an overlap of 29 bp. The sequence
alignments showed that the respective genes represent two
fragments of the true CDS (corresponding to ARO 3004454) most
likely created by an indel, which introduced a frameshift and
also a premature stop codon. This finding was also supported
by the metaT coverage extending beyond the stop codon of the
first CDS until the end of the second CDS with a single drop in
coverage before the putative indel (Figure 2iii). In both the SR and
HY assembly approaches, ARO 3004454 obtained a ‘non-nudged’
hit, indicating a potentially complete gene sequence.

To identify high-confidence proteins without the need for
a reference, we first considered proteins and protein clusters
found in all assemblies, which represented 22.97% of the
proteins and 8.54% of the protein clusters. These included
genes reconstructed by the different and independent assembly
approaches, thus lending mutual support. We then used the
complementary metaT data and included all additional proteins
with an average metaT coverage ≥10× and the corresponding
protein clusters. This doubled the number of high-confidence
protein clusters (17.63%) and increased the percentage of
high-confidence proteins to 30.32%.

Conclusions
We show how the assembler choice but also the assem-
bly strategy or polishing strategy can affect metagenomic
reconstruction results when using SR and LR data. The LR
assembly approaches studied herein include polishing using
SR and LR, whereas the HY assembly approaches construct an
initial SR assembly graph, followed by graph traversal using LR
and subsequent polishing using SR sequencing data. This dis-
tinction is important due to recent developments which leverage
LR and SR reads together for the assembly. Furthermore, owing
to the existence of established benchmarks [20] for SR/LR/HY
assemblers, our analyses specifically address the influence of
assemblies on functional discrepancies, which remain under-
studied thus far. Here, we reveal that sample diversity, along with
assembly-mediated effects influence the prediction of genes
and proteins. This causes discrepancies between the assemblies,
thereby highlighting the potential for complementary means to
validate these predictions. The observed discrepancies included
conserved and also functionally relevant genes (rRNA and
AMR genes, respectively), potentially impacting phylogenetic as
well as functional studies. Besides software-driven differences,
e.g. assembler choice, the extent of the differences in the
metagenomic reconstruction approaches will also depend on
associated costs and the thus achievable sequencing depth [21],
complexity/composition of the sample and other factors, such as
DNA extraction approaches [22], or library preparation methods
[23], especially for low-abundance organisms. In addition to
our newly generated human-borne multi-omic data (GDB), we
used publicly available SR and LR metagenomic data originating
from the same respective sample (Zymo, NWC or Rumen). The
limited number of samples in this study is due to the limited
availability of SR and LR sequence data and do not necessarily
represent the extent of diversities across several metagenomic
datasets. Although few studies exist to date that have published
SR and LR data of the same sample, we expect more datasets
to become available in the future due to the advantages that
LR data brings for metagenomic reconstructions. To evaluate
discrepancies in assembly approaches, we propose a reference-
independent approach to identify high-confidence genomic

reconstructions by combining metagenomic, metatranscrip-
tomic and metaproteomic data. The appropriate coverage of
metagenomic assemblies via metatranscriptomic reads and the
potential presence of peptides mapping to the respective gene
and proteins of interest indicate a validated transcription and
translation, respectively. Overall, we show that the sequencing
approach and assembly strategy can have a significant impact
on the characterization of the microbiome’s functional potential
and demonstrate the added value of multi-omic strategies for
reconstruction quality evaluation, i.e. going beyond their original
purpose, to resolve the functional microbiome.

Materials and methods
Sample origin and collection

The datasets (Zymo, NWC, Rumen) used herein were acquired
from previously published reports regarding the utility of LR
sequencing (Supplementary Table S2), with concomitant SR and
LR sequencing data. The human fecal samples were freshly
collected from a healthy volunteer (GDB) and immediately flash-
frozen in liquid nitrogen. The samples were stored at −80◦C until
they were processed for biomolecular extraction of DNA, RNA
and proteins.

Biomolecular extraction

To obtain high-molecular weight (HMW) DNA, we followed
the protocol proposed recently [8], with minor modifications.
Frozen stool sample was weighed out in triplicates, to 0.7 g and
aliquoted into phase-lock gel tubes (Fisher Scientific, Waltham,
MA), along with a 4 mm stainless steel grinding balls (RETSCH
22.455.0003). The sample was subsequently suspended in 500 μl
phosphate buffered saline (PBS) (Fisher Scientific, Waltham,
MA) with brief gentle vortexing at 10 s intervals repeated five
times. Thereafter, 5 μl of lytic enzyme solution (Qiagen, Hilden,
Germany) was added and the samples were mixed by gentle
inversion six times, and then incubated for 1 h at 37◦C; 12 μl 20%
(w/v) sodium dodecyl sulfate (SDS) (Fisher Scientific, Waltham,
MA) was added followed by 500 μl phenol:chloroform:isoamyl
alcohol at pH 8 (Fisher Scientific, Waltham, MA). The samples
were gently vortexed for 5 s, and then centrifuged at 10 000 g for
5 min. The aqueous phase was decanted into a new 2 ml tube.
Next, the DNA was precipitated with 90 μl 3 M sodium acetate
(Fisher Scientific) and 500 μl isopropanol (Fisher Scientific). After
slowly inverting three times, samples were incubated at room
temperature for 10 min, followed by centrifugation for 10 min
at 10 000 g. The supernatant was removed, and the pellet was
washed twice with freshly prepared 80% (v/v) ethanol (Fisher
Scientific). Washing was done by adding 1 ml of 80% EtOH,
followed by centrifugation for 10 min at 10 000 g. The pellet
was then air dried with heating for 10 min at 37◦C or until
the pellet was matte in appearance, and then resuspended in
100 μl nuclease-free water (Ambion, ThermoFisher Scientific,
Waltham, MA). To the pellet, 1 ml Qiagen buffer G2, 4 μl Qiagen
RNase A at 100 mg/ml and 25 μl Qiagen Proteinase K were
added. The samples were then gently inverted three times and
incubated for 90 min at 56◦C. After the first 30 min, pellets
were dislodged by a single gentle inversion. During the 90 min
incubation, one Qiagen Genomic-tip 20/G column per triplicate
sample was equilibrated with 1 ml Qiagen buffer QBT and
allowed to empty by gravity flow. Samples were gently inverted
twice, applied to columns and allowed to flow through. Three
stool extractions (triplicates for each sample) were combined
per column. Columns were then washed with 3 ml Qiagen buffer
QC, where 1 ml of QC buffer was added each time and allowed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab330#supplementary-data
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to drain the column. Next, the column was placed in a new
sterile 1.5 ml Eppendorf tube and the DNA was then eluted
with 1 ml of Qiagen buffer QF prewarmed to 56◦C. The eluted
DNA was then precipitated by addition of 700 μl isopropanol and
incubated at room temperature for 10 min, followed by inversion
and centrifugation for 15 min at 10 000 g. The supernatant was
carefully removed by pipette, and pellets were washed with
1 ml 80% (v/v) ethanol (washing = add 1 ml EtOH, centrifuge
for 10 min at 10 000 g). Residual ethanol was removed by air
drying 10 min at 37◦C, followed by resuspension of the pellet
in 100 μl water overnight at 4◦C without agitation of any kind.
The pooled sample was quantified using the Qubit Broad-
Range DNA concentration kit and was estimated at 323.35 ng/μl
with an OD260/280 = 1.85. The extracted HMW DNA was used
for both SR and LR sequencing. RNA was extracted from an
aliquot of the same fecal sample using PowerMicrobiome RNA
isolation kit (cat. no. 26000-50, MoBio) as suggested by the
manufacturer. For the protein extractions, a modified protocol
based on a previously established sequential extraction method
[24] was used. Briefly, proteins were precipitated by adding one
volume of All-Prep Protein (APP) Buffer to the flow-through
from an independent RNA purification, followed by mixing and
incubation for 10 min at room temperature. After incubation,
the mixture was centrifuged for 10 min at 12 000 g and the
pellet was washed twice in 70% ethanol, with 1 min centrifuge
cycles at 12 000 g, and dried at room temperature for 7 min after
removing excess ethanol. The pellet was then dissolved in 100 μl
ALO buffer and incubated for 5 min at 95◦C. After complete
dissolution and denaturation of the protein, the sample was
cooled to room temperature and centrifuged for 1 min at 12 000
g, from which the supernatant was collected for downstream
protein analysis.

Sequencing

SR sequencing

The DNA sample was subjected to random shotgun sequencing.
The sequencing library was prepared using KAPA HyperPlus Kit
(cat. no. 07962401001, Roche) for the GDB fecal sample using
the protocol provided with the kit. Enzymatic fragmentation
time was 15 min to aim for 350 bp average size. There was
no additional polymerase chain reaction amplification of the
prepared library.

RNA sample for metaT analysis was subjected to rRNA deple-
tion using the QIAseq FastSelect 5S/16S/23S kit (cat. no. 335921,
Qiagen) for the GDB fecal sample. Library preparation of rRNA-
depleted RNA was done using TruSeq Stranded mRNA library
preparation kit (cat. no. 20020594, Illumina) according to the
protocol provided by the manufacturer with the exception of
omitting the initial steps for mRNA pull down.

Both metaG and metaT libraries were quantified using Qubit
HS assay (Invitrogen) and their quality was assessed on a Bio-
analyzer HS chip (Agilent). We used the NextSeq500 (Illumina)
instrument to perform the sequencing using 2 × 150 bp read
length at the Luxembourg Centre for Systems Biomedicine
(LCSB) Sequencing Platform.

LR sequencing

DNA library for the fecal sample was size selected using AMpure
beads for longer fragments. The DNA was sheared using a G-tube
(cat. no. 520079, Covaris) aiming for 8 kb average size according to
the protocol provided by the manufacturer. Library preparation
for LR sequencing was done using the genomic DNA ligation kit

(SQK-LSK109) according to the protocol provided by the man-
ufacturer using a MinION R9.4.1 flowcell. Once all the library
loaded on the flowcell was finished, the library was reloaded
after either flowcell wash or nuclease flush. In total, the library
was loaded four times to achieve 16 Gbp of sequencing data for
this fecal sample (Supplementary Table S3).

Data analysis

Snakemake (v. 5.18.1) [25] was used to implement the analysis
workflow. We provide a brief description of the most important
steps in the following.

Sequence data preprocessing

Short reads

The raw SRs were trimmed and preprocessed with fastp (v. 0.20.0)
[26] with a minimum length of 40 bp. FastQC (v. 0.11.9) [27] reports
were generated from the processed FASTQ files. MetaT SRs from
the GDB sample were filtered by discarding reads mapping to
rRNA gene references included in the repository of SortMeRNA
[28] (v4.2.0-10-g1358b9b, https://github.com/biocore/sortmerna)
using BBDuk from the BBMap toolkit (v.38.86, kmer length set to
31 bp) [29]. In addition, for the GDB sample, reads mapping to the
human genome (GCF_000001405.38_GRCh38.p12) were removed
using BBDuk (kmer length set to 31 bp, input and output quality
encoding offset set to 33).

Long reads

For each sample except NWC, single-FAST5 files were converted
to multi-FAST5 files using single_to_multi_fast5 from ont-
fast5-api (v. 3.1.5), the resulting files were basecalled using
guppy on a GPU node (v. 3.6.0 + 98ff765, configuration file
dna_r9.4.1_450bps_modbases_dam-dcm-cpg_hac.cfg, disabled
transmission of telemetry pings, chunk size of 1000, 8000
records per FASTQ file) and concatenated into a single FASTQ
file. For NWC, no FAST5 were available and, thus, only the
provided FASTQ file was used for the analysis. Nanostat (v.
1.1.2) [30] reports were created from the FASTQ files using
default parameters. As for the SRs, LRs of the GDB sample
were filtered to remove reads mapping to the human genome
(GCF_000001405.38_GRCh38.p12) using the same parameters.

Metagenomic assembly

Short reads

SR assemblies were done using preprocessed reads and
MEGAHIT or metaSPAdes. MEGAHIT (v. 1.2.9) [31] was run using
default parameters; metaSPAdes (v. 3.14.1) [32] was run using
kmer lengths 21, 33, 55 and 77 bp.

Long reads

LR assemblies were done using Flye and Raven. Flye (v. 2.8.1)
[33] was run by providing the (processed) LRs in a FASTQ file
(input parameter ‘–nano-raw’) and with the flag ‘--meta’. Raven
(v. 1.2.2) [34] was run with default parameters. Assemblies were
polished using LR and SR: one round of Racon (v. 1.4.13) [35]
with LRs using the flag ‘-include-unpolished’ where reads were
mapped to contigs using BWA MEM (v. 0.7.17) [36] with the option
‘-x ont2d’ and processed using samtools (v. 1.9); four rounds
of Racon with SRs using the flag ‘--include-unpolished’ where
reads were mapped to contigs using Burrows-Wheeler Aligner

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab330#supplementary-data
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(BWA-MEM) and processed using samtools; one round of Medaka
(v. 0.8.1) [37] with LRs using the model ‘r941_min_high’.

Hybrid

HY assemblies, i.e. using SR and LR together, were done using
metaSPAdes and OPERA-MS. SPAdes was run with the flag
‘--meta’ and the same k-mer lengths as the SR assemblies by
additionally providing the LRs using the input parameter flag
‘--nanopore’. OPERA-MS (v. v0.8.2-63-gc18b4f3) [15] was run
using paired SRs, LRs and the SR assemblies created by MEGAHIT
and metaSPAdes, respectively, using minimap2 [38] as the LR
mapper. The assemblies were polished by running five rounds
of Racon with SRs as described for the LR assemblies. If not
stated otherwise, only polished contigs were used for the LR and
HY assemblies in the following analysis steps.

Mapping rate and assembly coverage

For the mapping rate, the used reads were mapped back to
the contigs and processed using BWA MEM and samtools in
the same way as described above when polishing the LR and
HY assemblies using Racon. For HY assemblies, both LR and
SR were mapped to the polished contigs and the BAM files
were merged using samtools. For the sample GDB, metaT SRs
were also separately mapped to the (polished) contigs. Mapping
statistics were computed from the BAM files using samtools’
options ‘flagstat’, to determine the number of reads mapping
back to the assemblies, and ‘idxstats’ for per-contig mapping
information. For GDB, metaT per-base coverage was computed
for each assembly from the BAM files using bedtools (v. 2.29.2)
[39] (utility ‘genomecov’ with the parameter ‘-d’).

Assembly annotation

For each sample and assembly, protein prediction was done
using Prodigal (v. 2.6.3) [40] using the option ‘-p meta’; the
keyword ‘partial’ in the headers of the obtained protein FASTA
files was used to distinguish complete and partial proteins.
Known antibiotic resistance factors were searched in the pre-
dicted proteins (after discarding the stop codon symbol ‘∗’ from
the FASTA files) by running RGI (v. 5.1.1) [41] together with the
CARD database (v. 3.1.0) [42] and DIAMOND (v. 0.8.36) [43] for
protein alignments. Loose hits flagged as ‘nudged’ by the tool
were highlighted as such (i.e. as ‘nudged’) in the downstream
analysis.

The tool barrnap (v. 0.9) [44] was run to predict rRNA genes on
assembly contigs using the four provided databases of bacterial,
archaeal, metazoan mitochondrial, and eukaryotic rRNA genes,
respectively. Predictions containing the word ‘partial’ in their
product annotation in the obtained General Feature Format (GFF)
files were considered as partial hits.

Analysis

Assembly statistics were computed by running metaQUAST
(v. 5.0.2) [45] without using any genome references, setting the
minimum contig length to 0 bp and retrieving the statistics
for the contig length thresholds of 0, 1000, 2000 and 5000 bp
subsequently. Per sample, assemblies were compared using
Mash (v. 2.2.2) [46]: sketches were computed per assembly using a
k-mer length of 31 bp and a sketch size of 100 000, and pairwise
distances were then estimated. Per sample, proteins from all
assemblies were clustered using MMseqs2 (v. 12.113e3) [47].
First, a database was created from a concatenated FASTA file

of protein sequences (‘--dbtype 1’). Then, option ‘linclust’ with
default parameters was used to perform the clustering and the
obtained files were converted to tables using option ‘createtsv’.
DIAMOND (v. 0.9.25) [43] with the option ‘blastp’ and default
parameters was used to align the predicted proteins against
the UniProtKB/TrEMBL database (downloaded and created
on 24 August 2019 from http://ftp.uniprot.org/pub/database
s/uniprot/current_release/knowledgebase/complete/, archive
uniprot_trembl.fasta.gz) [48]. The created DIAMOND alignment
archive (DAA) files were converted to tables using option ‘view’
and the parameter ‘--max-target-seqs 1’. When processing the
hits, these were sorted per query and e-value in ascending order
and only the first hit was used. For GDB and metaT, using the
per-base coverage information computed for each assembly,
the average coverage was computed for the corresponding gene
sequences of each predicted protein.

MS/MS acquisition and metaproteomic analysis

One microgram of extracted proteins was denatured and loaded
on a SDS gel to produce one gel band. The reduction, alkyla-
tion and tryptic digestion of the proteins into peptides were
performed in-gel. The tryptic peptides were extracted from the
gel and desalted prior to mass spectrometry analysis. Peptides
were analyzed using a nano Liquid Chromatography-Mass Spec-
trometry/Mass Spectrometry (nanoLC-MS/MS) system (120 min
gradient) connected to a Q-Exactive HF orbitrap mass spec-
trometer (Thermo Scientific, Germany) equipped with a nano-
electrospray ion source. The Q-Exactive mass spectrometer was
operated in data-dependent mode and the 10 most intense pep-
tide precursor ions were selected for fragmentation and MS/MS
acquisition.

For each assembly separately and for all assemblies together,
the FASTA file of predicted proteins was concatenated with a
common Repository of Adventitious Proteins (cRAP) database of
contaminants [49] and with the human UniProtKB Reference
Proteome prior metaproteomic search. In addition, reversed
sequences of all protein entries were concatenated to the
databases for the estimation of false discovery rates (FDRs).
The search was performed using SearchGUI-3.3.20 [50] with the
X!Tandem [51], MS-GF+ [52] and Comet [53] search engines and
the following parameters: trypsin was used as the digestion
enzyme and a maximum of two missed cleavages was allowed.
The tolerance levels for matching to the database were 10 ppm
for MS1 and 0.02 Da for MS2. Carbamidomethylation of cysteine
residues was set as a fixed modification and protein N-terminal
acetylation and oxidation of methionines was allowed as
variable modification. Peptides with length between 7 and 60
amino acids and with a charge state composed between +2
and +4 were considered for identification. The results from
SearchGUI were merged using PeptideShaker-1.16.45 [54] and
all identifications were filtered in order to achieve a protein
FDR of 1%.

Plots

Figures were generated in R (v. 4.0.2, https://www.r-project.org/)
using, inter alia, Pheatmap (v. 1.0.12, https://github.com/raivoko
lde/pheatmap) for heatmap plots, UpSetR (v. 1.4.0) [55] for inter-
section plots, ggplot2 (v 3.3.2) [56] and its various extensions for
other plot types, color palettes from the viridis (v. 0.5.1, https://
github.com/sjmgarnier/viridis) and ggsci (v. 2.9, https://github.co
m/road2stat/ggsci) packages and the patchwork package (v. 1.1.1,
https://github.com/thomasp85/patchwork) for combining plots.

http://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
http://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
https://www.r-project.org/
https://github.com/raivokolde/pheatmap
https://github.com/raivokolde/pheatmap
https://github.com/sjmgarnier/viridis
https://github.com/sjmgarnier/viridis
https://github.com/road2stat/ggsci
https://github.com/road2stat/ggsci
https://github.com/thomasp85/patchwork
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Key Points
• Sequencing and assembly approach affect gene and

protein inference.
• Meta-omics enable critical assessment of

metagenome reconstructions.
• Reference-independent solution which exploits syner-

gies of next-generation and third-generation sequenc-
ing approaches that results in improved integration of
meta-omics data.
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