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Background: Ad26.COV2.S is a well-tolerated and effective vaccine against COVID-19. We evaluated dura-
bility of anti-SARS-CoV-2 antibodies elicited by single-dose Ad26.COV2.S and the impact of boosting.
Methods: In randomized, double-blind, placebo-controlled, phase 1/2a and phase 2 trials, participants
received single-dose Ad26.COV2.S (5 � 1010 viral particles [vp]) followed by booster doses of 5 � 1010

vp or 1.25 � 1010 vp. Neutralizing antibody levels were determined by a virus neutralization assay
(VNA) approximately 8–9 months after dose 1. Binding and neutralizing antibody levels were evaluated
by an enzyme-linked immunosorbent assay and pseudotyped VNA 6 months after dose 1 and 7 and
28 days after boosting.
Results: Data were analyzed from phase 1/2a participants enrolled from 22 July–18 December 2020
(Cohort 1a, 18–55 years [y], N = 25; Cohort 2a, 18–55y, N = 17; Cohort 3, �65y, N = 22), and phase 2 par-
ticipants from 14 to 22 September 2020 (18–55y and � 65y, N = 73). Single-dose Ad26.COV2.S elicited
stable neutralizing antibodies for at least 8–9 months and stable binding antibodies for at least 6 months,
irrespective of age. A 5 � 1010 vp 2-month booster dose increased binding antibodies by 4.9- to 6.2-fold
14 days post-boost versus 28 days after initial immunization. A 6-month booster elicited a steep and
robust 9-fold increase in binding antibody levels 7 days post-boost. A 5.0-fold increase in neutralizing
antibodies was observed by 28 days post-boost for the Beta variant. A 1.25 � 1010 vp 6-month booster
elicited a 3.6-fold increase in binding antibody levels at 7 days post-boost versus pre-boost, with a similar
magnitude of post-boost responses in both age groups.
Conclusions: Single-dose Ad26.COV2.S elicited durable antibody responses for at least 8 months and eli-
cited immune memory. Booster-elicited binding and neutralizing antibody responses were rapid and
robust, even with a quarter vaccine dose, and stronger with a longer interval since primary vaccination.
Trial Registration: ClinicalTrials.gov Identifier: NCT04436276, NCT04535453.

� 2022 Published by Elsevier Ltd.
1. Introduction

Janssen’s COVID-19 vaccine, Ad26.COV2.S [1], has been autho-
rized for prevention of COVID-19 in adults and administered
to > 35 million people worldwide as of November 2021 [2]. A single
dose of Ad26.COV2.S confers durable efficacy lasting 6–8 months
or longer [3] and high efficacy against severe/critical COVID-19,
COVID-19–related hospitalization, and death [4], with variable
but durable efficacy [4] against acquisition and moderate disease
caused by SARS-CoV-2 variants [5,6]. To counteract waning
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immunity and protection, the US Food and Drug Administration
(FDA) recommends boosters after 6 months for 2 two-dose
mRNA-based vaccines [7,8], and after at least 2 months for the
single-dose Ad26.COV2.S vaccine, whose protection has remained
stable [9], to increase overall protection against COVID-19.

To study the immune responses underlying lasting protection
[3] we assessed the durability of immunologic responses after 1
dose of Ad26.COV2.S at a 5 � 1010 viral particle (vp) dose level in
phase 1/2a and phase 2 clinical trial participants [9]. We also eval-
uated humoral immune responses after a 5 � 1010 vp homologous
dose administered 2 or 6 months after dose 1 and after a 4-fold
lower Ad26.COV2.S dose administered at 6 months.
2. Material and methods

2.1. Study participants and immunogenicity assessment

Participants received a single dose of Ad26.COV2.S (5 � 1010 vp;
Janssen Pharmaceuticals) in an ongoing phase 1/2a study
(COV1001, NCT04436276; Cohort 1a, aged 18–55 years; Cohort
2a, aged 18–55 years; Cohort 3, aged � 65 years; Supplementary
Table 1) and an ongoing phase 2 study (COV2001, NCT04535453;
aged 18–55 years and � 65 years; Supplementary Table 2).
Ad26.COV2.S or saline placebo was administered by intramuscular
injection (1 mL in the phase 1/2a study; 0.5 mL in the phase 2
study) into the deltoid muscle. Participants received homologous
Ad26.COV2.S booster doses of 5 � 1010 vp either 2 or 6 months
after dose 1 or 1.25 � 1010 vp 6 months after dose 1 (Supplemen-
tary Tables 1 and 2). Samples collected after a participant experi-
enced a SARS-CoV-2 infection during the study period were
excluded from immunogenicity analyses. Both studies were
reviewed and approved by local/regional ethics committees and
institutional review boards. All participants provided written
informed consent before enrollment. The trials adhere to the prin-
ciples of the Declaration of Helsinki and the International Council
for Harmonisation Good Clinical Practice guidelines.

Spike-binding antibody levels were assessed by an enzyme-
linked immunosorbent assay (ELISA) during a 6- to 9-month
follow-up after dose 1 and following a booster dose 2 or 6 months
after initial vaccination. Neutralizing antibody titers were evalu-
ated by wild-type or pseudotyped virus neutralization assays
(wtVNA or psVNA) in a subset of participants from each study.
Per protocols and amendments, binding antibody geometric mean
concentrations (GMCs) and neutralizing antibody geometric mean
titers (GMTs) were measured periodically after dose 1. Binding and
neutralizing antibody levels were evaluated 7 and 28 days after
boosting. Geometric mean ratio (GMR) and geometric mean
increase (GMI) were determined for GMCs and GMTs at various
time points. See Supplementary Materials.

2.2. SARS-CoV-2 wild-type virus neutralization assay (wtVNA)

Neutralizing antibodies capable of inhibiting wild-type virus
infections were quantified using the assay developed and qualified
by Public Health England. Virus stocks were derived from the Vic-
toria/1/2020 strain (see Supplementary Materials).

2.3. Recombinant lentivirus-based pseudotyped virus neutralization
assay (psVNA)

To measure the breadth of neutralization against SARS-CoV-2
spike variants (Supplementary Fig. 1), neutralizing antibody titers
were measured in both validated and pre-qualified psVNA against
several SARS-CoV-2 spike variants of concern as described previ-
ously (see Supplementary Materials) [10].
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2.4. Spike protein ELISA (S-ELISA) for B.1

SARS-CoV-2 pre-fusion spike-specific binding antibody concen-
trations were determined using the human SARS-CoV-2 pre-spike
IgG ELISA, an indirect ELISA based on antibody/antigen interac-
tions. See Supplementary Materials.

2.5. S-ELISA for variants

IgG binding to SARS-CoV-2 variant spike protein was measured
by ELISA using directly coated recombinant and stabilized trimeric
spike protein antigen based on theWuhan-Hu-1 SARS-CoV-2 strain
[11]. See Supplementary Materials.
3. Results

3.1. Study participants

Participant disposition from each study is shown in Fig. 1; only
cohorts/groups from which results were generated for this report
are shown. Demographic data are in Supplementary Tables 3
and 4. In the phase 1/2a study, immunogenicity data were avail-
able for subsets of participants: wtVNA, aged 18–55 years,
n = 25; �65 years, n = 24; psVNA and S-ELISA, 18–55 years,
n = 17 (Fig. 2.). In the phase 2 study, immunogenicity data were
available for wtVNA (18–55 years, n = 22; �65 years, n = 15) and
S-ELISA (18–55 years, n = 44–52 depending on group; �65 years,
n = 29; Fig. 2.); total N = 73 for serology analyses, N = 81 for safety
assessments.

3.2. Durability of humoral immunity after single-dose Ad26.COV2.S
(5 � 1010 vp)

Phase 1/2a
We previously reported short-term follow-up of immune

responses after single-dose vaccination with Ad26.COV2.S [12].
Here, we report neutralizing antibody levels after longer follow-
up in Cohort 1a and Cohort 3 (8 and 9 months follow-up, respec-
tively). In Cohort 1a, B.1 neutralizing antibody responses were
detectable up to at least Day 239 (8 months), with 21/22 (95%)
of participants having detectable titers (GMT, 226; 95% confidence
interval [CI], 154–331), which was similar to Day 29 after dose 1
(GMT of 224 [158–319] and 96% responders; Fig. 3A).

In Cohort 3, B.1 neutralizing antibodies were still detectable in
13/19 (68%) participants by Day 268 (9 months) after 1 Ad26.
COV2.S dose, with GMT of 114 (65–201). This represents a 2.3-
fold decrease in GMTs versus Day 29 after dose 1 (GMT, 258
[163–410] and 96% responders; Fig. 3A).

From Cohort 2a (described previously [12]), 17 participants
(18–55 years of age) had detectable binding antibody levels by
Day 29 post-dose 1 (GMC, 418 [322–554], with 100% responders;
Fig. 4A). By Day 183 (6 months), GMC in Cohort 2a had increased
to 798 (441–1443) with 100% of participants with detectable bind-
ing antibodies (Fig. 4A).

Phase 2
A single dose of Ad26.COV2.S elicited B.1 neutralizing antibody

responses by Day 15 in 21/22 participants aged 18–55 years (96%
responders; GMT, 244 [158–277]) and in 10/15 participants
aged � 65 years (67% responders; GMT, 119 [66–217]; Fig. 3B).
These responses further increased by Day 29 in both age groups
(18–55 years, 100% responders and GMT, 277 [211–365];
�65 years, 100% responders and GMT, 240 [179–322]; Fig. 3B).

Up to Day 85, B.1 neutralizing antibody responses remained
stable in participants aged 18–55 years while they decreased



Fig. 1. CONSORT diagrams for participants who received Ad26.COV2.S (phase 1/2a and phase 2 trials). Participants in (A) Cohort 1a, (B) Cohort 2a, and (C) Cohort 3 of
COV1001 received a single dose of Ad26.COV2.S 5 � 1010 vp; participants in Cohort 2a received a booster dose of 5 � 1010 vp 6 months after the first vaccination.
(D) Participants in COV2001 received a single dose of Ad26.COV2.S 5 � 1010 vp and a booster of 5 � 1010 vp at 2 months post-dose 1 (Group 1), placebo at 2 months post-dose
1 (Group 5), 5 � 1010 vp 1 month post-dose 1 (Group 7), and 5 � 1010 vp 3 months post-dose 1 (Group 9); all groups received a lower-dose booster of 1.25 � 1010 vp 6 months
after dose 1. N/E, not evaluated; psVNA, pseudotyped virus neutralization assay; S-ELISA, spike protein enzyme-linked immunosorbent assay; vp, viral particles;
wtVNA, wild-type virus neutralization assay.
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modestly in participants aged� 65 years. Six months after vaccina-
tion, neutralizing antibody levels in participants aged 18–55 years
(GMT, 200 [106–378]; 84% with detectable titers) were in a similar
range as Day 29 levels. In adults aged � 65 years, the GMT of neu-
tralizing antibody at 6 months after dose 1 was 134 (68–266), with
69% having detectable titers. These results are consistent with
phase 1/2a results.

Binding antibody levels also gradually increased from baseline
and remained stable up to Day 85 in both age groups (18–55 years:
GMC, 572 [420–780], �65 years: GMC, 313 [201–486], with 98%
4405
and 96% above the LLOQ of the assay in the respective groups;
Fig. 5). The GMC at Day 29 for those aged 18–55 years is in the
same range as observed in adults aged 18–55 years in the phase
1/2a study (Fig. 4A). GMCs in participants aged � 65 years were
slightly lower at all time points compared to those aged 18–
55 years.

At 6 months after dose 1, GMCs of binding antibodies had
declined to 416 (294–588) and 234 (136–403), with 96% and 86%
of participants still having titers above the LLOQ of the assay in
those aged 18–55 years and � 65 years, respectively (Fig. 5).



Fig. 2. Summary of immunogenicity data according to cohort (phase 1/2a and phase 2 trials). The schematic shows available immune response durability data
(neutralizing and/or binding antibody data) from each study cohort in COV1001 and COV2001. (A) For single-dose 5 � 1010 vp Ad26.COV2.S, neutralizing antibody response
data were available from COV1001 Cohorts 1 and 3 and COV2001 participants aged 18–55 years and � 65 years; spike-binding antibody response data were available for
COV1001 Cohort 2a and both COV2001 age groups. (B) After a homologous boost with Ad26.COV2.S at the 5 � 1010 vp dose level, neutralizing antibody response data were
available for COV1001 Cohort 2a; spike-binding data were available from COV1001 Cohort 2a and from both age groups of COV2001. (C) After a lower-dose boost with Ad26.
COV2.S at the 1.25 � 1010 vp dose level, spike-binding antibody data were available from COV2001 participants in both age groups. The number of participants with
available data (and corresponding time point) is shown above the line that indicates neutralizing or binding antibody data. psVNA, pseudotyped virus neutralization assay;
S-ELISA, spike protein enzyme-linked immunosorbent assay; vp, viral particles; wtVNA, wild-type virus neutralization assay.
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3.3. Humoral immune responses after homologous boosting (5 � 1010

vp dose level)

Phase 1/2a
Participants in Cohort 2a (aged 18–55 years; N = 17) who had

received 1 dose of Ad26.COV2.S at a 5 � 1010 vp dose level were
given a homologous booster 6 months later. By Days 8 and 29
post-boost, all participants demonstrated respective increases
(GMI) in binding antibody levels of 4.2-fold (GMC, 3779 [2583–
5529]) and 5.4-fold (GMC, 5108 [3402–7669]) compared to imme-
diate pre-boost binding antibody levels and a 9.0- and 12.0-fold
GMR, respectively, compared to Day 29 binding antibody levels
after the initial immunization (Fig. 4A).

Neutralizing antibody GMTs, assessed by validated psVNA for
the B.1 (D614G) reference strain and B.1.351 (Beta) variant at
Day 29 after vaccination in Cohort 2a, were 150 (77–294)
and < LLOQ, respectively, and increased respectively to 319 (131–
779) and 52 (<LLOQ–107) by Day 183. By Day 211 (28 days post-
boost), antibody levels increased 5.6- and 5.0-fold (GMI) versus
pre-boost for B.1 and B.1.351, respectively (Fig. 4B). Compared
with Day 29 after dose 1, neutralizing antibodies rose 6.7- and
7.7-fold (GMR), respectively, by 7 days post-boost, and 13.5- and
9.6-fold, respectively, by 28 days post-boost.

Similar observations were made in a pre-qualified psVNA for
B.1 and the B.1.351 variant. In the pre-qualified psVNA for all
tested variants of concern, titers increased proportionally by 4.2-
fold within 28 days post-boost (Fig. 4C). Proportionality analyses
for fold-change between time points for each variant relative to
the B.1 reference demonstrated equivalence within a 1.4-fold mar-
gin (Supplementary Fig. 2A). However, absolute titer levels were
lower for some variants, including B.1.351 and P.1 (Gamma). Neu-
tralizing (pre-qualified) and binding antibody (pre-qualified) titers
correlated strongly (R = 0.92; P < 0.001) for the B.1 reference strain
(Supplementary Fig. 3).
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Pre-qualified S-ELISA analyses using the B.1.351 and B.1.617.2
(Delta) variants demonstrated that a booster dose 6 months after
dose 1 elicited robust increases in B.1.351 and B.1.617.2 binding
antibodies by 28 days after boosting. Increases relative to Day 29
after dose 1 were similar for the reference strain and these two
variants (B.1, 10.5-fold; B.1.351 and B.1.617.2, both 11-fold; Sup-
plementary Fig. 4A–C).

Correlation analyses for the B.1 reference strain and the
B.1.351 and B.1.617.2 variants at all time points for S-ELISA rela-
tive potency showed strong positive correlation across variants
tested, indicating that vaccine-induced antibodies are cross-
binding (Supplementary Fig. 4D–F). Binding antibody levels
and neutralizing titers for B.1.617.2 increased by > 10-fold and
3.2-fold, respectively, by 28 days after boosting, similar to
increases observed for the B.1 reference strain (Supplementary
Fig. 5).

In psVNA neutralization assays, GMTs for variants B.1.351,
B.1.617.2, P.1, and C.37 (Lambda) were approximately 1.4- to
1.8-fold lower at Day 183, 2.0- to 3.4-fold lower at Day 190, and
2.0- to 4.2-fold lower at Day 211 versus the B.1 reference strain
(Supplementary Fig. 2B–E).

Phase 2
Participants who received 1 dose of Ad26.COV2.S (5 � 1010 vp)

received a booster at 2 months at the same dose level (18–55 years
of age, N = 52; �65 years of age, N = 29). By 14 days post-boost,
binding antibody levels (validated assay) increased 3.5-fold versus
immediate pre-boost levels and 4.9-fold versus Day 29 levels after
dose 1 in participants aged 18–55 years (Supplementary Fig. 6A).
Binding antibody levels also increased following a booster in those
aged � 65 years, with an increase of 5.4-fold 14 days post-boost
compared with immediate pre-boost levels and 6.2-fold compared
with Day 29 levels after dose 1 (Supplementary Fig. 6B).
Responses in both age groups were durable through approximately
6 months of follow-up.



Fig. 3. Durability of neutralizing antibody responses following a single dose of Ad26.COV2.S (5 � 1010 vp) (phase 1/2a and phase 2 trials). Phase 1/2a participants, aged
18–55 years (Cohort 1a) and aged � 65 years (Cohort 3), were administered a single dose of Ad26.COV2.S (5 � 1010 vp) at Day 1. (A) Serum neutralizing antibody responses
against SARS-CoV-2 were evaluated by wtVNA up to 8–9 months after the dose 1, in subsets of participants aged 18–55 years (N = 25; 22 with available data at Day 239; blue
line) and � 65 years (N = 24; 19 with available data at Day 268; black line). (B) Phase 2 participants, aged 18–55 years and � 65 years, were administered a single dose of
Ad26.COV2.S (5 � 1010 vp) at Day 1. Serum neutralizing antibody responses against SARS-CoV-2 were evaluated by wtVNA up to 6 months after dose 1 in subsets of
participants aged 18–55 years (N = 22; blue line) and � 65 years (N = 15; black line). GMTs are depicted above each time point, and response rates are illustrated at the
bottom of each panel. In all panels, error bars represent 95% CIs. CI, confidence interval; GMT, geometric mean titer; LLOQ, lower limit of quantification; vp, viral particles;
wtVNA, wild-type virus neutralization assay.

J. Sadoff, M. Le Gars, B. Brandenburg et al. Vaccine 40 (2022) 4403–4411
3.4. Humoral immune responses after lower-dose homologous
boosting (1.25 � 1010 vp dose level)

Phase 2
A lower dose of 1.25 � 1010 vp was given at 6 months in 44 par-

ticipants aged 18–55 years and 29 participants aged � 65 years
(Fig. 5). This lower dose also elicited a rapid 3.6-fold increase
(GMR) in binding antibody levels 7 days post-boost (GMC, 1719
[1321–2236]) compared to immediate pre-boost binding antibody
levels. Antibody levels further increased by 28 days post-boost
(GMC, 2444 [1855–3219]), representing 6.8- and 7.3-fold increases
compared to Day 29 after dose 1 and immediate pre-boost anti-
body levels, respectively. While the kinetics after boosting with
the 1.25 � 1010 vp dose level were slower in adults
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aged � 65 years, the magnitude of the response by 28 days later
was similar in younger and older adults (Fig. 5).

3.5. Safety of a booster dose of Ad26.COV2.S

In Cohort 2 of the phase 1/2a study in 17 participants, post-dose
1 and post-booster reactogenicity appeared similar to previously
reported reactogenicity [12]. In the phase 2 study, after 81 partic-
ipants received dose 1 (5 � 1010 vp) and a booster dose
(1.25 � 1010 vp) 6 months later, solicited adverse events (AEs)
were reported, respectively, by 67.9% versus 54.1% of participants,
and, for grade � 3 solicited AEs, by 1.2% versus 0%. The frequencies
of solicited local AEs after the first dose versus after the booster
were 51.9% versus 47.3%; for solicited local AEs of grade � 3, 0%



Fig. 4. Durability of spike-binding antibody responses 6 months after first vaccination and impact of a 6-month booster dose on binding and neutralizing antibodies
(phase 1/2a trial). Phase 1/2a participants aged 18–55 years (N = 27) were administered a single dose of Ad26.COV2.S (5 � 1010 vp) at Day 1, and 20 participants received a
booster dose of Ad26.COV2.S (5 � 1010 vp) at approximately 6 months (Day 183) after the first vaccination; 17 participants had data available at Day 190. Only participants
with booster data available were included in these analyses. (A) Serum spike-binding antibodies against SARS-CoV-2 were evaluated in a validated S-ELISA up to 28 days post-
boost (Day 211). Participants aged 18–55 years are represented with a blue line. GMCs are depicted above each time point (error bars represent 95% CIs), and response rates
are illustrated at the bottom of the panel. The asterisk denotes geometric mean increase. (B) Serum (N = 17) neutralizing antibody titers were evaluated via validated psVNA
against the B.1 (D614G) reference strain and B.1.351 (Beta) variant at Days 1, 29, 183, 190, and 211. Arrows above the graph indicate GMI for Day 211 versus Day 183 and
GMR for Day 211 versus Day 29. (C) Serum (N = 17) neutralizing antibody titers against the B.1 (D614G), B.1.617.2 (Delta), C.37 (Lambda), P.1 (Gamma), and Beta variants
were evaluated via pre-qualified psVNA at Days 183, 190, and 211. The log10 GMTs per visit per strain were estimated in a Tobit model with subject, visit, strain, and
interactions as factors. One participant who was missing data for Day 211 was excluded. With heavy censoring, the estimated GMT is below the LOD. Adjusting for censoring
revealed good proportionality. The average GMT fold increase for all variants is indicated above the graph for Days 183–211 and Days 183–190. In all panels, error bars
represent 95% CIs. CI, confidence interval; GMC, geometric mean concentration; GMT, geometric mean titer; ID50, serum dilution conferring 50% inhibition; LLOQ, lower limit
of quantification; LOD, limit of detection; psVNA, pseudotyped virus neutralization assay; S-ELISA, spike protein enzyme-linked immunosorbent assay; vp, viral particles.
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versus 0%; for solicited systemic AEs, 61.7% versus 37.8%; and for
solicited systemic AEs of grade � 3, 1.2% versus 0%.
4. Discussion

We previously reported that a single dose of Ad26.COV2.S is
immunogenic and provides robust efficacy against severe/critical
COVID-19 and COVID-19–related hospitalization and death,
including in areas where the Beta variant had high prevalence
[4,12]. Additionally, data from several real-world studies [13–17]
demonstrated effectiveness of a single dose of Ad26.COV2.S against
4408
COVID-19–related hospitalization and death during a period of
high prevalence of the Delta variant.

In our phase 1/2a study, after 1 dose of Ad26.COV2.S (5 � 1010

vp), neutralizing and binding antibody levels were durable in most
participants. In younger participants, antibody levels at 6 months
were similar to Day 29 levels, while in older adults, antibody levels
showed an approximately 2-fold decline between Day 29 and
Month 6 after vaccination. This durability is consistent with previ-
ous observations in a sub-cohort of our phase 1/2a study demon-
strating stable humoral immune responses for 8 months after
Ad26.COV2.S vaccination in adults aged 18–55 years, including
against Beta and Delta variants [5].



Fig. 5. Durability of spike-binding antibody responses 6 months after first vaccination and responses 7 and 28 days after boosting (phase 2 trial). Phase 2 participants
aged 18–55 years (N = 44; blue line) and � 65 years (N = 29; black line) were administered a single dose of Ad26.COV2.S (5 � 1010 vp) at Day 1 and 73 received a booster dose
of Ad26.COV2.S (1.25 � 1010 vp) at approximately 6 months (Day 169) after dose 1. Serum spike-binding antibody responses against SARS-CoV-2 were evaluated by validated
S-ELISA up to 28 days after the booster dose (Day 197). GMCs are depicted above each time point (error bars represent 95% CIs), and response rates are illustrated at the
bottom of each panel. CI, confidence interval; GMC, geometric mean concentration; LLOQ, lower limit of quantification; S-ELISA, spike protein enzyme-linked immunosorbent
assay; vp, viral particles.
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Neither an immune correlate nor a threshold of protection is
established for COVID-19 vaccines, but antibody levels have been
associated with vaccine efficacy [18–20], and a vaccine manufac-
turer recently proposed tentative neutralizing antibody thresholds
related to protection [21]. A single dose of Ad26.COV2.S in our
phase 3 study induced protection against severe/critical COVID-
19 by Day 8, when antibody levels were considerably lower than
at Days 15–29 when protection against hospitalization and death
(by Day 15), and symptomatic disease (by Days 15–29) occurred
[4]. Protection against severe/critical COVID-19 may therefore
require lower levels of vaccine-induced neutralizing antibodies,
possibly combined with Fc functionality [22] and/or cellular
immunity [4]. Antibody titers 6–8 months following immunization
were similar (or slightly lower in participants aged � 65 years) to
those at 28 days after immunization, suggesting durable protection
for at least 6–8 months, which is consistent with durable efficacy
observed in our phase 3 study with longer follow-up [3,4]. This
contrasts with the waning immunity that correlated with lower
efficacy observed by 6 months for mRNA-based vaccines [21,23–
26].

As reported here and previously [12], a homologous booster
with Ad26.COV2.S (5 � 1010 vp) at 2 months after single-dose pri-
mary vaccination elicited a rapid, approximately 3–6-fold increase
in SARS-CoV-2–specific binding antibody levels and a 4-fold
increase in neutralizing antibodies versus Day 29 post-prime
[12]. As recently announced, in a phase 3 study, these rises were
associated with a 20–25 percentage point increase in the point
estimate of vaccine efficacy against symptomatic COVID-19 (in-
cluding against variants), with 94% efficacy in the United States
where the blinded portion of the study ended in early July 2021
[3]. A homologous booster 6 months after dose 1 produced even
stronger increases in immune responses. Importantly, even in the
few older adults in whom SARS-CoV-2–specific antibody titers
had declined to unquantifiable levels 6 months after dose 1, the
1.25� 1010 vp booster elicited rapid increases in antibodies to sim-
ilar levels as seen in the younger age group. These anamnestic
responses indicate durable memory and may explain the durable
protection seen against symptomatic and severe/critical COVID-
19 in our phase 3 trial [3].
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A homologous booster dose given 6 months after dose 1 elicited
strong increases in neutralizing antibodies against variants of con-
cern, including Delta. Antibody levels for variants increased pro-
portionally to the reference strain, although titers were lower
overall versus the reference. Our previous analyses showed that
Ad26.COV2.S-elicited spike-specific antibody binding levels that
strongly correlated with SARS-CoV-2 neutralizing antibody levels
[12]. The current data extend these observations and clearly
demonstrate that S-ELISA and psVNA titers correlated significantly
for the reference and variants tested. This robust correlation
supports the notion that binding is associated with protection, as
S-ELISA correlations between B.1 and variants indicate vaccine-
induced antibodies are cross-binding, and psVNA is correlated with
efficacy (protection).

Our data also confirm earlier observations [12,27,28] that
repeated administration of an Ad26-based vaccine boosts immune
responses, despite the possible induction of anti-vector antibodies.
Ad26.COV2.S can boost immune responses after 1 dose of Ad26.
COV2.S [7,8] or either mRNA vaccine [29,30]. Based on these data,
the FDA authorized homologous and heterologous boosting with
Ad26.COV2.S.

In this study, the assays used to determine the neutralization of
the SARS-CoV-2 reference strain, neutralization of SARS-CoV-2
variants, and antibody binding to the SARS-CoV-2 spike protein
were carefully selected based on specific criteria, such as speci-
ficity, linearity, sensitivity and repeatability. Because Ad26.COV2.
S is used as a single-dose vaccine (primary plus booster), sensitiv-
ity of these assays was a key factor in their selection. For neutral-
ization assays, the use of both wtVNA and psVNA increased
confidence in the selected assays due to the concordance and cor-
relation of their respective results.

The results presented here confirm that a wider interval
between vaccine doses increases the magnitude of post-booster
immune responses, as previously reported [31]. A homologous
booster at 2 months with an Ad26-vectored Zika vaccine demon-
strated longevity of immune responses of at least 1 year [28]. This
could be similar for a homologous Ad26.COV2.S booster, especially
if longer intervals between priming and boosting lead to not only
higher, but even more durable responses [28].



J. Sadoff, M. Le Gars, B. Brandenburg et al. Vaccine 40 (2022) 4403–4411
As previously reported [12], solicited local and systemic AEs
were transient and generally mild following Ad26.COV2.S
(5 � 1010 vp) when given 2 months after the first dose, with less
severity versus the initial dose. In the current study, boosting at
6 months at either dose level was similarly well tolerated with pri-
marily transient mild systemic and local AEs. Grade � 3 solicited
local and systemic AEs were rare following dose 1, with none seen
at boosting. Solicited local AEs were similar after dose 1 versus the
booster (51.9% vs 47.3%), while solicited systemic AEs were lower
after the booster (61.7% vs 37.8%), possibly due to dose level.

Thrombosis with thrombocytopenia syndrome (TTS) cases
[32,33] were not observed in these studies. For another
adenovirus-based COVID-19 vaccine for which TTS has been
reported as a side effect, ChAdOx1 nCoV-19, the risk for TTS after
a second dose of that vaccine was significantly lower than after
dose 1 (no longer above background incidence) [34].

5. Conclusions

Overall, our data demonstrate that a single dose of Ad26.COV2.S
elicits durable immunity for at least 8 months and immune mem-
ory supporting robust anamnestic responses after boosting. The
recently observed increased efficacy after a booster dose of Ad26.
COV2.S with a 2-month interval [3] supports boosting after at least
2 months. However, a longer interval after primary single-dose
vaccination resulted in higher immune responses after boosting.
This finding, combined with the durability of protection after a sin-
gle dose of Ad26.COV2.S, supports flexibility in the timing of a
booster dose at least 2 months after dose 1. Additionally, such
boosted immune responses translate into sustained protective effi-
cacy, including against variants of concern. The FDA and Advisory
Committee on Immunization Practices recently approved and
adopted, respectively, an Ad26.COV2.S booster dose at least
2 months after primary vaccination and approved Ad26.COV2.S
boosting of other COVID-19 vaccines licensed in the United States
[35,36]. Longer follow-up of immune responses after boosting will
show whether durability following boosting is expected to be as
long or longer than after a single dose.
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