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Abstract

Background: Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling
experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow
includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for
differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq
analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate
the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool,
adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis
pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience.

Results: To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated
reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq
analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of
analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a
personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome
shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting
gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within
the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables
and scatterplots.

Conclusions: SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify
differentially expressed genes between experimental conditions. This software will enable microbiologists with
limited bioinformatics experience to analyze their data and integrate next generation sequencing (NGS)
technologies into the classroom. The SPARTA software and tutorial are available at sparta.readthedocs.org.

Keywords: Bioinformatics, Data analysis, Transcriptomics, Microbiology, Next-generation sequencing, High-
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Background
One of the most common applications of RNA sequen-
cing (RNA-seq) is to identify differentially expressed
genes under differing experimental conditions. Before
biological insights can be gained, one must process and
analyze the large datasets generated from each sequen-
cing experiment. Each sample contains millions of reads

that must be trimmed and assessed for read quality,
mapped back to a reference genome (or assembled de
novo in the absence of a reference), counted for tran-
script abundance, and tested for differential gene expres-
sion. Many computational analysis tools have been
developed specifically to work with RNA-seq data; how-
ever, a single tool is often not suitable and requires sev-
eral different applications assembled into a workflow.
This task can be complicated as both the tool choice
and input and output file formats for a given tool need
to be considered and potentially modified to meet the
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requirements for the subsequent analysis step. Several
RNA-seq analysis workflows exist, however, most are de-
signed for eukaryotic organisms [1–11]. The goal of this
work is to assemble several open-source computational
tools to deliver a complete, accessible, and easy-to-use
reference-based bacterial RNA-seq analysis workflow
that is amenable to both the research laboratory and
undergraduate classroom.

Implementation
The SPARTA workflow (Fig. 1) is implemented utilizing
Python for file input/output management and tool
execution, combining several open-source computa-
tional tools. The SPARTA workflow analyzes data by:
conducting read trimming and adapter removal with

Trimmomatic [12]; performing quality analysis of the
data sets with FastQC [13]; mapping the reads to the ref-
erence with Bowtie [14]; counting transcript or gene fea-
ture abundance with HTSeq [15]; and, analyzing
differential gene expression with edgeR [16–18]. Within
the differential gene expression analysis step, batch ef-
fects can be detected and the user is warned that poten-
tially unintended variables need to be considered. If left
unaccounted for, batch effects can significantly skew the
results of the data analysis, leading to inappropriate ex-
perimental conclusions [19]. Following analysis, SPARTA
outputs quality analysis reports, gene feature counts and
differential gene expression tables and scatterplots.
SPARTA requires Python 2, NumPy (a Python library

for numerical analyses), Java and R. Once Python is

Fig. 1 SPARTA workflow diagram. Single-end Illumina FASTQ files, a FASTA formatted reference genome, and genome feature file (gff or gtf) are
given as inputs to the workflow. Trimmomatic and FastQC perform trimming of adapters and low quality bases/reads and quality assessment
reports, respectively. Bowtie maps the trimmed reads to the reference. HTSeq quantifies transcript abundance. R/edgeR tests for statistically
significant genes and warns the user of potential batch effects present in the analyzed data set
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installed, the user initializes SPARTA, which then checks
for the necessary dependencies at runtime. If any of
these dependencies are not met, SPARTA informs the
user of the missing components. To reduce complex
software installation, SPARTA is distributed with the re-
quired software and an online tutorial (http://sparta.r-
eadthedocs.org) guides the user through installation and
data analysis procedures for each operating system plat-
form. The workflow maintains analytic flexibility for spe-
cific use cases by allowing the user to tailor the options
utilized for each analysis step, but can proceed without
requiring option specification. Further, SPARTA will
write the necessary R commands at runtime and will
generate the appropriate contrasts to test all possible
comparisons between user defined experimental condi-
tions. The workflow is distributed with an example data
set containing the first 100,000 reads from a previously
published study [20]. This data set is included to allow
the user to become rapidly familiarized with the analysis
procedure as well as ensure the appropriate dependen-
cies are met.

Results and discussion
RNA-seq transcriptional profiling is becoming in-
creasingly routine, and there is a demand for applica-
tions such as SPARTA that enable stand-alone
workflows. Though several bacterial RNA-seq analysis
workflows have been developed [4, 5, 11], SPARTA is
currently the only workflow capable of addressing
the possibility of batch effects within the data set as
well as the other necessary analysis procedures to
identify differentially expressed genes. Using a previ-
ously published data set [20], SPARTA was capable
of analyzing 4 experimental conditions containing 8
samples with approximately 30 million reads per
sample in 4 h on an off-the-shelf iMac computer
(8 GB RAM, Intel i5 2.7GHz quad-core processor).
SPARTA can also be implemented in high perform-
ance computing environments utilizing the non-
interactive mode functionality.
As NGS technologies and applications continue to

permeate life science research, undergraduate educa-
tion must incorporate the use of contemporary se-
quencing techniques to address biological questions.
However, despite the rapid increase in data intensive
experimental biology, undergraduates receiving a life
sciences degree are often not exposed to the tools
and basic computational skills required to study NGS
data sets. To address this shortcoming, we have de-
veloped an online tutorial to guide students through
the RNA-seq analysis process (http://sparta-teachin-
g.readthedocs.org). The SPARTA teaching tool was
integrated into a senior level genomics course and

successfully engaged students in the theory and ap-
plication of RNA-seq data analysis.
SPARTA and Rockhopper2 are both bacterial RNA-

seq workflows that provide similar features [5]. An exe-
cution time comparison was conducted between the two
platforms. SPARTA was executed with default parame-
ters and Rockhopper2 was tested with default parame-
ters, verbose output, SAM output, and operon and
untranslated region identification turned off. Further, the
Rockhopper2 cache was cleared before each test to
mimic a first time analysis. When SPARTA was com-
pared to Rockhopper2 for execution, SPARTA exhibited
greater scalability (Fig. 2). Therefore, differentiating fea-
tures of SPARTA as compared to Rockhopper2 include:
improved scalability; incorporation of trimming and
quality control of reads; and, a check for potential batch
effects within the data set. Notably, Rockhopper2 pro-
vides additional functions not provided by SPARTA,
such as operon analysis, definition of untranslated re-
gions, and files for visualization of the results in a gen-
ome browser.

Future directions and functionality
Additional features and functionality that will be incor-
porated into future releases of SPARTA are listed below
and will be updated at http://sparta.readthedocs.org/en/
latest/wishlist.html. Further, to become involved into the

Fig. 2 Data analysis execution time comparison between SPARTA
and Rockhopper2. The two programs were compared for execution
time when processing one, two, or three experimental conditions as
compared to a reference condition. Both SPARTA (1.0) and
Rockhopper2 (2.03) were installed and tested on an off-the-shelf
iMac (2.7 GHz i5, 8 GB memory, OSX 10.11.2). Dependencies: Java
(1.6.0_65), Python (2.7.9), and R (3.2.2). Data are the mean of three
software executions and error bars represent the standard deviation.
Data files (100,000 reads/file) utilized were the example data bundled
with SPARTA
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active development of SPARTA, the current state of the
code base and feature development can be found on
GitHub through http://sparta.readthedocs.org under the
“Contribute” heading. Future releases of SPARTA will
include but not limited to: 1) automated batch effect
correction, 2) additional input file format support, 3)
paired-end reads support, 4) read mapping output with
normalized expression values, 5) operon analysis and
definition of untranslated regions, 6) files for
visualization in common genome browsers, and 7)
reference-free transcriptome analysis.

Conclusions
SPARTA is a bacterial RNA-seq analysis tool capable of
taking raw Illumina reads to differentially expressed genes
in a turn-key, stand-alone workflow format that takes ad-
vantage of existing state of the art analysis tools and warns
the user of potential batch effects. By reducing the re-
quired computational proficiency to perform transcrip-
tional profiling experiments using RNA-seq, SPARTA can
enable microbiologists to accelerate their research and
provide instructors the ability to incorporate a hands-on
approach to NGS technologies in the classroom. Further,
SPARTA maintains analytic flexibility by allowing the user
to tailor the analysis through option specification but is
capable of proceeding with default values.

Availability and requirements
Project name: SPARTA.
Project home page: http://sparta.readthedocs.org;

http://sparta-teaching.readthedocs.org.
Operating system: Platform independent.
Programming language: Python.
Other requirements: Java and R.
License: Creative Commons BY version 4 or greater.
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