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Prompt ElastoGravity Signals are light-speed gravity-induced signals recorded before the arrival of
seismic waves. They have raised interest for early warning applications but their weak amplitudes
close to the background seismic noise have questioned their actual potential for operational use.
A deep-learning model has recently demonstrated its ability to mitigate this noise limitation and to
provide in near real-time the earthquakemagnitude (Mw). However, this approachwasefficient only for
large earthquakes (Mw ≥ 8.3) of known focal mechanism. Here we show unprecedented performance
in full earthquakecharacterizationusing thedensebroadbandseismicnetworkdeployed inAlaska and
Western Canada. Our deep-learning model provides accurate magnitude and focal mechanism
estimates ofMw ≥ 7.8 earthquakes, 2minutes after origin time (hence the tsunamigenic potential). Our
results represent a major step towards the routine use of prompt elastogravity signals in operational
warning systems, and demonstrate its potential for tsunami warning in densely-instrumented areas.

The size of a tsunami is roughly proportional to the volume of elevated
water, and therefore primarily depends on the earthquake magnitude and
focal mechanism (as some mechanisms are much more efficient at gen-
erating uplift than others). Though steep bathymetry may convert hor-
izontal co-seismic sea-floor motion into water uplift1, causing strike-slip
earthquakes to occasionally generate tsunamis, such a phenomenon is of
second-order importance andmay be accounted for throughpre-computed
corrections depending on the source location2. Therefore, the critical part of
an efficient tsunami warning is the rapid estimation of the magnitude and
focal mechanism of the earthquake. Real-time characterization of an event
magnitude and focal mechanism is challenging, as seismic waveforms are
affected both by the temporal evolution of the moment release and by the
spatial complexity of the source. The first seconds of seismic records do not
contain enough information to distinguish a moderate magnitude earth-
quake from a larger one3,4, while, for very large events, later wave arrivals
typically saturate local broadband sensors and break the point-source
approximation. High-rate Global Navigation Satellite Systems (GNSS)
measurements are powerful non-saturated observables5–8, but the validity of
the point-source approximation has to be carefully evaluated. The use of
closeGNSSdatamay require an extendedsourcedescription,whichmakes a
robust determinationmore challenging. Thus, for potentially tsunamigenic
(Mw ≥ 8) events, reliable estimates of magnitude are difficult to obtain in

near real-time,which results in the inaccurate estimationof the amplitudeof
the subsequent tsunami wave. Another way to tackle this challenge is to rely
on long-period signals recorded at regional distances, correctly modeled
with point-source parameters, such as the W-phase9 and the recently
identified prompt elastogravity signals (coined PEGS). Inversion algorithms
relying on the W-phase provide robust solutions down to 10 minutes after
the earthquake origin time, using sensors from regional seismological
networks10,11. A PEGS-based source inversion scheme could provide an
earlier reliable solution, as PEGS are quickly available after the rupture onset
and not prone to saturation.

PEGS are low-frequency signals measurable between the earthquake
origin time and the first seismic wave (P-wave) arrival12–14. So far, PEGS
have been observed on broadband seismometers during six earthquakes
with moment magnitude (Mw) ranging from 7.9 to 9.114,15, and modeled
with good accuracy by several numerical modeling approaches mostly
based on 1D Earth models and point-source approximation14,16,17. Other
ground-attached instruments, such as superconducting gravimeters, also
have the ability to detect PEGS13,18. Due to their sensitivity to the first-
order source parameters (moment magnitude, source location, fault
geometry), PEGS can be used for a rapid source determination of large
earthquakes15,17. However, the very-low signal-to-noise ratios associated
with PEGS (whose amplitudes reach a few nm.s−2 at most, even for the
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largest events) prevent their routine operational exploitation based on
classical source inversion schemes. To our knowledge, a PEGS-based
source inversion was only attempted for the 2011 Mw 9.1 Tohoku-oki
earthquake, which had a large final moment magnitude and a fast onset
(ensuring an efficient PEGS generation), and benefited from the coverage
of good-quality broadband sensors belonging to regional and global
seismological networks17,19,20.

PEGSNet, a convolutional neural network (CNN) algorithmrelying on
PEGS recorded by a network of broadband seismometers, has recently been
developed for instantaneousmagnitude tracking of large earthquakes along
the Japanese subduction fault21. PEGSNet successfully estimated the
moment magnitude accumulated by the 2011 Mw 9.1 Tohoku-oki earth-
quake 100 s after its onset. A conservative lower sensitivity to themagnitude
was set to Mw ≥ 8.3 in Japan. PEGSNet was later applied to another tsu-
namigenic region—the Chilean subduction zone—and estimated a
Mw > 8.7 magnitude for the 2010 Mw 8.8 Maule earthquake, 90 s after its
origin time22. Due to limitations associated with the network geometry and
the number of available stations, PEGSNet’s lower sensitivity was, in that
context, limited toMw ≥ 8.7.

Besides the earthquake location and magnitude estimations, recent
studies reported the application of deep-learning methods to estimate the
earthquake source mechanism23–25. In this study, we build on PEGSNet and
expand its targets to allow the retrieval of the seismic moment tensor. We
apply this new algorithm to theAlaska region, a promising case study, as (1)
it is a very active area with diverse tectonic settings26, and (2) the good
existing station coverage has been recently densified by the deployment of
the high-quality USArray network27,28.

CNN-based earthquake determination in Alaska
Wegenerate adataset ofPEGScomprising512,000 synthetic earthquakes, at
the actual locations of the considered broadband sensors. We gather two
distinct datasets: afirst dataset (hereafter coined “complete”) corresponding
to the full deployment of the networks (all good-quality broadband sensors
operating between 2018 and 2020), and a second one (hereafter coined
“legacy”) corresponding to the legacy sensors (all good-quality broadband

sensors available from 2018 to 2021, and still operating by the end of 2021).
We show in Fig. 1 the locations of the broadband seismometers used in this
study, alongside the historical seismicity in the region.

The synthetic sources are pure double-couplemechanisms (strike-slip,
thrust, or normal faulting), and their locations are randomly sampled inside
geographic regions whose shape is based on the historical seismicity (see
Fig. 2 for a selection of sources, and Method and Fig. S1 of the Supple-
mentary Information for more details). We compute the synthetic PEGS
waveforms corresponding to this exhaustive set of possible earthquakes
using the QSSP algorithm17,29. For each synthetic earthquake, we add
empirical noise (i.e. real noise recorded by each seismic station) and gather
the vertical noisy PEGS waveforms into 2D images (273 or 178 channels,
depending on the dataset, × 300 time samples), the last time sample ranging
from the synthetic earthquake origin time tEQ to tEQ+ 300 s (see Method
and Fig. S2 for details).

PEGSNet’s original architecture consists of a sequenceof convolutional
blocks, followed by fully connected layers21,22. We build on PEGSNet’s
original architecture and expand the dimension of PEGSNet’s output
layer from three to nine to take into account additional labels (i.e., the
sixmoment tensor components): this allows themodel to output amoment
tensor solution. Each input image is labeledwith themagnitudeMw(t) of the
synthetic earthquake at the time t of the last data sample, and the source
latitude and longitude21,22, as well as six moment tensor parameters (see-
Fig. 3 and Method for details).

Early source estimations for synthetic earthquakes
We use the geometrical similarity α30 to assess the performance of moment
tensor reconstruction. α is a scalar parameter measuring the geometrical
difference between twomoment tensors, regardless of their scalar moment:
the similarity is equal to 0 for opposite moment tensors, and can grow up to
1 in the case of identical moment tensors.

In what follows, we define a magnitude estimation as accurate if the
time-dependent moment magnitude Mpred

w ðtÞ lies within 0.4 magnitude
units from the ground truth Mtrue

w ðtÞ, and a successful mechanism recon-
struction if α ≥ 0.8 (compared to the ground truth, input focal mechanism).
Note that Mtrue

w ðtÞ is not the final magnitude but the time-dependent
ongoing magnitude.

Figure 4a–c shows the magnitude regression performances obtained
with the complete network, depending on the predicted focal mechanism.
Wefirst note that for a givenmagnitude, theMw estimates aremore accurate
when a normal or a strike-slip earthquake is predicted, compared to a thrust
event: the algorithm estimations exceed the 90% accuracy level when the
predicted magnitude is above Mpred

w ¼ 9:0 for thrust, Mpred
w ¼ 8:2 for

Fig. 1 | Location of the broadband stations used during training. Blue squares
indicate the location of sensors available during the full deployment of the Alaska
USArray (from 2018 to 2020), while the yellow dots indicate the location of the
legacy stations (still available by the end of the 2021 field season). The focal
mechanisms show the GCMT solutions54 for Mw ≥ 5 earthquakes since 1976 (scaled
to moment magnitude, and color-coded based on the focal mechanism type)54. The
recent large earthquakes studied within this work are explicitly labeled. Black lines
show historical fault lines55. Cyan lines are the 20 and 30 km isodepths of the sub-
ducting slab, according to the Slab2.0 model56.

Fig. 2 | Selection of synthetic double-couple mechanisms, extracted from the
training set.The focal mechanisms are scaled to the prescribedmomentmagnitude,
and color-coded based on the focal mechanism type (plunge of tension axis above
45° for thrust faults, plunge of null axis above 45° for strike-slip faults, the remaining
sources are labeled as normal faults). The regular grid (dots) shows all possible
synthetic source locations.
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strike-slip andMpred
w ¼ 7:9 for normal events. This regression behavior can

be related to the known property that a subduction thrust earthquake is not
an effective source mechanism for PEGS generation15.

Figure 4d, e shows the corresponding accuracy of mechanism recon-
struction. Two minutes after onset time, the algorithm estimations exceed
the 75% accuracy level for Mpred

w ≥ 7:5 normal earthquakes, Mpred
w ≥ 7:8

thrust earthquakes and Mpred
w ≥ 7:8 strike-slip earthquakes. For higher

magnitudes (Mpred
w ≥ 8:4), the reconstruction of predicted strike-slip

mechanisms is slightly less accurate than their thrust counterparts. This
may be explained by the broader geometric content explored by the strike-
slip distributions, compared to the thrust distributions (see Fig. S1). We
further illustrate in Figs. S3–S5 the retrieval of the source mechanism (and

location), for synthetic earthquakes whose final magnitude lies within
Mw = 8.0 ± 0.01, 2 to 4min after onset time.

We compare in Figs. S6, S7 of the Supplementary Information the
regression performances of the complete and legacy network of sensors.We
observe similar performances on samples with high signal-to-noise ratios
(SNR): theMw regressionperformanceof the completenetwork is onlyup to
3% more accurate than the legacy one for very large earthquakes (that is,
Mw > 8.9 for thrust, Mw > 8.2 for strike-slip and Mw > 7.8 for normal
earthquakes), because the legacy performance is already very good for those
events. The higher density of sensors is nonetheless beneficial for the
characterization of lowermagnitude earthquakes (up to a 10%performance
increase in the complete configuration), forwhich the additionof redundant

Fig. 3 | PEGSNet architecture. The input data is an image of the shape M ×N
(purple), where M is the number of time samples and N is the number of sensors.
Each convolutional block is composed of a convolutional layer with ReLU activation
(orange) and a spatial dropout layer (gray). Max pooling layers (pink) reduce each
dimension of the input data by a factor of two. The number of channels used in each

convolutional layer is indicated for clarity. The last convolutional block is connected
to dense layers. The output layer uses a tanh activation function to predict 9 values:
themomentmagnitude (Mw), the source longitude and latitude (ϕ and λ), and the six
components of the moment tensor (mrr, mtt, ...).

Fig. 4 | Accuracy of the source estimations
obtained with the complete network of sensors.
Accuracy of magnitude (a–c) and focal mechanism
(d–f) estimations on test set samples. The test set is
separated into predicted thrust (a, d), strike-slip
(b, e), and normal (c, f) samples. A magnitude
estimation is considered successful if
jMtrue

w ðtÞ �Mpred
w ðtÞj<0:4, while a focal mechanism

estimation is considered successful if the geome-
trical similarity α > 0.8. Contour lines highlight a
90% (blue), 75% (red), and 60% (green) accuracy.
The dashed lines indicate the average Mtrue

w ðtÞ for
different final magnitudes.
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and valuable information from nearby sensors is crucial for an increase of
the signal-to-noise ratio. It is even more beneficial for the mechanism
reconstruction, as a higher sensor density directly leads to a better resolution
on the source radiation pattern.We note that the high level of performance
still obtained in the legacy configurationmaybe explainedby an appropriate
selection of the removed sensors. Indeed, although the overall sensor density
decreases in the legacy configuration - and if we exclude the easternmost
part of thenetwork (that is anyway less critical for thedetectionof thrust and
normal events)—both the azimuthal and epicentral coverage of the legacy
network remains similar to the complete configuration (see Fig. 1).

To better evaluate the time-dependent performance, we focus on test
set samples whose final magnitude lies within the Mtrue

w ¼
9:0 ± 0:05;Mtrue

w ¼ 7:8 ± 0:05;Mtrue
w ¼ 7:7 ± 0:05 and Mtrue

w ¼ 7:6 ± 0:05
magnitude ranges (Fig. 5a–d for the complete network, see Fig. S8 of the
Supplementary Information for the corresponding legacy performances).
The algorithm is able to track the ongoing magnitude released by
Mw = 9.0 ± 0.05 events in less than 1min after onset time until the rupture
completion. Note that from that time, given the light-speed nature of the
messenger signal, the estimation is virtually instantaneous (no time delay
between the black and red curves in Fig. 5a). ForMw = 7.8 ± 0.05 events, the
model is unable to provide a robust solution during the first 90 s following
onset time. From t = tEQ+ 90 s, the algorithm is able to provide a good
estimation of the earthquake's final magnitude: the lower sensitivity of the
algorithm to themomentmagnitude is thusMw = 7.8 (that is, theminimum
magnitude for which the predictions mode reaches the target value).

The distribution mode for Mw = 7.7 ± 0.05 events indeed oscillates
between the actual target value andMpred

w � 6:7. Such a bimodal distribu-
tion implies that a set of samples (with low signal-to-noise ratios) is not
characterized, while the remaining samples—associated with a low back-
ground noise level, an effective source mechanism, and/or an impulsive
source-time function (STF)—are accurately determined. We further illus-
trate the impact of the STF efficiency on our algorithm performance in
Fig. S9 of the Supplementary Information. Previous PEGS studies high-
lighted the crucial role of the STF onset or source duration on PEGS
observability15,17. A short-duration STF generates larger PEGS than a longer
STF, such that an impulsive STF associatedwith amoderateMw earthquake
may lead to PEGSdetection, while a very slowonset—even associatedwith a
very large rupture such as the 2004Mw 9.3 SumatraAndaman earthquake—
usually compromises a clear detection.We define the STF inefficiency as the
ratio of the time needed to release half of the final moment, compared to its
corresponding reference functional form3. As expected, an STF with a very
slow onset tends to hinder the source characterization, while average to fast
onsets lead to accurateMw estimates (for test samples above the sensitivity
threshold).

The distribution mode never reaches the target value for
Mw = 7.6 ± 0.05 events, that is, well below the algorithm resolving ability
(Fig. 5d). The predictions shown in Fig. 5e finally confirm that the esti-
mations rely solely on PEGS-based information: if we remove the PEGS
content from the synthetic waveforms (but keep the P-wave arrival infor-
mation), the model outputs a constant value aroundMpred

w ¼ 6:5. The 99%
confidence level of the noise samples lies below the Mw = 7.8 sensitivity
threshold estimated above at t ≥ tEQ+ 60 s.

Source parameter retrieval for recent real earthquakes
We test themodel on four recent large earthquakes: (1) the July 29, 2021Mw

8.2 Chignik subduction earthquake31,32, (2) the January 23, 2018 Mw 7.9
Kodiak strike-slip earthquake33,34, (3) the July 22, 2020 Mw 7.8 Shumagin
subduction earthquake35,36, and (4) the October 19, 2020Mw 7.6 Sand Point
intraslab earthquake37,38. The 2018 Mw 7.9 Kodiak earthquake is the only
event for which a PEGS observation has been reported, based on an optimal
stacking procedure15. The National TsunamiWarning Center (NTWC), in
charge of the tsunamimonitoring for Alaska, Canada, and the west coast of
theUnited States39, issued awarning alert after each of these earthquakes40,41.
For these events, we process the real waveforms as in the previous section
(carefully truncating them at their respective P-wave arrival time, before
removing the instrumental response and band-pass filtering), and shape
them into 2D images.

In Fig. 6, we compare the obtained solutions to the SCARDEC source-
time function database42 (for the accumulated moment magnitude) and to
theGCMTsolution (for the focalmechanism). For the 2021Mw 8.2Chignik
earthquake, the model estimates a Mw ≥ 8.0 around 60 s after onset time,
and a dip-slipmechanism. It converges towards a stabilized set of solutions,
starting 120 s after origin time (Fig. 6a), providing faster andmore accurate
estimations than approaches based on GNSS and seismic data43,44 (Fig. 6a).

Applied to a significantly smaller thrust rupture (the 2020 Mw 7.8
Shumagin earthquake), the model is still able to provide a good estimate of
the event size and a dip-slip mechanism, in less than 140 s (Fig. 6c). This
result first makes the Shumagin earthquake the lowest magnitude earth-
quake for which PEGS has been detected. Second, and more importantly,
this detection is associated with an accurate determination of its magnitude
and source parameters in very near real-time. This finding demonstrates
that the use of PEGS for rapid source characterization is not limited to
exceptional events, asMw 7.8 earthquakes occur on averagemore than once
a year at the global scale. Such a performance is made possible by the large
number of stations and by the very efficient learning of the noise-signal
separation. It has likely also been helped by the relatively low level of seismic
noise observed over the network of sensors prior to the Shumagin earth-
quake (see Fig. S10).

Despite a relatively high noise level prior to the 2018 Mw 7.9 Kodiak
earthquake (0.36 nm.s−2), the model is also able to estimate an accurate

Fig. 5 | Magnitude estimates obtained with the complete network on test set
samples. a–d Probability density of the magnitude estimations on samples with true
final magnitudes Mw = 9.0, Mw = 7.8,Mw = 7.7 and Mw = 7.6 ± 0.05, respectively.
The red lines show the distribution mode (solid) and the 5th and 95th percentiles
(dashed). The black lines show the median (solid) and 5th and 95th percentiles
(dashed) of the targets, for reference. e Probability density of the magnitudes esti-
mations on all test set events, when PEGS are removed from the synthetic
waveforms.
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moment magnitude and strike-slip rupture geometry (Fig. 6b), starting
120 s after onset time. As for the 2021Mw 8.2Chignik earthquake, the deep-
learning solution provides faster and more accurate magnitude estimates
than a GNSS-based approach45.

Finally, the 2020Mw7.6 SandPoint earthquake appears to bebelow the
model’s lower sensitivity, such that the model is unable to provide an
accurate and timely solution. We note that besides the significantly smaller
final seismic moment, the 2020 Mw 7.6 Sand Point earthquake also had a
slower onset: 15 s after onset time, the event only reachedMw = 7.0 (see the
SCARDEC reference curves of Fig. 6), which dampens the efficiency of
PEGS generation andmakes the accurate retrieval of the source parameters
even more challenging.

We further corroborate our findings by generating synthetic PEGS
according to theGCMTparameters of the real earthquakes described in this
section, and corrupting thewaveformswith 1000 time-windowsof empirical
noise randomly extracted from the test set. Gathering the magnitude pre-
dictions for each of these newly generated test samples provides uncertainty
estimates for each earthquake as a function of time (see Fig. S11).

We finally assess the benefit of using a deep-learning approach for
robust and fast characterization of these large earthquakes, compared to a
classical source inversion scheme. We reproduce the PEGS-based, linear
inversion documented for the 2011 Mw 9.1 Tohoku earthquake20, and
conduct inversions for the 2018 Mw 7.9 Kodiak and 2021Mw 8.2 Chignik
earthquakes. To evaluate uncertainties, we apply both approaches to 1000
test samples of PEGS synthetics augmentedwith 1000windows of empirical
noise. We find that the source inversions based on PEGS-alone are not
accurate enough to constrain the source characteristics (Fig. 7). The hin-
dering effect of seismic noise, apprehended and dampened in the deep-
learning approach, indeed leads to an overestimation of the magnitude and
unreliable focalmechanisms in the linear inversion scheme,highlighting the
need to combine a deep-learning method to a PEGS-based approach to
achieve the performance we obtain in Fig. 6.

Conclusions
We built on the deep-learning algorithm PEGSNet to estimate the magnitude
and—for thefirst time—the focalmechanismof large earthquakes innear real-

Fig. 6 | Source determination for recent large
Alaska earthquakes. Magnitude estimations (in
orange) as time grows from onset, for a the July 29,
2021 Mw 8.2 Chignik earthquake, b the January 23,
2018Mw 7.9 Kodiak earthquake, c the July 22, 2020
Mw 7.8 Shumagin earthquake, and d the October 19,
2020 Mw 7.6 Sand Point earthquake. The moment-
rate source-time functions from the SCARDEC
database42 are shown in blue, and the corresponding
accumulated moment magnitudes are shown in
black as a reference for each event. The estimated
moment tensor solutions are represented by the
orange focal mechanism plots, and the GCMT
solution is shown in black as a reference for each
event. GNSS-based Mw estimates are also shown in
green for comparison (a, b)43,45. The top panel relies
on the legacy channels, while the bottom three
panels rely on the complete network. For each sub-
plot, the gray vertical lines indicate P-wave arrival
times at the 10th and 100th stations closest to the
source.

Fig. 7 | Comparison of PEGS-based source estimations obtained by linear
inversion or deep-learning. Linear inversion (red) and deep-learning (green)
magnitude and moment tensor solutions, for a the 2021Mw 8.2 Chignik earthquake
and b the 2018 Mw 7.9 earthquake. The thick colored lines and focal mechanisms
correspond to solutions obtained using the real recorded waveforms, while the
density distributions illustrate the solutions behavior for 1000 synthetic samples,
obtained by the addition of PEGS corresponding to the earthquakes (based on their
GCMT parameters) and 1000 noise time-windows extracted from the test set. The
dashed lines show the 25th and 95th percentiles. The accumulated moment mag-
nitude obtained from the SCARDEC database42 and the GCMT solution are shown
in black as a reference for each event.
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time from PEGS, and tested the algorithm in the densely-instrumented region
of Alaska. The model outputs reliable solutions down to magnitudes key to
mitigate risks associated with tsunamis: the algorithm is able to estimate the
magnitude of synthetic earthquakes down to Mw = 7.8, 2 minutes after their
onset time, and to characterize their focal mechanism (thrust, strike-slip or
normal faulting). The model is able to provide robust solutions for three
earthquakes that recentlyoccurred in the region, in theMw[7.8–8.2]magnitude
range. We emphasize that there is no upper bound in magnitude that would
require amodification of the PEGS-based approach. In contrast, dealingwith a
wide rangeofmagnitudeswith seismicwavesusually requires special care or an
adaptationof themethod(either in the selectionof the setof sensors, to ensurea
valid point-source approximation, or in the data themselves, to avoid satura-
tion). Ourmethod could thus contribute to the ongoing efforts to improve and
refine tsunami warnings in the region46,47. The performance strongly relies on
thedensenetwork of broadband sensors recently deployed in the region. These
performances could be achieved in other earthquake-prone areas, and provide
an additional motivation to further instrument these regions.

Method
As actual PEGS observations are limited in number, we compute a large and
realistic synthetic PEGS database in order to train the convolutional neural
network. To do so, we (1) compute synthetic PEGSwaveforms generated by
an exhaustive set of possible earthquake sources, (2) download and process
an empirical noise database recorded by the considered set of broadband
sensors, and (3) gather the obtained waveforms into 2D labeled images.

Synthetic earthquake simulation, based on historical seismicity
To simulate the synthetic earthquakes, we first retrieve the historical
shallow seismicity (<60 km) reported by Global CMT in Alaska since
1976. We separate the resulting database into strike-slip faulting (plunge
of null axis above 45°), thrust faulting (plunge of tension axis above 45°),
the remaining sources are labeled as normal faults. We focus on the three
geographic zones described by the colored polygons in Fig. 2 of the
main text, which contain the majority of the strike-slip (in red), thrust
interface (in dark cyan), and extensional outer rise seismicity. The den-
sity distributions of the corresponding strike, dip, and rake angles are
shown in Fig. S1 of the Supplementary Information. Based on these
empirical distributions, we set the characteristics of a ‘realistic’ synthetic
seismicity:
1. To emulate a strike-slip seismicity, we extract the strike angle from a

uniform distribution Uf0°; 360°g, the dip angle from a triangular
distribution (lower limit = 55°, upper limit and mode = 90°), and the
rake angle from two normal distributionsN fμ ¼ 0°=180°; σ ¼ 15°g.

2. To emulate a thrust seismicity representative of the Alaska-Aleutian
subduction zone,we extract the strike angle fromanormal distribution
N fμ ¼ 250°; σ ¼ 15°g, the dip angle from a normal distribution
N fμ ¼ 25°; σ ¼ 7°g, and the rake angle from a normal distribu-
tionN fμ ¼ 90°; σ ¼ 20°g.

3. To emulate a normal seismicity representative of the extensional
context in the Alaska-Aleutian subduction fore-arc, we extract the
strike angle from a normal distributionN fμ ¼ 250°; σ ¼ 15°g, the dip
angle from a normal distribution N fμ ¼ 45°; σ ¼ 7°g, and the rake
angle from a normal distributionN fμ ¼ 270°; σ ¼ 10°g.

Source-time function (STF) database
We compute the moment-rate source-time function (STF) database
using the functional form yðtÞ ¼ μt exp�1=2ðλtÞ2 (where the initial
slope μ and the characteristic time scale λ(Mw) are optimized from
empirical STF datasets)3. The final moment magnitude Mw is extracted
from three uniform distributions: Uf5:5; 8:4g for normal, Uf5:5; 8:7g for
strike-slip and Uf5:5; 9:5g for thrust events. We account for the varia-
bility of STF duration for a given final magnitude, and add a multi-
plicative Brownian noise to replicate observed STF fluctuations. A large
selection of source-time functions from the training set is shown in
Fig. S12.

Data selection, and processing of noise and PEGS waveforms
Thedeployment of theAlaskaTransportableArray (codeTA)was completed
in 2017, and the network was operated by the Incorporated Research Insti-
tutions for Seismology (IRIS) from 2018 through 2020. It included the
installation of 194 new stations and the upgrade of 32 existing broadband
stations, leading to a regular grid of broadband seismometers with an 85 km
station spacing27.Around110TAstationswere transitioned toothernetworks
in 2019 and 2020 as part of a legacy network,mostly to theAlaska Earthquake
Center (code AK) and the Alaska Volcano Observatory (code AV), while the
remaining stations were removed during the 2021 field season.

We retrieve all the broadband data publicly available from 2018 to
2021, inside the geographic region shown in Fig. 1. Data processing is
performed as follows14: we remove the linear trend and the instrumental
response from day-long vertical records (BHZ channels), band-pass filter
the resulting traces between 2.0 mHz (high-pass Butterworth causal filter,
with two poles) and 30.0 mHz (low-pass Butterworth causal filter, with six
poles), and finally decimate the traces down to 1 Hz. Since PEGS are very-
low amplitude signals, we remove from the dataset the noisiest sensors, that
is, we only keep sensors whose median hourly standard deviation does not
exceed 1 nm.s−2.

Weuse theQSSPalgorithm17,29 to compute thePEGSGreen’s functions
in between each source and sensor locations, inside a 1D Earth model
(AK135). After the convolution with the prescribed source-time function,
the PEGS synthetic waveforms are band-pass filtered between 2.0 and
30.0mHz.

Architecture, labeling, and training
We build on PEGSNet’s original architecture21,22, which consists of a
sequence of convolutional blocks, followed by fully connected layers
(detailed schematic of the architecture in Fig. 3). Each convolutional block is
composed of a 2D convolutional layer (with a kernel of size = 3, stride = 1,
and padding = 1), a ReLU activation layer and a 2D dropout layer (with
probability p = 0.04). The successive convolutional layers are equivalent to a
series of filters, whose trainable weights are optimized during the CNN
training to extract the most meaningful features.

Toget thefinal datawaveform,weextract a randomnoise timewindow
from the empirical noise database, and add it to the PEGS waveforms. We
set each trace to zero after their respective P-wave arrival, clip thewaveforms
to a threshold value (±10 nm.s−2) in order to limit the influence of very noisy
traces, and finally normalize the resulting traces by the threshold value to
ensure an easier convergence of the optimizer. We gather the vertical noisy
PEGSwaveforms into 2D images (273 or 178 channels × 300 time samples),
the last time sample ranging from the synthetic earthquake origin time tEQ
to tEQ+ 300 s. We order the waveforms such that close-by sensors have
relatively close ranks inside the 2D image (see Fig. S2 of the Supplementary
Information).

Each input image is labeledwith the time-dependentmagnitudeMw(t)
(corresponding to the time t of the last sample in the input data sample) and
the source latitude and longitude21,22. We expand the dimension of the
output layer of PEGSNet from three to nine to take into account additional
labels (i.e., the six moment tensor components): this allows the model to
output a moment tensor solution. Each label is later normalized by its
respective extreme values during training.

We split the synthetic PEGS database into 70% training, 20% valida-
tion, and 10% test sets. The weights of the neural networks are optimized
during training (throughout 200 epochs, using the Adam optimizer) by
minimizing the smooth L1 loss (the cutoff for β = 0.3) between the targets
and the output values. The loss curves corresponding to the training of the
neural networks shown within this study are shown in Fig. S13.

Data availability
The broadband seismic data from the following networks were used in this
study (alphabetic order): the Alaska Geophysical Network (AK, https://doi.
org/10.7914/SN/AK), the National Tsunami Warning Center Alaska Seis-
mic Network (AT, 10.7914/SN/AT), the Alaska Volcano Observatory (AV,
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10.7914/SN/AV), the Canadian National Seismograph Network (CN,
10.7914/SN/CN), the Global Seismograph Network (II, 10.7914/SN/II), the
Global Seismograph Network (IU, 10.7914/SN/IU), the USArray Trans-
portable Array (TA, 10.7914/SN/TA).Waveformswere retrieved from IRIS
using the Python toolbox ObspyDMT48, and processed with the Python
toolboxObsPy49. SCARDEC source-time functionswere accessed on http://
scardec.projects.sismo.ipgp.fr.

Code availability
PEGSNet50 is built and trained using PyTorch51. The Python scripts used to
generate the input PEGS database and train the neural networks described
within this paper are available at the following GitLab repository (https://
gitlab.com/kjuhel/PEGSNet). Cartopy (https://scitools.org.uk/cartopy),
Matplotlib52, and perceptually uniform scientific colormaps53 were used for
plotting purposes.
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