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1 Introduction

1.1 The challenge of understanding individual variation in
immunosenescence

The global demographic is shifting towards an aged population (United Nations,

2019). Yet, it is our oldest members of society that are the most vulnerable to infectious

disease, reflecting immune system ageing, or “immunosenescence” (Glynn and Moss,

2020; Chen et al., 2021). Immunosenescence has two defining features: heightened

susceptibility to pathogens, and increased systemic, basal inflammation (Franceschi,

2000; Zerofsky et al., 2005; Benayoun et al., 2019), which is strongly linked to the

development of age-related diseases such as neurodegeneration and cancer (Franceschi

et al., 2018; Rea, 2018). Understanding the mechanisms of immunosenescence could offer

therapeutic potential in reducing age-associated morbidity (Neves and Sousa-Victor,

2020; Borgoni et al., 2021). However, individuals do not age at the same rate, with

variation arising from genotype (Burger and Promislow, 2006; Belsky et al., 2015),

including sex (Sampathkumar et al., 2020; Xirocostas et al., 2020; Bronikowski et al.,

2022), and from the environment. While most mechanistic biology research ignores this

diversity, largely due to the practicality of using single genotypes and sexes, individual

variation will determine the response to therapeutics targeting ageing pathologies (Meyer

et al., 2013; Fuselli, 2019). Here, we champion the use of Drosophila melanogaster as an

ideal model for the early stages of an approach that aims to leverage population variation

to understand immunosenescence and how to treat it. We briefly describe the rich history

of this model system in the fields of the biology of ageing, biogerontology and

immunology, and their conceptual and technical convergence on the fly model. We

outline the unique potential of Drosophila in elucidating variation in immunosenescence,

its underlying mechanisms and its treatments.
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1.2Drosophila’s central role in formulating
evolutionary theories of ageing—why do
organisms age?

Drosophila have proven pivotal in the synthesis and

empirical testing of the evolutionary theories of ageing, which

provide a conceptual framework within which to understand the

biology of ageing. Experimental evolution experiments

highlighted a trade-off between longevity and early-life

fecundity (Rose and Charlesworth, 1981; Luckinbill and Clare,

1985; Rose, 1991). Such fitness trade-offs are commonly seen in

insects (Flatt et al., 2013) and give credence toWilliams’ theory of

antagonistic pleiotropy (Williams, 1957). These trade-offs may

rely on resource allocation between germline and “disposable”

soma (Kirkwood, 1977), and are not a universal, but rather a

contextual, quid pro quo that depends on environmental factors.

The range of phenotypic expression of a genotype across varying

environments is called phenotypic plasticity. It is an important

source of natural variation for life history traits. This has been

demonstrated in multiple settings, such as temperature and

commensal status, using Drosophila (e.g., Lee et al., 2019;

Huang et al., 2020). An influential evolutionary theory, the

resource reallocation hypothesis, suggests that natural

selection may favour phenotypically plastic responses in

allocation, prioritising somatic maintenance during scarcity,

and reproduction in replete settings (Shanley and Kirkwood,

2000; Regan, 2020). Drosophila has offered an easy-to-

manipulate empirical platform to understand these

phenotypically plastic responses to nutritional resources, and

their associated trade-offs (Lee et al., 2008; Jensen et al., 2015; Lee,

2015; Zanco et al., 2021). These studies have served to shape our

understanding of key evolutionary concepts on the consequence

of reproductive investment, and phenotypically plastic responses

to the environment, in determining rates of ageing.

1.3 Drosophila’s central role in
biogerontology—how can we slow down
ageing?

The goal of Biogerontology, born out of evolutionary biology,

is to enhance healthy ageing by limiting age-associated multi-

morbidity through therapeutic intervention. Key to this goal is a

thorough understanding of the underlying molecular

mechanisms that govern the ageing process. Ageing has been

studied using flies for over a century (Hyde, 1913; Piper and

Partridge, 2018). One of the observations fundamental to

modern-day biogerontology was the remarkably beneficial

effects of dietary restriction on ageing across taxa. The use of

invertebrate model organisms, such as flies and worms, has given

insight into the dietary macronutrients, genes and pathways

underpinning this effect (Grandison et al., 2009; Piper and

Partridge, 2018). These studies have not only implicated

environment-sensing pathways like IIS (Clancy et al., 2001;

Tatar et al., 2001), and TOR (Vellai et al., 2003; Kapahi,

2004), but also numerous longevity-associated pathways

including Toll, Ras-ERK-ETS, AMPK, and Myc pathways

(Piper and Partridge, 2018). The extension of lifespan through

targeted manipulation of pathways such as TOR was initially

demonstrated in invertebrates (Vellai et al., 2003), including

Drosophila (Bjedov et al., 2010), before it was shown to be

effective in mammals (Harrison et al., 2009).

1.4 Drosophila’s central role in
immunology—the genetics of innate
immunity

The famous intersection of genetic tractability with

immunology following the identification of Toll as an immune

signalling molecule in Drosophila (Lemaitre et al., 1996), and

later characterisation of mammalian Toll-like pathogen-

recognition receptors (Medzhitov et al., 1997), sealed

Drosophila’s fate as an indispensable model system in innate

immunity research. Indeed, there are multiple conserved

immune components of the model. Immune signalling

culminates in expression of antimicrobial peptides (AMPs)

and immune effectors via conserved NF-kB-like transcription

factors (Lemaitre and Hoffmann, 2007; Buchon et al., 2014).

Haematopoiesis, controlled by conserved transcription factors

(Evans et al., 2003), gives rise to macrophage-like hemocytes

which share a common superfamily of phagocytic receptors with

humans (Kurucz et al., 2007). Epithelial immunity, such as the

gut, is governed by conserved immune signalling, regulates

commensal interactions, and is structurally similar to that of

humans (Liu et al., 2017).

1.5 Power to the fly: Drosophila as a nexus
for immunity, evolution and
biogerontology to understand variation in
immunosenescence

The rich history of Drosophila as a model system, spanning

more than a century, has produced biological insights too

numerous to mention. Here, we have briefly detailed the

contributions of the model to three, interconnected

disciplines. The power, we argue, in using Drosophila as a

model in immunosenescence, which shares many similarities

with that of mammals and has been reviewed elsewhere (Flatt

and Garschall, 2018; Min and Tatar, 2018; Sciambra and

Chtarbanova, 2021), comes from the conceptual and technical

convergence of these fields on the system (Figure 1). Coupling the

genetic and technical approaches possible in Drosophila with an

evolutionary biology approach to address different forms of

variation in immune responses will not only provide
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mechanistic insights into immunosenescence, but will also guide

our ultimate goal of treating it.

1.5.1 Genetic variation
Genetic and phenotypic heterogeneity in immune responses

are ubiquitous across species. Panels of fully-sequenced, isogenic

lines derived from wild-caught Drosophila (Mackay, 2012;

Grenier et al., 2015), or from extensive recombination (King,

2012), are an important community resource for understanding

the genetic bases of complex phenotypic traits. These lines have

been used to explore natural variation in, and genetics

underpinning, susceptibility to pathogens. Susceptibility is

determined by both resistance, which describes the ability to

control pathogen burden (Wang et al., 2017; Palmer, 2018;

Chapman et al., 2020) and disease tolerance (Howick and

Lazzaro, 2017), which describes the ability to cope with

infection and represents a less well-understood immune

strategy (Soares et al., 2017; Schneider, 2021). Drosophila

offers an ideal model to address the elusive processes

determining disease tolerance, as they offer readily measurable

fitness metrics and genetic tractability (e.g., Kutzer and Armitage,

2016; Duneau et al., 2017a; Gupta and Vale, 2017). Assessing

variation in disease tolerance to Providencia rettgeri has

implicated several biological processes, such as genes related

to the endoplasmic reticulum (Howick and Lazzaro, 2017),

which was further linked to tolerance in a transcriptomic

analysis of infection response (Troha et al., 2018). These

studies have granted some initial insight into the physiology

underpinning this relatively elusive immune strategy, and genetic

variation therein.

Use of isogenic panels could be extended to explore natural

variation and plasticity in immunosenescence and the immune

strategies affected by age. The role for declines in disease

tolerance, and its variation, in driving immunosenescence is

currently a black box, largely due to our lack of

understanding of the mechanisms underpinning tolerance.

There is a dearth of genotypically high-powered experiments

assessing genetic variation in age-related immune dysregulation,

despite prevalent genotype-by-age interactions (Lesser et al.,

2006; Felix et al., 2012).

FIGURE 1
Drosophila’s rich history in the fields of evolutionary biology of ageing, biogerontology and immunity have endowed the model with multiple
conceptual approaches and techniques. The functional genetic approaches, ease of environmental and sex manipulation render it invaluable in
understanding natural variation in immunosenescence and its potential treatments. Created with BioRender.com.
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By performing genome wide association analysis (GWAS;

e.g., King, 2012; Mackay, 2012) when assessing such variation in

immunosenescence among the isogenic panels, candidate genes

and pathways could potentially be identified, and ultimately

validated. The ability to conditionally manipulate virtually any

gene in the fly genome, through the spatiotemporal control of

transgene expression via binary genetic systems (Brand and

Perrimon, 1993; Osterwalder et al., 2001), makes validation of

candidate genes possible in high throughput. These tools grant

the model relative ease in assessing canonical and non-canonical

components of immune defence and their impact on

immunosenescence over ageing. Additionally, Drosophila are

tractable to reverse genetic knock-out approaches using

CRISPR/Cas9 technology, as has been demonstrated in the

functional assessment of individual AMPs (Hanson et al.,

2019). Recently, the potential of such CRISPR lines in the

functional assessment of AMPs over ageing has been

demonstrated. While ageing is associated with expansion of

the AMP repertoire and loss of specificity, possibly indicative

of immune dysregulation (Shit et al., 2022), their collective role in

regulating microbiome dysbiosis was shown to be a critical

determinant of lifespan (Hanson and Lemaitre, 2022), the

control of which has previously been linked to lifespan and

ageing pathologies (Guo et al., 2014; Clark et al., 2015; Li et al.,

2016) Finally, fluorescent labelling of immune tissues, such as

hemocytes (e.g., Sanchez Bosch et al., 2019; Krejčová, 2019;

Chakrabarti and Visweswariah, 2020; Kierdorf, 2020; Coates,

2021), opens the possibility to assess their contribution to

immune, and systemic, ageing.

Flies are highly amenable to experimental evolution, which

when coupled with genomic sequencing, allows inferences to be

made about the genetic response to a dominant selection

pressure, such as delayed reproduction or longevity (McHugh

and Burke, 2022). This technique can be used to explore trade-

offs between immunity and life-history traits (McKean et al.,

2008; Shahrestani et al., 2021), or lack thereof (Faria, 2015;

Gupta, 2016). In lines selected for longevity, an improvement

of measurable immune responses was observed (Fabian, 2018),

whereas selection for resistance against a specific fungal pathogen

was costly to lifespan (Shahrestani et al., 2021). It is possible, and

remains to be tested, that improved early immunity has

detrimental effects on the rate of immunosenescence,

ultimately affecting ageing.

1.5.2 Plasticity in immunity
Immunology research has historically focused on the genetics

underpinning immune responses within a controlled

environment, but rarely assesses reaction norms under varying

conditions (Martin, 2021). Drosophila has offered insight into

such immune plasticity, including genotype-by-temperature

(Lazzaro et al., 2008), and genotype-by-diet interactions using

isogenic lines. The observed effects of diet on resistance

(Unckless et al., 2015) underscore the importance of nutrition

in determining immune responses (for e.g., Galenza, 2016;

Ponton et al., 2020). Similarly, disease tolerance plasticity was

observed in a diet- and pathogen-specific manner (Howick and

Lazzaro, 2014; Kutzer and Armitage, 2016). Through the

assessment of genotype-by-environment interactions, these

investigations have highlighted an intrinsic link between

immunity and metabolism, as has been confirmed elsewhere,

for example, the induction of immune-response genes

downstream of IIS and TOR nutrient-sensing pathways

independently of Toll or Imd signalling (Becker et al., 2010;

Varma et al., 2014). Thus, environmental factors are an

important source of variation in immunity, as predicted by

evolutionary theory.

Little is known about phenotypic plasticity in the

manifestation of immunosenescence. Yet, the question “what

kind of environments accelerate or slow down

immunosenescence?” is crucial to an evolutionary biology

approach in treating immune decline. Plasticity in immune

responses in the face of varying environments early in life

(Lazzaro and Little, 2009; Leech, 2019) is likely to have

consequences on immunosenescence. While such plasticity is

often ignored, or difficult to address, as in mouse studies (Martin,

2021), assessing the expression of immune responses across

differing environments in flies is relatively tenable (McKean

and Nunney, 2005; Lazzaro et al., 2008; Unckless et al., 2015).

Pharmacological intervention represents a highly relevant

example of environmental manipulation, and we have barely

scratched the surface in understanding genetic variation

underpinning responses to geroprotective treatments (but see

Lind, 2017; Rohde et al., 2021). Through robust genetic

validation, flies have provided mechanistic insight into the

action of multiple potential geroprotective drugs (for e.g.,

Bjedov et al., 2010; Slack et al., 2015; Castillo-Quan et al.,

2019). Drosophila is the ideal candidate model to move

towards high-powered studies addressing variation in response

to either environmental (e.g., dietary restriction) or

pharmacological (e.g., therapeutic mTOR attenuation)

interventions targeting ageing, including immunosenescence.

The crucial next step in biogerontology is to capture

individual variation in responses to therapeutics, which, in

contrast to mammalian systems, can be tested with relative

ease in Drosophila.

1.5.3 Sex bias in immunity
Sex differences in immune responses, which have been

observed across taxa (Kelly et al., 2018; Metcalf et al., 2020),

are prevalent in Drosophila infectious disease models (Belmonte

et al., 2020). Sex differences in the immune response appear

contextual in Drosophila (Belmonte et al., 2020), mirroring the

lack of ubiquitous sex differences across taxa (Kelly et al., 2018).

Sex differences in infection outcome are likely to be dictated by a

complex interplay of environmental factors, pathogen-specific

consequences of infection, and the different life-histories of the
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sexes. Notwithstanding this complexity, fruit flies have offered

mechanistic insight into pathogen-specific, dimorphic responses

to infection, such as sex differences in the Toll pathway (D.

Duneau et al., 2017a; Shahrestani et al., 2018), and sex-by-

genotype interactions determining viral load and transmission

potential of Drosophila C virus (Siva-Jothy and Vale, 2021).

The inclusion of both sexes when using isogenic, transgenic

or outbred Drosophila lines will invariably provide insight into

sex differences in immunosenescence. In particular, examining

dimorphism across genetic panels could address the interaction

of sex and ageing on immunosenescence. Furthermore, the

ability to remove the gonads prior to next generation

sequencing facilitates the examination of somatic, sex

differential gene expression, as was done to compare the

immune response to P. rettgeri (Duneau et al., 2017b).

Coupling the cell autonomous sex determination system of

Drosophila (Salz and Erickson, 2010) with their robust genetic

toolkit allows the manipulation of sex in a tissue-specific manner,

as has been demonstrated in exploration of sexual dimorphisms

in physiology (Hudry et al., 2016; Millington et al., 2021) and in

the infection response and pathology of the ageing gut (Regan

et al., 2016). This offers an unparalleled system to tease apart how

tissue-specific and systemic sex differences contribute to

individual variation in immunosenescence. Considering the

conserved dimorphism in both immune function and

responses to drugs that delay ageing (Bjedov et al., 2010;

Arriola Apelo and Lamming, 2016; Bitto et al., 2016; Regan

et al., 2016; Regan et al., 2021; Strong et al., 2020); Drosophila

genetic techniques could be leveraged for the early stages of

developing sex-optimised drug treatments for

immunosenescence.

2 Conclusion

Immune decline over ageing is linked to age-associated

morbidity through increased pathogen susceptibility and

dysregulated inflammation. Yet, immunosenescence remains

relatively elusive where individual-to-individual variation in the

onset and extent is virtually unknown, potentially determining

responses to treatments targeting the decline. Steps to capturing

population diversity in immune responses, arising from

genotype, phenotypic plasticity and sex, discussed here,

would provide mechanistic insight if applied to

immunosenescence. We argue that Drosophila is uniquely

situated to address the challenge of variation in ageing. Its

vast history as a model in the fields of evolutionary biology,

biogerontology, and immunity offers a foundation of

knowledge about the species and a matchless system of

tractable genetics, statistical power, and environmental

manipulation. Using Drosophila to initiate an evolutionary

biology approach to immunosenescence would address

population diversity and, ultimately, aid the development of

personalised therapeutics.
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