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ABSTRACT Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a critical-priority
antibiotic resistance threat that has emerged over the past several decades, spread
across the globe, and accumulated resistance to last-line antibiotic agents. While
CRKP infections are associated with high mortality, only a subset of patients acquir-
ing CRKP extraintestinal colonization will develop clinical infection. Here, we sought
to ascertain the relative importance of patient characteristics and CRKP genetic back-
ground in determining patient risk of infection. Machine learning models classifying
colonization versus infection were built using whole-genome sequences and clinical
metadata from a comprehensive set of 331 CRKP extraintestinal isolates collected
across 21 long-term acute-care hospitals over the course of a year. Model perform-
ance was evaluated based on area under the receiver operating characteristic curve
(AUROC) on held-out test data. We found that patient and genomic features were
predictive of clinical CRKP infection to similar extents (AUROC interquartile ranges
[IQRs]: patient = 0.59 to 0.68, genomic = 0.55 to 0.61, combined= 0.62 to 0.68).
Patient predictors of infection included the presence of indwelling devices, kidney
disease, and length of stay. Genomic predictors of infection included presence of the
ICEKp10 mobile genetic element carrying the yersiniabactin iron acquisition system
and disruption of an O-antigen biosynthetic gene in a sublineage of the epidemic
ST258 clone. Altered O-antigen biosynthesis increased association with the respira-
tory tract, and subsequent ICEKp10 acquisition was associated with increased viru-
lence. These results highlight the potential of integrated models including both
patient and microbial features to provide a more holistic understanding of patient
clinical trajectories and ongoing within-lineage pathogen adaptation.

IMPORTANCE Multidrug-resistant organisms, such as carbapenem-resistant Klebsiella
pneumoniae (CRKP), colonize alarmingly large fractions of patients in regions of en-
demicity, but only a subset of patients develop life-threatening infections. While
patient characteristics influence risk for infection, the relative contribution of micro-
bial genetic background to patient risk remains unclear. We used machine learning
to determine whether patient and/or microbial characteristics can discriminate
between CRKP extraintestinal colonization and infection across multiple health care
facilities and found that both patient and microbial factors were predictive.
Examination of informative microbial genetic features revealed variation within the
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ST258 epidemic lineage that was associated with respiratory tract colonization and
increased rates of infection. These findings indicate that circulating genetic variation
within a highly prevalent epidemic lineage of CRKP influences patient clinical trajec-
tories. In addition, this work supports the need for future studies examining the mi-
crobial genetic determinants of clinical outcomes in human populations, as well as
epidemiologic and experimental follow-ups of identified features to discern general-
izability and biological mechanisms.

KEYWORDS infection, Klebsiella pneumoniae, machine learning, antibiotic resistance,
genomic epidemiology, hospital infections, whole-genome sequencing

Infections due to multidrug-resistant organisms (MDROs) lead to hundreds of thou-
sands of deaths worldwide each year (1). Carbapenem-resistant Enterobacterales

(CRE) are a critical-priority antibiotic resistance threat that has emerged over the past
several decades, spread across the globe, and accumulated resistance to last-line anti-
biotic agents (2, 3). In the United States (U.S.), CRE infections are primarily caused by
the sequence type (ST) 258 strain of carbapenem-resistant Klebsiella pneumoniae
(CRKP), which has become endemic in regional health care networks (3–7). In this back-
ground of regional endemicity, the risk of patient exposure to CRKP is high, as evi-
denced by alarmingly high rates of colonization, especially in long-term care settings
(7, 8). However, even among critically ill patients residing in long-term care facilities,
not all colonized patients develop clinical infections that require antibiotic treatment
(3, 9). Currently, our understanding of the factors that influence whether a colonized
patient develops an infection is incomplete.

In addition to clinical characteristics of patients (10), the genetic background of the
colonizing strain may also influence the risk of infection, as there is extensive intraspe-
cies variation in antibiotic resistance and virulence determinants harbored by K. pneu-
moniae (3). To date, most studies of virulence determinants have been carried out in
model systems (11, 12) or examined in human populations without considering patient
characteristics or clinical context (12, 13). One recent study investigated virulence
determinants in K. pneumoniae clinical isolates while controlling for patient characteris-
tics (14). However, this was a single-site study with a focus on carbapenem-susceptible
K. pneumoniae, thereby not addressing the impact of genomic variation in antibiotic-
resistant lineages that circulate in global health care systems.

Here, we sought to understand the importance of both patient factors and genomic
features in determining whether a patient is colonized or infected with ST258 CRKP.
Importantly, we restricted our comparison to patients with extraintestinal CRKP coloni-
zation versus infection. We reasoned that this comparison would reveal the patient
and microbial factors that influence risk for infection when CRKP is present in an extra-
intestinal site, eliminating confounding by factors associated with translocation from
the gastrointestinal tract. To gain an unbiased assessment of influential patient and mi-
crobial factors in a high-risk population, we leveraged a comprehensive set of all clini-
cal isolates and patient metadata collected from 21 long-term acute-care hospitals
(LTACHs) across the U.S. over the course of a year. Machine learning models rigorously
trained and tested on these data revealed that patient and microbial factors were simi-
larly predictive of ST258 CRKP colonization versus infection, indicating that both con-
tribute to infection risk. Moreover, examination of predictive genomic features
revealed genetic variation within the epidemic ST258 lineage of CRKP that was associ-
ated with increased respiratory colonization and higher infection rates.

RESULTS

Of 355 clinical CRKP isolates from 21 LTACHs across the U.S. (15), we classified 149
(42%) of the isolates as representing extraintestinal infection based on modified
National Healthcare Safety Network (NHSN) criteria (7) (see Fig. S2 and Tables S1 to S3
in the supplemental material). The rest of the isolates were classified as representing
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extraintestinal colonization. Stratified by anatomic site, we classified 29/29 (100%)
blood isolates as infection, 69/196 (35%) respiratory isolates as infection, and 51/130
(39%) urinary isolates as infection (Table S3). More than 90% of patient isolates were
from the epidemic CRKP lineage ST258 (Table S1). Patients harboring different sequence
types of CRKP showed no significant differences in infection/colonization status or anatomic
site of isolation, and no substantive differences in clinical characteristics (see the supplemen-
tal material). Thus, we decided to limit our analysis to ST258 to improve our ability to discern
whether genetic variation within this dominant strain is associated with infection.

The CRKP epidemic lineage ST258 shows evidence of sublineage variation in
virulence and anatomic site of isolation.We next evaluated if there exist sublineages
of ST258 with altered virulence properties by looking for clustering of isolates by infec-
tion on the whole-genome phylogeny (Fig. 1; also see the supplemental material) (16).
Infection status was nonrandomly distributed on the phylogeny (P=0.002), supporting
our hypothesis that the genetic background of CRKP influences infection. We per-
formed a similar clustering analysis to look at potential niche-specific adaptation to
certain anatomic sites (Fig. 1) and found that respiratory (P=0.001) and urinary
(P=0.013) isolates cluster on the phylogeny but blood isolates do not (P=0.21). This
analysis indicates that, in addition to patient features, intrastrain variation in virulence
and adaptation to the urinary and respiratory tract might influence whether patients
develop an infection.

Both patient and CRKP ST258 genetic characteristics are weakly predictive of
infection, with relative performance being highly facility dependent. We next per-
formed machine learning using L2 regularized logistic regression to quantify the ability
of patient and microbial genetic characteristics to predict CRKP ST258 infection
(Fig. S1). To prevent over- or underfitting and control for facility-level biases, we gener-
ated 100 train/test data splits, wherein a given LTACH was included only in either the
train or test set. Each LTACH occurred a median of 24 times (range 13 to 32) in the test
data split. In this way, we were able to identify patient and CRKP ST258 strain charac-
teristics consistently associated with infection or colonization across data splits and
thus across patient populations in different health care facilities.

First, we sought to understand if patient and genomic features were individually
predictive of CRKP ST258 infection. To this end, we independently evaluated patient
characteristics as well as three different genomic feature sets for their ability to classify
colonization and infection. The three genomic feature sets were uncurated genomic
(including single nucleotide polymorphisms [SNPs], indels, insertion sequence [IS] ele-
ments, and accessory genes), uncurated grouped genomic (variants grouped into
genes, akin to a burden test, e.g., reference 17), and curated genomic (features

FIG 1 Infection and anatomic site cluster on the phylogeny. Maximum likelihood phylogenetic tree of
all isolates including infection or colonization classification for each isolate and anatomic site of
isolation. The scale bar to the right of the phylogeny shows the branch length in substitutions per
site. Testing for nonrandom distribution of isolates on the phylogeny (see the supplemental material)
revealed clustering of infection, respiratory, and urinary isolates on the phylogeny, respectively.
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identified using Kleborate [18]). Across the 100 different train/test splits, we observed
that the average predictive performance was weak, with each of the genomic and
patient feature sets predictive of infection to a similar degree (all 1st-quartile areas
under the receiver operating characteristic curve [AUROCs]. 0.5; median range = 0.55
to 0.68 [Fig. 2A]; area under the precision recall curve [AUPRC] [Fig. S3A]). Additionally,
no one feature set was consistently the most predictive (e.g., Fig. 2B and C; all compari-
sons P. 0.30; see the supplemental material for P value calculation). Furthermore, for
each feature set the AUROCs were distributed such that the test AUROC ranged from
below 0.5 to over 0.7, depending on how the data were split (i.e., which facilities
appear in the train/test sets). This variation in model performance across different
train/test sets suggests that the association of CRKP ST258 strain and patient character-
istics with infection or colonization varies across facilities.

Integration of patient and CRKP strain features does not improve discriminative
performance of overall or anatomic site-specific models. To determine if the predic-
tive power of patient and genomic features is additive, and if combining these dispar-
ate feature sets improved validation on held-out facilities, we built models including
both patient and curated genomic features. The discriminative performance of the
models based on the combined feature set was not significantly greater than that of
the individual feature sets (Fig. 2A, all P$ 0.20). Thus, despite variation in the predic-
tive capacity of genomic and patient features across facilities (Fig. 2C), combining the
two sets did not improve overall performance. Furthermore, we found that there was
no significant difference in model performance between L2 regularized logistic regres-
sion, elastic net, random forest, and support vector machines with a radial basis kernel
(Fig. S3B, all P. 0.1). Focusing on anatomic site-specific L2 regularized logistic regres-
sion models revealed similar trends, where classification performances were similar for
respiratory and urinary tract-specific models, and the relative predictive capacity of
patient and CRKP ST258 strain features varied across facility subsets (Fig. S3C and D).

Some patient and genomic features consistently discriminate colonization and
infection. After evaluating the predictive capacity of models, we next sought to iden-
tify patient and CRKP ST258 strain characteristics that are most associated with infec-
tion or colonization. To this end, we identified those patient and genomic features that
consistently improved model performance across the 100 different data splits (see
Materials and Methods). Evaluating the importance of features in this way provides
insight into those characteristics that generalize across different facility subsets. This

FIG 2 Test AUROCs for various classifiers identifying CRKP colonization versus infection vary substantially across
data splits. (A) Test AUROCs for 100 L2 regularized logistic regression models different using train/test splits. All
isolates from a given LTACH were included in either the training split or the testing split for each data split.
We built models using five different feature sets, keeping the same 100 data splits. AUROCs of different feature
sets were not significantly different. (B and C) In the right two panels, the curated genomic feature set AUROCs
are compared to the uncurated genomic feature set AUROCs (B) and the patient feature set AUROCs (C). Each
point is the resulting pair of AUROCs for models built with the same data split but the two respective feature
sets. The dotted lines in all 3 panels indicate the AUROC for choosing an outcome randomly (0.5); anything
below the line is worse than random, and anything above the line is better than random. The solid diagonal
line in the right two panels is the line y= x; points below the line correspond to a higher curated genomic
AUROC for that data split, and points above the line correspond to a higher uncurated genomic AUROC (B) or
patient AUROC (C), respectively. The colors in panels B and C correspond to the colors in panel A; the points in
a given colored area indicate that that feature set had the higher AUROC for that data split. In both cases, one
feature set does not consistently outperform the other (P=0.4; see the supplemental material for P value
calculation). AUROC, area under the receiver operating characteristic curve.
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approach was taken for both overall and anatomic site-specific models to identify fea-
tures predictive of different anatomic sites of infection (Fig. 3 and Fig. S4).

Several patient features were consistently associated with infection in the overall analy-
sis, including presence of a gastrostomy tube, presence of a central venous catheter, acute
kidney injury, and severe chronic kidney disease (Fig. 3), all markers of critically ill patients.
Only a small number of genomic features were consistently associated with infection or
colonization (Fig. 3). The genomic features associated with colonization were all antibiotic
resistance determinants. Conversely, all but one of the genomic features positively associ-
ated with infection (3/4) are related to virulence. The ICEKp10 element is positively associ-
ated with infection and carries colibactin and two different types of yersiniabactin, a previ-
ously identified K. pneumoniae virulence determinant (12). Colibactin is a toxin (3), and
yersiniabactin is an iron-scavenging system that has been identified in previous animal
and human studies as being associated with virulence (3, 11). Additionally, insertion
sequence-mediated disruption of the O-antigen biosynthetic gene kfoC (see Materials and
Methods and Fig. S5A for insertion sequence identification) was associated with respiratory
infection. The O-antigen of lipopolysaccharide (LPS) is a known antigenic marker, although
association with a specific anatomic site has not been noted (19).

A sublineage of ST258 clade II appears to have sequentially evolved enhanced
adaptation for the respiratory tract and increased virulence. We noted that kfoC
disruption is largely confined to a sublineage of ST258 present across 12 LTACHs in
California (Fig. 4 and Fig. S5). Consistent with this feature being associated with respira-
tory infection, the disrupted kfoC lineage is enriched in respiratory isolates (82/118
[69%] isolates in the disrupted kfoC lineage are respiratory isolates versus 101/213
[47%] in all other isolates; Fisher’s exact P=0.0001), suggesting that this lineage is asso-
ciated with increased capacity for respiratory colonization. Furthermore, a subset of

FIG 3 Features consistently associated with colonization or infection sometimes differ between the
overall, respiratory, and urinary models. Feature-specific improvement in model performance,
measured as the mean difference between test and permuted AUROC (see Materials and Methods),
of features found to be consistently associated with colonization or infection in at least one of the
following analyses: overall, respiratory specific, and urinary specific. We consider features to be
associated with infection/colonization if the AUROC difference was greater than zero in over 75% of
the 100 data splits. The vertical solid black line indicates a difference of zero (i.e., the feature provides
no improvement to model performance). Horizontal dotted lines separate features associated with
urinary but not respiratory isolates (top), both urinary and respiratory (or all) isolates (middle), or
respiratory but not urinary isolates (bottom). Bla, beta-lactamase; res, confers resistance to that
antibiotic class; AUROC, area under the receiver operating characteristic curve.
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isolates in the disrupted kfoC sublineage harbor the ICEKp10 element containing yersi-
niabactin. Examination of these genetic events in the context of the whole-genome
phylogeny revealed that disruption of kfoC occurred first, followed by at least two dif-
ferent acquisitions of ICEKp10 (Fig. 4). Within the disrupted kfoC lineage, isolates with
ICEKp10 are enriched in infection (31/55 [56%] isolates with ICEKp10 are infection iso-
lates versus 16/63 [25%] isolates without ICEKp10, Fisher’s exact P=0.00065), support-
ing an increase in virulence after acquisition of ICEKp10. It is important to note that the
observed clinical associations with ICEKp10 and kfoC disruption do not demonstrate
causality, as we cannot rule out the role of correlated genetic variation.

DISCUSSION

There have been numerous studies aimed at identifying risk factors for health care-
associated infections caused by prominent antibiotic resistance threats. For the most
part, these studies have found the dominant risk factors to be linked to the magnitude
of exposure (e.g., length of stay or colonization pressure), use of antibiotics, and overall
comorbidity (20). What remains unclear is if in addition to these clinical features, the

FIG 4 Select epidemiologic and genomic features visualized on the phylogeny indicate that a subclade of
ST258 clade II may exhibit enhanced niche-specific adaptation and virulence. ST258 maximum likelihood
phylogeny with the tip labels colored by KPC gene. The blue box indicates the sublineage with apparent
altered niche-specific adaptation that acquires an additional virulence locus. The heatmap beside the tree
indicates information about the isolate: from left to right, if it is a respiratory isolate, if it is an infection isolate,
if kfoC is disrupted, and if it contains ICEKp10. Disrupted kfoC was associated with infection in the overall and
respiratory machine learning analyses, and ICEKp10 presence was associated with infection in the overall
analysis. The scale bar to the top left of the phylogeny shows the branch length in substitutions per site. ybt,
yersiniabactin; ybt0 and ybt17 are two ybt STs defined by Kleborate.

Lapp et al.

March/April 2021 Volume 6 Issue 2 e00177-21 msystems.asm.org 6

https://msystems.asm.org


genetic variation in circulating resistant lineages also contributes to patient risk of
infection. Here, we addressed this question for CRKP ST258 in a comprehensively
sampled cohort of patients from 21 LTACHs across the U.S. Overall, we found that,
while neither patient nor CRKP ST258 genetic features have high predictive accuracy
on held-out test data, both feature sets were independently associated with infection,
with one or the other being more predictive on different facility subsets. Moreover, the
integration of clinical and genomic data led to the discovery of an emergent subline-
age of the epidemic ST258 clone that may have increased adaptation for the respira-
tory tract and is more strongly associated with infection.

One strength of our machine learning approach is that we were able to measure
the variation in discriminative performance across 100 train/test iterations that differed
in which facilities were included in train and test sets. We found that performance var-
ied greatly depending on how facilities were allocated to train and test sets, highlight-
ing how smaller studies could overestimate or underestimate the discriminative ability
of both their model and individual features. Variation in model performance across
facilities could be due to facility-level heterogeneity leading to differences in the preva-
lence of predictive patient or genomic features in the different test sets. For instance,
certain facilities may have patient populations skewed toward individuals with charac-
teristics that are predictive of infection. Alternatively, certain geographic regions may
have CRKP ST258 strains that are more virulent than in other regions. These differences
could lead to a higher predictive power for certain facilities compared to others.
Another possible explanation for variation in model performance is that the critically ill
nature of LTACH patients may be such that most patients are actually highly suscepti-
ble to infection (i.e., many patients colonized with CRKP may ultimately develop an
infection). However, it is noteworthy that despite these potential challenges in creating
generalizable models, our analysis did yield predictors of infection and colonization
consistent across test sets and thus across LTACHs.

We built classifiers including all genomic features as well as a curated subset of fea-
tures from Kleborate (18) and found that the two are similarly predictive of infection.
However, while the uncurated feature set presented challenges with downstream
interpretation, our analyses on the curated genomic features (18) facilitated novel
insights into potential evolutionary trajectories of anatomic site-specific adaptation
and virulence. For example, we observed that disruption of the O-antigen biosynthetic
gene, kfoC, is associated with isolation from the respiratory tract. While we cannot
determine from our machine learning analysis if disruption of kfoC is directly causal,
the biological plausibility of an altered O-antigen structure mediating evasion of innate
immunity and/or other beneficial interactions with the host makes this a strong candi-
date for follow-up experiments. Supporting this hypothesis, a previous study found
that absence of O-antigen is associated with decreased virulence, but not decreased
intrapulmonary proliferation, in a murine model (21). In addition, we noted that a num-
ber of antibiotic resistance determinants were associated with colonization. We
hypothesize that this observation could be a consequence of longer duration of resi-
dence being associated with increased exposure to off-target antibiotics (22). Finally,
we also saw evidence that, after acquiring the virulence factors yersiniabactin and coli-
bactin on the ICEKp10 element, the disrupted kfoC subclade became more strongly
associated with infection, supporting the idea that circulating ST258 sublineages can
evolve to become both hypervirulent and multidrug resistant (23–26).

It is important to note that the machine learning method we employed does not
correct for microbial population structure. We chose this method instead of alternative
bacterial genome-wide association methods because our primary interest was in quan-
tifying the overall predictive capacity of bacterial genotype in a patient population
that was collected in a comprehensive and unbiased manner (i.e., all clinical isolates
from 21 facilities over 1 year). While alternative methods controlling for population
structure may yield more precise estimates of the contribution of individual variants,
this would obfuscate the realized contribution in our patient population and hinder
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direct comparison to the predictive capacity of patient features. However, this then
presented the challenge of interpreting our finding that certain subpopulations of
CRKP ST258 may differ in their predilection for causing infections at different sites. For
instance, the kfoC disruption is a lineage-defining variant, and in principle other var-
iants that define this lineage could also be causal. Here, we limited our analysis to a
curated set of variants belonging to pathways known to be associated with antibiotic
resistance and virulence and found that only kfoC disruption was associated with
increased respiratory infection, thus making it a strong candidate for follow-up in in
vitro or in vivo models (11). To identify novel loci whose role in human infection may
not be appreciated, both computational and experimental strategies may be employed
to help prioritize putative causal versus passenger variants. Computationally, investiga-
tors may search for evidence of parallelism in genotype/phenotype associations, which
would bolster confidence in causality (27). Alternatively, high-throughput screens of
genetic mutants in relevant model systems can help prioritize candidates. Garnering
further genomic or experimental support for the direct role of a specific genetic variant
would in turn increase the likelihood that those genetic markers would be predictive
in new strains and patient populations.

Our study also has several important limitations related to the data available.
Specifically, extraintestinal CRKP colonization versus infection for nonbloodstream iso-
lates may be difficult to discriminate using surveillance criteria and the clinical data
that were available. However, we based our definitions on established CDC criteria
with modifications used previously (7). Encouragingly, we were still able to identify
consistent predictors of infection, even with potential misclassifications. A second limi-
tation is that our data set included only one clinical culture for the majority of patients,
meaning that we were unable to investigate clinical or genomic features that may be
associated with progression from colonization to infection. Furthermore, we do not
have CRKP rectal colonization isolates and therefore cannot evaluate transition from
rectal colonization to other body sites. However, we hypothesize that comparing rectal
colonization to infection may be asking a subtly distinct question—namely, bacterial
genetic factors that enable translocation from the gut to other body sites. In contrast,
we hypothesize that our study design is ideal to identify bacterial genetic factors asso-
ciated with infection once at a given body site. Additionally, we chose to focus our
analysis on ST258 due to its disproportionate presence in our data set, but this makes
it possible that our findings may not generalize to other sequence types. Nevertheless,
ST258 is the dominant clone in the U.S., and the methods we employed here can be
used to study other sequence types and other pathogens. Furthermore, our focus on
the ST258 lineage led to the particularly notable finding that even within an estab-
lished endemic multidrug-resistant lineage (which emerged circa 2000 [15]), there is
continued evolution that influences the manifestation and outcome of infection. This
highlights the importance of performing strain-specific analyses to identify continued
evolution and adaptation of hospital-associated lineages. We were also limited in the
patient data included in our model. It is likely that important differences in underlying
patient conditions were not captured by the coarse clinical variables we included, and
we also did not account for differences in genetic variation in the host (28). Other limi-
tations include that our study was restricted to LTACH patients and had nonrandom
geographic sampling. However, our restriction to LTACHs in geographic regions of en-
demicity has the benefit of focusing on populations at disproportionate risk for CRKP
infection (8).

In conclusion, we employed a machine learning approach to quantify our ability to
discriminate between CRKP colonization and infection using patient and microbial
genomic features. This approach highlighted the high degree of variation in predictive
accuracy across different facility subsets. Furthermore, despite modest predictive
power, we identified several genomic features consistently associated with infection,
indicating that variation in circulating CRKP strains contributes to infection, even in the
context of the critically ill patient populations residing in LTACHs. Future work should
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aim to corroborate our findings with larger cohorts and follow up on strong associa-
tions to determine whether they are indeed risk factors for infection. This could ulti-
mately help identify patients at high risk for CRKP ST258 infection and devise targeted
strategies for infection prevention. Furthermore, the methods employed here can be
used to study ongoing adaptation in other important MDRO lineages circulating in
health care facilities.

MATERIALS ANDMETHODS
Clinical and genomic data. We used whole-genome sequences of clinical (nonsurveillance) CRKP

isolates and associated patient metadata from a prospective observational study performed in 21
LTACHs from across the U.S. over the course of a year (BioProject accession no. PRJNA415194) (15). All
isolates were ordered by clinicians as part of clinical care, and clinical practice guidelines and policies
are standard across sites within the network. We included only the first clinical bloodstream, respiratory,
or urinary isolate from each patient (n= 355; see Fig. S1A in the supplemental material) and subset to
only ST258 isolates for the majority of analyses (n= 331; Table S1; see supplemental material for reason-
ing). Patient metadata were obtained from electronic health records. Core genome variants were identi-
fied using a reference genome, and accessory genes were identified using Roary (29). Details about the
clinical data, analysis pipeline (30), genomic data curation (15, 18, 23, 29, 31–34), and phylogenetic
reconstruction (35–38) are provided in the supplemental material. While most clinical data cannot be
shared, the deidentified patient ID, hospital of sample isolation, and isolation site are included in the
Sequence Read Archive metadata for the BioProject.

Outcome definition. Our outcome of interest was colonization versus clinical infection (Fig. S1B).
Based on the U.S. Centers for Disease Control and Prevention’s (CDC’s) established National Healthcare
Safety Network (NHSN) surveillance definitions, we considered all bloodstream isolates as representative
of infection and used modified definitions as in reference 7 to classify urinary and respiratory cultures as
representative of infection versus colonization (Table S2) (7, 39). Any isolate that did not meet the crite-
ria for infection was classified as colonization. We did not incorporate physician interpretation in apply-
ing the criteria to ensure consistency in applying the definition.

Feature sets. We studied the association between five different feature sets and infection/coloniza-
tion in CRKP ST258 (Fig. S1C); the feature sets are described below. See the supplemental material for
details on feature set creation and processing. Counts below are for confident features from the entire
data set prior to subsetting for different analyses. Feature sets are as follows: (i) patient—clinical features
described in the work of Han et al. (n= 50; Table S3) (15); (ii) uncurated genomic—single nucleotide var-
iants, indels, insertion sequence elements, and accessory genes (n= 2,447); (iii) uncurated grouped
genomic—variants grouped into genes (i.e., a burden test, e.g., reference 17) and accessory genes
(n= 3,159); (iv) curated genomic—features identified by Kleborate (18), a tool designed to identify the
presence of various genes and mutations known to be associated with either CRKP virulence or antibi-
otic resistance (n= 91); (v) patient and curated genomic—patient features and curated genomic features
(n= 141).

Machine learning and model selection.We aimed to classify clinical infection (versus colonization)
using each of the different feature sets (see above); we built classifiers using the first clinical isolate from
each patient for all isolates, only respiratory isolates, and only urinary isolates. We performed L2 regular-
ized logistic regression on all feature sets using a modified version of the machine learning pipeline pre-
sented in the work of Topçuo�glu et al. (40) using caret version 6.0-85 (41) in R version 3.6.2 (42)
(Fig. S1D1). Furthermore, for the patient and curated genomic feature set we performed elastic net, ran-
dom forest, and support vector machine with a radial basis kernel using the same method but imple-
mented in mikropml version 0.0.2 (43). We randomly split the data into 100 unique ;80/20 train/test
splits, keeping all isolates from each LTACH grouped in either the training set or the held-out test set to
control for facility-level differences among the isolates (e.g., background of circulating strains within
each facility, patient population, and clinician test ordering frequency). For valid comparison, the train/
test splits were identical across models generated with different feature sets. Hyperparameters were
selected via cross-validation on the training set to maximize the average AUROC across cross-validation
folds. See the supplemental material for more details.

Model performance. We measured model performance using the median test area under the re-
ceiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC), as well
as the interquartile range, across all 100 train/test splits (Fig. S1D2).

Features consistently associated with colonization or infection. To determine the importance of
each feature in predicting colonization versus infection, we measured how much each feature influ-
enced model performance by calculating feature importance using a permutation test (40) (Fig. S1D3).
For each combination of feature and data split, we randomly permuted the feature and calculated the
“permuted test AUROC” using the model generated with the training data. Features with a correlation of
1 were permuted together. We performed this permutation test 100 times for each feature/data split
pair and obtained a mean feature importance for each data split. A mean feature importance above zero
indicates that that feature improved model performance for that data split. We highlight features where
the mean permuted test AUROC was above zero in at least 75% of the data splits. In this way, the permu-
tation importance method allows us to take into account the variation we observe across the 100 mod-
els, which is not possible with standard parametric statistical tests or odds ratios.
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Insertion sequence identification. We identified insertion sequences in the kfoC gene by running
panISa on reads aligned to a reference genome (34, 35, 44–46). See the supplemental material for more
details.

Data analysis and visualization. See the supplemental material for details on data analysis and vis-
ualization in R version 3.6.2 (42, 47–51). All code and data that are not protected health information are
on GitHub (https://github.com/Snitkin-Lab-Umich/ml-crkp-infection-manuscript).
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