
Background
Case-based reasoning (CBR)1 is considered a most trustwor-
thy methodology for building intelligent systems for the stor-
age and retrieval of past experiences to solve new problems. 
It is described by the following four processes: retrieve, reuse, 
revise, and retain. Each case in the case base is characterized by 
multiple features or attributes. When a new case is presented to 
the CBR system, the system measures the similarity between 
features of this query instance and those of other cases in the 
case base to retrieve the most similar one from the case base. The 
most important assumption in CBR is that similar experiences 
can guide future reasoning, problem solving, and learning.2 
CBR has been extensively used in the biomedical field and suc-
cessfully extended to many applications. For instance, Marling 
and Whitehouse3 have used CBR in the care of patients with 
Alzheimer’s disease. The authors report that CBR finds effec-
tive treatment by matching patients to treatments that were 
effective for similar patients in the past. Similarly, Lieber and 
Bresson4 propose a CBR system for breast cancer treatment, 
and they claim that their system suggests appropriate solutions 

for new patients. Diaz etal5 use a CBR system for cancer clas-
sification based on microarray data.

The process of retrieving cases from a case base similar to 
a query case is regarded as a primary and fundamental step in 
CBR,6–8 and the similarity measurement between cases plays 
a very important role in this process. The most widely used 
methods for similarity measures are distance-based functions 
that calculate the distance between cases using some or all of 
the attributes constituting the cases. However, distance mea-
surement is not directly applicable on cases with many attri-
butes, such as gene expression data sets, due to the curse of 
dimensionality. The curse of dimensionality9 affects similarity 
searching in high-dimensional space because it makes nearest 
neighbor searching senseless because the anticipated distance 
between the points (cases) converges to zero as the dimension 
goes to infinity.10

Four main issues affect data mining when calculating 
similarity between cancer patients on the basis of their gene 
expression data: irrelevant features, high dimensionality, 
relative importance of features, and imbalanced classes. 
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Gene expression data sets are complex and often highly 
dimensional.11 Many of these dimensions (genes) are irrel-
evant to a specific trait of interest. Moreover, gene expres-
sion microarray data sets often consist of a limited number 
of patients (hundreds) relative to the large number of gene 
expression values (thousands of genes). This problem is com-
pounded in the case of imbalanced data sets wherein there 
is a big difference between the numbers of data points in 
each target class. In addition, some data sets have the class 
variable defined based on a risk assessment done on the basis 
of clinical judgment, such as risk factor. This clinical judg-
ment of patient’s risk category might be different from that 
of other data sets wherein the class variable is often clearly 
defined by histology (eg, cancer tissue is distinguished from 
noncancer tissue by microscope biopsies). Clinical judgment 
results in some variation in assignment of risk among clini-
cians, which lowers the expectation of very high predictive 
accuracies using a simple feature selection algorithm with a 
nearest-neighbor classifier. With this type of data, the ability 
to successfully distinguish between patients based on their 
gene expression data and to explore the neighborhood space 
of patients to find how patients are similar or dissimilar to 
others requires a more sophisticated use of data-mining and 
machine-learning techniques in the similarity measurement 
process.

Data-mining techniques such as feature selection and 
feature weighting have previously been successfully com-
bined with the CBR system12–15 but separately. Arshadi and 
Jurisica13 propose a CBR system for ultra-high-dimensional 
biological data sets. The authors apply spectral clustering fol-
lowed by feature selection to preprocess the data. The main 
problem of this approach is that k-means clustering technique 
is applied in high-dimensional space without dealing with the 
curse of dimensionality.9 The Euclidean distance measurement 
often performs poorly as the dimensionality of the analyzed 
data increases.10 Moreover, the authors evaluate the system on 
two simple publicly available microarray data sets that cover 
leukemia and lung cancer samples. They report improvements 
in classification accuracy of approximately 20% from 65% to 
79% for Leukemia and from 60% to 70% for Lung cancer. 
Similarly, Diaz et al5 apply only the feature selection algo-
rithm in the retrieval stage, and clustering techniques are 
applied during the reuse and prediction stage. In this article, 
we show how this data-mining technique (feature selection) 
can further improve the retrieval process of a CBR system 
when combined with other data-mining techniques such as 
dimensionality reduction and feature weighting. This study 
explores problems of retrieving similar cases in the CBR sys-
tem, dealing with extremely complex gene expression data sets 
wherein the case base has relatively few imbalanced-class cases 
each having thousands of features. For some gene expression 
data sets such as Golub’s leukemia data set16 and the Lung 
cancer data set,17 the nearest-neighbor classifier – with the 
help of feature selection algorithm – can accurately retrieve 

cases that are similar to a query case from the case base. How-
ever, similarity measurement becomes a big challenge in the 
case of extremely complex gene expression data sets such as an 
imbalanced-classes data set or a data set with the class variable 
defined based on a risk assessment done on the basis of clinical 
judgment.

This study proposes a CBR system to help clinicians and 
biologists in their prediction of risk of relapse in childhood 
leukemia sufferers by comparing them to previous patients 
based on their gene expression measurements. The main focus 
of this article is to develop a case-based retrieval framework 
for k-nearest-neighbor classifier (kNN) with a weighted fea-
ture-based similarity that is able to retrieve similar patients 
from a case base of acute lymphoblastic leukemia (ALL) 
patients based on their gene expression data. By observing 
the treatment and outcome for the retrieved similar patients, 
more reliable decisions about this new patient can be made. 
CBR is particularly applicable to this problem domain and 
can be used to propose new solutions or evaluate solutions to 
avoid potential problems such as relapse of ALL. CBR can 
yield better diagnosis and treatment for childhood leuke-
mia sufferers by suggesting the previous medical treatment 
that accomplished the desired result, to enable curing of new 
patients. The assumption here is that patients with similar 
gene expression profiles will react similarly to therapy and 
should be treated in like manner.

Methods
ase-based retrieval framework. This article presents 

a novel case-based retrieval framework that involves several 
computational intelligence techniques. The purpose of devel-
oping this conceptual framework is to show that data-mining 
techniques such as feature selection and dimensionality reduc-
tion have several positive effects on the gene expression data 
sets in terms of alleviating the curse of dimensionality and 
enhancing the similarity measurement; that the effectiveness 
of weighting the features is important in the distance mea-
surement; and that an improvement in the case-based retrieval 
process can be adopted by applying oversampling techniques 
in case of imbalanced gene expression data sets. This frame-
work is composed of two modules: Module 1 for training and 
Module 2 for retrieval (Fig.1).

Module 1 concerns the preprocessing steps of the train-
ing data set. The purpose of this module is to preprocess the 
training data set and to handle the complexities of the gene 
expression data sets using methods such as feature selection, 
dimensionality reduction, and feature weighting.

Module 2, on the other hand, concerns case retrieval for 
a new query case. The purpose of this module is to use the 
outputs of the training process, including a list of the selected 
features, to preprocess the query before retrieving similar pre-
vious cases from the case base.

Module 1: preprocessing the training data set. The first 
module of the case-based retrieval framework preprocesses 
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the training data set and is composed of four steps: feature 
selection, dimensionality reduction, feature weighting, and 
oversampling (Fig. 2). The first step of this framework – 
feature selection – is essential for any gene expression data set. 
However, the need for the other steps is based on the com-
plexity of the data set. For example, the oversampling step is 
only required in case of class-imbalanced data sets.

The first step aims to select a subset of genes representing 
the most relevant features to a specific output of interest. The 
second step applies dimensionality reduction algorithms on the 
data set to reduce the impact of the curse of dimensionality. 
Once the data set is processed by the dimensionality reduction 
algorithm and is transformed to a lower dimensional space, 
the data set is presented to the feature-weighting process to 
identify the relative importance of each feature for similar-
ity and classification optimization. The final step applies an 
oversampling technique to increase the number of samples of 
the minority classes and to reduce the effect of the imbalanced 
classes. Figure2shows the steps in the training process.

Step 1.1: feature selection. The presence of too many fea-
tures in a data set adversely affects similarity measurement 
and classification performance if many of these features are 
irrelevant to the specific trait of interest. Hence, selection of a 
subset of genes that are relevant to a trait of interest is crucial 
and plays a vital role for building a successful gene expression 
similarity measurement model.

The feature selection algorithm balanced iterative ran-
dom forest (BIRF)18 is initially applied to the training cases 
to select relevant features. On the basis of the performance 
of the BIRF reported in the study by Anaissi etal,18 BIRF is 
an appropriate choice to select genes from imbalanced high-
throughput gene expression microarray data. In the report by 
Anaissi etal,18 BIRF was evaluated on four cancer microarray 

data sets: a childhood leukemia data set collected from The 
Children’s Hospital at Westmead, a Colon cancer data set, 
the NCI-60 data set, and a Lung cancer data set. Significant 
results were achieved using BIRF in comparison to the other 
state-of-the-art methods such as support vector machine–
recursive feature elimination,19 random forest (RF),5 and 
naive Bayes20 classifiers.

The output of this step is the training data set, with a 
subset of genes that are strongly associated with the output of 
interest. The selected genes are stored as a list of genes, labeled 
“Feature list” in Figure2, to be used later for processing the 
test data samples.

Step 1.2: dimensionality reduction. Dimensionality reduc-
tion aims to transform a high-dimensional data set into a 
lower-dimensional one representing the most important 
variables underlying the high-dimensional data. In contrast 
to feature selection, dimensionality reduction aims to extract 
new features from the original set of features. Although the 
number of features of the data set is reduced after removing 
the irrelevant genes, the data set may still exist in a high-
dimensional space, and similarity measurement may still 
suffer from the curse of dimensionality.21 Principal compo-
nent analysis (PCA) is applied to the training set samples. 
This method is characterized by its simplicity, and it is a non-
parametric method. Moreover, the low-dimensional vector 
learned by PCA can be applied to out-of-sample data points 
to get their low-dimensional embedding. The outputs of this 
step are the training data set in a low-dimensional space and 
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a vector, labeled “Low-dimensional vector” in Figure2, to be 
used later in processing the test data samples.

Linear kernel methods22 are used along with PCA to save 
considerable amounts of computation time in finding the effec-
tive principal components. This is because the number of attri-
butes or features is very large, much higher than the number 
of samples, in gene expression data sets. In normal PCA, the 
size of the covariance matrix is m×m, where m is the number 
of attributes. However, while using kernel methods, the size 
of the kernel matrix is n × n, where n is the number of observa-
tions or samples. The idea behind kernel PCA (KPCA) is to 
find the directions or components for which the data set has 
maximum variance in the feature space. This is achieved by 
finding the eigenvalues with the corresponding eigenvectors 
for the kernel matrix of the data set. Dimensionality reduction 
is then achieved by choosing the largest eigenvalues obtained 
by KPCA to represent the data in fewer dimensions.

Dimensionality reduction based on KPCA takes as input 
XeRn × m and produces output eRn×d, where m and d are the 
dimensionality of the input and output data sets, respectively, and 
n is the number of points. The question in this process is this: 
what is the minimum dimension that can be achieved without 
acceptable loss of precision? Or, which components of KPCA 
should be selected to represent the data set in fewer dimensions?

This study proposes a wrapper method for choosing the 
best value of d , m. The concept of this wrapper method is to 
use a nearest-neighbor (NN) classifier to evaluate the classifi-
cation performance on different low-dimensionality represen-
tations of the data to choose the most appropriate value of d.

Due to the small number of observations in the train-
ing data set and to obtain a result that can generalize well, 
c-fold cross-validation technique is used to determine the 
classification accuracy of the classifier. It is usually called k 
cross–validation, but c is used here to differentiate it from the 
parameter k of the NN classifier. The accuracy is evaluated 
on several lower-dimensionality representations of the data to 
find the value of d that best describes the data.

Step 1.3: feature weighting. Feature weighting23 is a tech-
nique used to estimate the relative influence of individual fea-
tures with respect to the classification performance. When 
successfully weighted, high-impact features receive a high-
value weight, whereas a low weight is assigned to low-impact 
features. The output of this step is a weight vector that is stored 
as a list of weights, labeled the “Weight list” in Figure2, to be 
used in the distance measurement formula. Feature weighting 
is needed for instance-based learning algorithms such as NN. 
Giving weights to the features based on their quality and use-
fulness has the potential to lead to accurate distance measure-
ment. Two hypotheses are proposed and tested in this study to 
address this issue.

Hypothesis 1: Eigenvalues can be used as weights for fea-
tures. The first hypothesis for feature weighting is based on 
the eigenvalues derived from KPCA. We observed that the 
dimensionality reduction is achieved by discarding features with 

a low eigenvalue and retaining only those features with a high 
eigenvalue. One idea is to use these eigenvalues in the kNN as a 
vector weight and then use it in the Euclidean distance formula.

Hypothesis 2: Genetic algorithm can be used to seek the 
weights for features. Genetic algorithm (GA)24 is considered 
a general purpose search process for optimization problems. 
Because all optimization algorithms have an objective function, 
we have designed a fitness function as called in the GA, for 
optimization of classification performance by searching for the 
best features (genes) encoding weights for the similarity mea-
surement. The goal of the GA is to minimize the classifica-
tion error of the training data set. A wrapper feature-weighting 
method based on GA is used to propose a weight-learning GA. 
The concept of this wrapper method is to use a GA to seek the 
best weights of features with the kNN classifier based on the 
GA fitness function (Fig.3). The fitness function is computed 
by subtracting the accuracy from the number one. C-fold cross-
validation technique is also used here to determine the clas-
sification accuracy of the classifier. The accuracy is computed 
by averaging the accuracies of the c-folds for the kNN classifier 
using the generated weights in its Euclidean distance measure.

Step 1.4: oversampling. Many gene expression data sets 
associated with rare diseases have the imbalanced-classes 
problem. That is, at least one of the classes constitutes only a 
very small minority of the data. For such problems, the effect 
is on practical classification, whereby the interest usually leans 
toward correct classification of the minor class. Generally, 
most classification techniques assume that training samples 
are evenly distributed among different categories. However, 
in practical applications, data sets often exist in an unbalanced 
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form. In addition, gene expression data sets often have a low 
number of samples. With these types of data sets, a poor clas-
sification performance is often achieved and can result in triv-
ial classifiers that completely ignore the minority class.

One approach to dealing with unbalanced data sets is to 
use oversampling techniques to increase the number of sam-
ples in the gene expression data set. In this study, we consider 
the use of a well-acknowledged oversampling method to bal-
ance the training set before the learning phase, which is the 
synthetic minority oversampling technique (SMOTE) meth-
odology.25 SMOTE, a widely used technique,26–28 is applied 
in this framework to add new, artificial minority examples 
by interpolating between original minority-class examples. 
Figure4shows the feature-weighting and oversampling steps 
in the case-based retrieval framework.

Module 2: retrieval. The second module of the framework 
is related to the query samples (Fig.5). A new query sample 
comes in the high-dimensional space. Irrelevant features are 
filtered based on the determined relevant features obtained 
from the feature selection step of Module 1. The next step is 
to transform the new sample into a lower-dimensional space 
by projecting the filtered features onto the dimensionality 
reduction vector obtained from the dimensionality reduction 
step of Module 1. Once the new sample is passed through 
the preprocessing steps of the test samples, it is presented to 
the kNN classifier to retrieve similar previous cases from the 
case base using the feature’s weight obtained from the feature-
weighting step of Module 1.

esults and iscussion
Several experiments are performed in each step in the case-
based retrieval framework to demonstrate the validity of the 

proposed framework and to evaluate the framework using dif-
ferent data sets.

ata sets. The main experiments are performed on a 
childhood leukemia gene expression data set that has been col-
lected from The Children’s Hospital at Westmead. This data 
set is also available in the public domain and can be explored 
through the Oncogenomics Section of the Paediatric Oncology 
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Figure5. Preprocessing the test sample in the case-based retrieval 
framework and retrieving similar cases.
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Branch at the NCI, National Institutes of Health, USA 
(http://pob.abcc.ncifcrf.gov/cgi-bin/JK). The entire childhood 
leukemia gene expression data set is composed of 110 patients 
with expression values for 32,678 probes. The patients of this 
data set are classified into three categories based on their risk 
of relapse. A stratified random sampling is applied on the gene 
expression data set, and it is divided into training and test data 
sets. The training and test data sets are composed of 70 and 40 
patients, respectively. The distribution of patients in each data 
set is shown in Table1.

In addition to the childhood leukemia data set, we have 
chosen three other publicly available microarray data sets: 
NCI-60, Colon cancer, and Prostate cancer data sets. The 
NCI-60 cancer cell line data set is a well-studied publicly avail-
able microarray benchmark collected by Ross etal29 and was 
produced using Affymetrix HG-U133A chips. The data set 
consists of 60samples that are classified into eight categories. 
Each sample is measured over 5,244gene expression values.

xperiments on the childhood leukemia data set. The 
first step of Module 1 is applied on the training data set for 
selecting the relevant features. The feature selection algorithm 
BIRF18 is involved in this step. Detailed explanation about 
the algorithm and experiments can be found in the report by 
Anaissi etal.18 This step produced a feature list of 107genes, 
which are selected as the most significant biomarkers.

As mentioned above, not all steps of the framework must 
be involved in processing the data before measuring the simi-
larity between patients. Consequently, we present the test data 
set to the kNN algorithm to evaluate the performance in terms 
of retrieval of similar cases from the case base before continu-
ing with the remaining steps of the framework.

In general, the k parameter of the kNN classifier plays an 
important role in classification, especially when the distribu-
tion of classes in the training set is uneven. Accordingly, and 
based on the number and the distribution of patients in the 
training childhood leukemia data set, it is readily perceived 
that the value of k affects the performance of the NN classifier, 
as shown in Table2.

A cross-validation procedure is used here to determine 
the optimal value of k. The best average accuracy result is 
achieved at k = 5 (Table 2). The average accuracy is calcu-

able1. he number of patients in the training and test data sets.

ih 
ik

ium 
ik

Stana 
ik

otal

raining dataset 6 53 11 70

est dataset 5 25 10 40

he Colon cancer data set is a publicly available microarray data set that was 
obtained with an ffymetrix oligonucleotide microarray.30 he Colon data 
set contains 62samples, with each sample containing the expression values 
for 2,000genes. ach sample indicates whether or not it came from a tumor 
biopsy. his data set has been used in many different research papers, eg, 
Ben-Dor etal,31 Brazma and Vilo,32 and Getz etal.33 he Prostate cancer data 
setalso has been used in the experiments. he data set contains 52 prostate 
tumor samples and 50 nontumor prostate samples, with around 12,600genes.

able2. Comparison of the performance of k on the childhood 
leukemia test data set for different values of k.

K va aua

3 0.71

4 0.69

5 0.73

6 0.66

7 0.62

8 0.58

9 0.58

10 0.52

*he average accuracy is calculated based on the average of the sensitivity 
and specificity of each class.

able3. Results of classification performance tests on the childhood 
leukemia test data set.

it 
ih

it 
ium

it 
Stana

ctual High 2 2 1

ctual edium 1 22 2

ctual tandard 1 3 6

lated based on the average of the sensitivity and specificity of 
each class because the traditional accuracy does not reflect the 
actual classification result in the case of an imbalanced data 
set. All the reported results in the following experiments are 
based on these measurements.

As can be seen from Table 2, the accuracy does not 
improve as k further increases. This result can be justified by 
looking at the nature of the data set and how the three classes 
are distributed. It can be noticed that a new high-risk patient 
is hard to classify correctly if k is large. All the results reported 
in the following experiments on the childhood leukemia data 
set were obtained based on the value k = 5. The initial clas-
sification performance of the 5NN classifier on the test data 
set is presented in the confusion matrices in Tables3 and 4. 
These show that the classification results of the data set pro-
cessed only by the first step (feature section) were poor, with 
most patients predicted incorrectly, especially the high-risk 
ones. These results suggest that further steps of the framework 
are required to enhance the performance of retrieving similar 
cases from the case base. Therefore, the dimensionality reduc-
tion step is applied to the training data set.

Kernel principal component analysis. An eight-fold cross-
validation is applied to the training childhood leukemia gene 
expression data set. Many applications use ten-fold cross-
validation, but because there are not many samples in our 
data set, and to have a reasonable number of training and 
test samples (especially for high-risk patients), the value of 
d (the target dimensionality) is determined using eight-fold 
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cross-validation. Each sample from the eight folds is taken 
from the training data for validation, and the remaining data 
are processed by KPCA and reduced into different values 
of d. After each reduction, the test sample is projected into 
the space of the reduced data and classification accuracy is 
evaluated. This process is repeated eight times, and the eight 
results are averaged for each value of d so that we have a single 
estimate at each value of d for the eight validations. Classifica-
tion accuracy of the obtained reduced data set is evaluated for 
each value of d, which is determined based on the classifica-
tion performance. Figure6shows the classification results for 
different values of d. As can be seen, the best average value is 
realized at d=50. Moreover, the accuracies of the eight folds 
at the value 50 consistently have the highest values, as shown 
in Figure6. The variance accounted for the chosen d repre-
sents 95% of the total variance.

An important reduction is achieved in the dimensionality 
because the data set will be in a low-dimensional space and 
distance measurements can be applied on the data set to com-
pute the similarity between the patients in the case base and 
the new patients. The classification performance of the 5NN 
classifier on the test set after processing the data set with the 
second step of the framework is presented in the confusion 
matrices in Tables5 and 6.

As can be seen from Table6, there are significant improve-
ments in the classification results for each class. The average 

accuracy increased from 0.73 to 0.82. The sensitivity of the 
minor class (high-risk patients) also increased from 0.4 to 0.6. 
This result indicates that the minority class becomes recog-
nized better by the NN classifier. However, further improve-
ments may be achieved if we use a weighted-feature-based 
similarity and process the training data set using the third step 
of the framework, ie, by using the feature-weighting step.

Feature weighting. The aim of the initial experiments per-
formed in this section was to decide which of the hypotheses 
presented in the Methods section should be used for feature 
weighting. Experiments for Hypothesis 1 are first conducted 
and for that, eight-fold cross-validation is applied on the 
training data set to compute the accuracies of the unweighted 
5NN classifier. Eight accuracies are obtained from this exper-
iment for the eight test folds. The same procedure is applied 
on the weighted 5NN with the eigenvalues, and eight accura-
cies are computed for the same eight test folds. A paired t-test 
was conducted to determine whether differences in accu-
racy between the eigenvalue approach and the unweighted 
approach are significant. The P-values of the t-test are also 
used to judge the degree of the performance improvement. 
The paired t-test generates a P-value of 0.0383, which indi-
cates that the eigenvalues-weighted 5NN and unweighted 
5NN processes do not have the same accuracy. The results 
of a one-tailed t-test indicate that the eigenvalue approach 
gives little accuracy improvements over the unweighted 5NN 
because the average balanced accuracy increases from 0.82 
to 0.86.

With respect to the Hypothesis 2, the training data set is 
randomly partitioned into eight subsamples. Each fold is taken 
from the training data set for validation, and the remaining 
data are processed by a GA. For each set of feature weights 
generated by GA, the validation fold is presented to the 5NN 
classifier and the classification accuracy is evaluated by calcu-
lating the average balanced accuracy of the obtained confu-
sion matrix. This process is repeated eight times, and the eight 

able4. tatistics by class for the confusion matrix of the test data 
set presented in able3.
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able5. Results of the classification performance on the childhood 
leukemia test data set after reducing the dimensionality.
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able6. tatistics by class for the confusion matrix of the test data 
set presented in able5.
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Figure6.ccuracy according to the different dimensionality reduction 
processes using eight-fold cross-validation on the test childhood 
leukemia data set.
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results from each fold are averaged for each set of weights so 
that we have a single estimate for each of the eight folds.

The methodology is implemented using the Matlab 
Global Optimization Toolbox. The parameters for the GA for 
this task are shown in Table7.

The program runs for 50generations with a population 
size of 100 individuals. During each round of iteration, if 
the obtained population forms a solution with a better fitness 
value, the populations will converge to the relevant weights 
of the feature. Figure7shows the running process of the GA 
by plotting the fitness value of each generation. The program 
stops at the 50th iteration, and the best individual is then 
selected as an encoding weight for the feature.

A paired t-test was also conducted to determine whether 
accuracy differences between the GA approach and the 
unweighted approach are significant. The P-value of 3.53×10–8 
on the t-test indicates a significant performance improvement 
in accuracy. The results of the one-tailed t-test indicate that the 
GA approach outperforms the unweighted 5NN. The average 
balanced accuracy for the eight-fold cross-validation increased 
from 0.82 to 0.93. Tables 8 and 9 show the classification 
performance of the test data set applied on the GA-weighted 
5NN classifier.

Hypothesis 2 is supported in this study because it leads to 
a significant enhancement in the classification performance as 
shown in Tables8 and 9. The GA wrapper method provided 
good feature weights that substantially improve the perfor-
mance of the NN classifier. These results outlined in Tables8 
and 9indicate that assigning different weights to features in 

the domain of gene expression data sets improves the classifi-
cation accuracy of the NN algorithm.

The NN is a white-box classifier that allows us to look 
at the classification outputs in detail. Analysis of the obtained 
results reveal that the classification probability for some 
patients is not high enough because some patients have two 
classifications with the same probabilities, but they were clas-
sified correctly based on the score voting of their similarity to 
the neighboring samples. Classification probabilities for each 
patient are calculated and presented in Table10. The probabil-
ities are computed for each patient in the test data set based 
on the five retrieved patients. For example, if the five retrieved 
patients for a high-risk patient in the test data set are two 
medium, one standard, and two high risk, then the classifica-
tion probabilities for this patient are 0.4, 0.2, and 0.4, respec-
tively. As can be seen from this table, some patients – and 
especially those in the minority class – are hardly classified with 
the actual category. These results indicate that the imbalanced-
classes problem affects the classification performance of the 
process for the minority class. Therefore, oversampling may be 
required to enhance the classification performance in the case 
of the minority class.

Oversampling. SMOTE25 is used in this study to over-
sample the minority class by introducing synthetic samples. 
Minority classes are oversampled at 30%, 50%, 100%, 200%, 
300%, and 400%. The best accuracy is achieved at 100%, as 
shown in Table11. Oversampling the training data set con-
sistently provides an improvement in classification of test 
data. Moreover, it provides a more stable classifier for the 
imbalanced classes. The confusion matrix and probabilities 
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able8. Results of the classification performance on the childhood 
leukemia test data set applied on the weighted 5NN classifier.
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able10. Results of classification probability on the childhood 
leukemia test data set.
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27 edium 0 0.6 0.4
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32 tandard 0 0 1

33 tandard 0 0 1

34 tandard 0 0 1

35 tandard 0.2 0.2 0.6

36 tandard 0.2 0.2 0.6

37 tandard 0.2 0.2 0.6

38 tandard 0.2 0.2 0.6

39 tandard 0.2 0.4 0.4

40 tandard 0.2 0.4 0.4
 

of the 5NN classifier are presented in Tables 12 and 13, 
respectively.

For instance, SMOTE does not show major improvements 
in the classification performance. However, the classification 

able11. Classification performance on the childhood leukemia 
training data set after 100% oversampling.
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able12. Results of classification performance on the childhood 
leukemia test data set after 100% oversampling of the training dataset.
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probability becomes higher than before when the weighted 
NN classifier is used without oversampling the training data 
set (Table13).

xperiments on three public microarray data sets. One 
of the most important aspects of any experiment is validat-
ing the framework on other data sets. Validation is achieved 
by applying the proposed case-based retrieval framework on 
three publicly available microarray data sets. We have to keep 
in mind that this framework is proposed for very complex 
gene expression data sets. This means that some gene expres-
sion data sets may not need to be processed by all steps of the 
framework. For example, Golub’s leukemia data set16 is con-
sidered a very simple data set and does not need to go through 
all the steps of the framework. According to our experiments, 
the feature selection algorithm BIRF with an NN classifier 
was enough to accurately (zero error rate) retrieve similar 
cases from the case base without applying any dimensionality-
reducing or feature-weighting algorithms.

The case-based retrieval framework is validated on the 
NCI-60 data set. Initially, we have applied the feature selec-
tion step, followed by the NN classifier to see whether it 
could be enough to retrieve similar cases from the case base. 
The average accuracy of 0.68 resulting from the eight-fold 
cross-validation indicates that further steps are required to 
achieve better accuracy. Consequently, the dimensionality 
reduction step is applied on the training data set, and a t-test 
is used to determine whether accuracy differences between 
the feature selection/NN classifier (FS/NN) approach and 
the FS/dimensionality reduction (DR)/NN are significant or 
not. The P-value (3.789×10–8) of the paired t-test indicates 
a significant performance improvement in the average clas-
sification accuracy. The average accuracy of the eight-fold 
cross-validation is calculated after processing the data set 
with the dimensionality reduction step. The resulting value 
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similarity. Similar to the results on the childhood leukemia 
data set, the results of the t-test applied on the outcomes of 
the weighted NN classifier indicate that assigning different 
weights to features improves the classification accuracy of the 
NN algorithm (Table14).

The framework is also applied on the Colon data set, 
which is processed by two steps of the framework, namely, 
feature selection and dimensionality reduction, before pre-
senting the data set to the NN classifier. An average balanced 
accuracy of 0.93 is achieved without applying feature weight-
ing. With reference to the Prostate cancer data set, an average 
balanced accuracy of 0.98 is achieved with feature selection 
and dimensionality reduction.

Table14 represents the average balanced accuracies of the 
three data sets obtained at each step of the framework, and it 
mainly shows the effect of the dimensionality reduction step 
on the NN classifier.

onclusion
A case-based retrieval framework is proposed in this article 
for gene expression similarity measurements. The framework 
initially applies the feature selection algorithm BIRF to select 
the features relevant to a specific trait of interest, followed by 
a dimensionality reduction algorithm KPCA. KPCA reduces 
the dimensionality of the childhood leukemia data set by pro-
jecting the data set to a lower dimensional space for better 
calculation of distance measurements. A weight-learning GA 
is proposed for feature weighting in the NN classifier. The 
weighted NN classifier has been successfully applied and it 
enhances the classification performance. The results show that 
the weight-learning GA improved the unweighted NN algo-
rithm. Introducing weights to the features in the NN algo-
rithm leads to improvement in the classification performance. 
SMOTE approach also provides an improvement in the clas-
sification of imbalanced class data sets.

The ultimate goal of this study is to apply this case-based 
retrieval framework to a CBR system so that we can have a 
clinical tool to help predict the risk of relapse for childhood 
leukemia sufferers by comparing them to previous patients 
based on their gene expression measurements.

Acknowledgments
The authors thank The Children’s Hospital at Westmead for 
providing the childhood leukemia data set and for giving the 
biological point of view for the results. DRC and PJK are 

able13. Results of classification probability on the childhood 
leukemia test data set after application of .

tual it 
ih

it 
ium

it 
Stana

1 High 0.8 0.2 0

2 High 1 0 0

3 High 1 0 0

4 High 0.8 0.2 0

5 High 0.4 0 0.6

6 edium 0 1 0

7 edium 0 1 0

8 edium 0 0.8 0.2

9 edium 0 0.8 0.2

10 edium 0 1 0

11 edium 0 0.6 0.4

12 edium 0 1 0

13 edium 0 0.8 0.2

14 edium 0 1 0

15 edium 0 0.6 0.4

16 edium 0 0.8 0.2

17 edium 0 1 0

18 edium 0 0.8 0.2

19 edium 0 1 0

20 edium 0 0.8 0.2

21 edium 0 1 0

22 edium 0 0.6 0.4

23 edium 0 1 0

24 edium 0 1 0

25 edium 0 1 0

26 edium 0 0.6 0.4

27 edium 0 0.6 0.4

28 edium 0 1 0

29 edium 0 1 0

30 edium 0 0.8 0.2

31 tandard 0 0.2 0.8

32 tandard 0 0 1

33 tandard 0 0 1

34 tandard 0 0 1

35 tandard 0.2 0 0.8

36 tandard 0 0.2 0.8

37 tandard 0.1 0.1 0.8

38 tandard 0.2 0.2 0.6

39 tandard 0.2 0.2 0.6

40 tandard 0.4 0 0.6
 

able14.verage balanced accuracy results of the three public 
microarray data sets processed by the case-based retrieval framework.
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of 0.88 indicates a substantial performance improvement 
of the NN classifier by involving the dimensionality reduc-
tion step. Further improvements can be achieved if we apply 
the feature-weighting step and use a weighted feature-based 
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