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Age-specific ASPECTS atlas of 
Chinese subjects across different 
age groups for assessing acute 
ischemic stroke
Qi Sun1,2,6, Guan Wang3,6, Jinzhu Yang   1,2,4 ✉, Yimo Zhou3, Yuliang Yuan1,2, Yan Huang1,2 & 
Ziyu Fu5

The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a valuable and easy-
to-use method for assessing acute ischemic stroke. It aids in identifying suitable candidates for 
thrombolytic therapies and evaluating treatment effectiveness. However, ASPECTS evaluation 
primarily relies on visual observation in current clinical practice, lacking a common standardized space. 
Additionally, different doctors may have varying clinical experiences, leading to a poor inter-reader 
agreement and potential errors in the final ASPECTS scoring. To address these issues and fill in the 
absence of a publicly available ASPECTS atlas, this work constructs age-specific Chinese ASPECTS 
atlases based on non-contrast computed tomography images of 281 healthy subjects across different 
age groups. Images of different age groups are warped into respective common averaged spaces, 
where the average intensity atlases are computed. More importantly, 10 ASPECTS regions can be 
obtained during this process. We develop an automated ASPECTS region mapping pipeline and collect 
an independent dataset to validate our atlas. The results prove that the age-specific ASPECTS atlas is of 
great promise in clinical availability.

Background & Summary
Stroke is the second leading cause of death worldwide and is characterized by high incidence, high recurrence 
rate, high disability rate, high mortality rate, and high economic burden. More than 13.7 million people are 
affected by this disease, and about 5.8 million people die as a result each year1,2. Particularly in China, stroke has 
become the leading cause of death and disability in adults, with a lifetime risk of 39.9%, ranking first globally and 
showing a trend of affecting younger individuals3. However, due to limited medical resources, the timely treat-
ment rate for stroke patients in China is only 2%, resulting in over 2 million deaths and a disability rate of up to 
80% each year4. According to the worldwide stroke incidence, ischemic stroke accounts for over 70% of all stroke 
cases5. Research has shown that completing basic assessments such as brain non-contrast computed tomography 
(NCCT) within 60 minutes of acute ischemic stroke (AIS) onset, administering thrombolytic therapy within 4.5 
hours, and performing mechanical thrombectomy within 6 hours (up to 24 hours) to restore blood flow and 
recanalize vessels can significantly reduce the disability and mortality rates associated with stroke6. Therefore, 
rapid and accurate assessment of AIS is of great significance for improving patients’ quality of life and prognosis.

In clinical practice, NCCT and magnetic resonance imaging (MRI) are two important imaging examination 
methods for the diagnosis of AIS6,7. Diffusion weighted imaging (DWI) and fluid attenuated inversion recovery 
(FLAIR) images are considered the gold standards for AIS imaging diagnosis due to their high resolution and 
lesion sensitivity. However, the longer scan time and higher cost limit their widespread use, especially in remote 
areas and grassroots hospitals. In comparison, NCCT has the advantages of wide availability and low cost. It can 
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quickly assess the brain condition of patients within a short period and has reliable sensitivity and specificity 
for AIS. The Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a simple and reliable 
systematic method that can effectively evaluate early ischemic changes in the blood supply region of the middle 
cerebral artery (MCA) on NCCT semi-quantitatively. It provides reliable clinical evidence for selecting throm-
bolytic drugs, treatment plan formulation, assessment of thrombolysis efficacy, and long-term prognosis7–9. In 
ASPECTS, the MCA vascular territory is divided into 10 regions in each hemisphere, with M1 corresponding 
to the frontal operculum, M2 to the anterior temporal lobe, M3 to the posterior temporal lobe, M4 to the ante-
rior superior frontal cortex, M5 to the posterior frontal cortex, and M6 to the parietal cortex. The M4, M5, 
and M6 are the MCA territories superior to the M1, M2, and M3 regions, respectively. The four subcortical 
regions include caudate (C), lentiform (L), internal capsule (IC), and insular (I)8. If any region shows signs of 
ischemic change, 1 point is deducted from the initial score of 10 points10. Clinical results indicate that patients 
with ASPECTS > 6 are suitable for intravascular thrombectomy7. However, several factors hinder the clinical 
application of ASPECTS. On the one hand, manually annotating the 10 ASPECTS regions is time-consuming. 
On the other hand, physicians with different clinical experiences may achieve poor inter-reader agreement, 
which significantly affects the formulation of subsequent treatment plans. Therefore, there is an urgent need for 
a standardized NCCT atlas to improve the agreement of ASPECTS evaluation, enhance diagnostic efficiency, 
and reduce the reliance on individual expertise.

Many well-known brain atlases have been developed for neuroimaging research and clinical purposes. To 
begin with, the non-digital Talairach atlas, which was developed based on the brain anatomy of a 60-year-old 
female, played an important role in the early study of brain function. Later, the Montreal Neurological 
Institute (MNI) created the widely used MNI305 atlas11,12 by non-linearly registering 305 brain MRI images 
into a common space. Because of the blurriness of the MNI305, the ICBM15213–15 was then constructed using 
higher-resolution MRI images of 152 normal Caucasian individuals. Compared with these average intensity 
atlases, the cortical structure probabilistic brain atlas, LPBA4016, was generated using T1-weighted MRI images 
of 40 healthy individuals with an average age of 29.2 years. It includes annotation for 50 cortical structures, 4 
subcortical regions, the brainstem, and cerebellum. For the Chinese population, the Chinese56 atlas17 was devel-
oped based on 56 Chinese males with an average age of 24.46 years and demonstrated significant differences 
between the Caucasian and Chinese brain atlases through morphological measurements. To explore differences 
in brain structure across different age groups, the Chinese2020 atlas18 was constructed based on a multi-center 
high MRI dataset of 2020 Chinese adults. It contains 12 atlases from the age 20 year to the age 75 year at a 5 years 
interval and is also proved to be more suitable for the Chinese population.

The above MRI-based atlases can provide clear brain structure information, but they cannot be used to ana-
lyze images from other modalities due to the impact of imaging modality differences on registration accuracy. 
To meet more clinical needs, a stroke-control CT (scCT) atlas19 was developed, based on 30 healthy individuals 
with an average age of 61.3 years, to assist in diagnosing stroke in the elderly. Similarly, a high-resolution 3D 
NCCT brain atlas20 using 47 NCCT scans with an average age of 72 years was also created. Although these atlases 
can address the registration accuracy issue caused by modality differences, they still have certain limitations 
for the clinical utility of ASPECTS. On the one hand, these atlases are limited regarding the age distribution. 
The age-related brain changes (e. g. , atrophy of gray and white matter) may affect the spatial correspondences 
between patient images and the atlas. On the other hand, the lack of ASPECTS region information makes it 
challenging to perform a rapid and accurate diagnosis of AIS.

To fill in the absence of an available ASPECTS atlas and remedy the limitations of existing atlases, this 
work constructs the Chinese ASPECTS atlas based on 281 brain NCCT images of healthy subjects across 
four age groups: 10-29 years, 30-49 years, 50-69 years, and 70-89 years. The proposed atlas, referred to 
as the ASPECTS-281 atlas, contains average intensity images and the corresponding ASPECTS regions. 
The age-specificity improves the generalization and robustness of the atlas, and consequently its utility. 
ASPECTS-281 is the first publicly-available, digital ASPECTS atlas that can be readily used in neuroscience and 
clinical practice, assisting in achieving rapid and highly reproducible ASPECTS scoring.

Methods
Datasets.  A retrospective analysis was conducted on brain NCCT images of individuals who participated in 
the comprehensive health screening program at the First Hospital of China Medical University from November 
2021 to June 2023. Based on the differences in brain anatomical structure across different age groups, the indi-
viduals were divided into four age groups: 10-29 years, 30-49 years, 50-69 years, and 70-89 years, with each group 
comprising 66, 75, 87, and 53 subjects, respectively. The average ages of these four groups were 19.9 ± 5.0 years, 
40.0 ± 5.6 years, 58.2 ± 5.7 years, and 76.9 ± 5.6 years (mean  ± standard deviation). Overall, the proportion 
of male subjects was higher than female. Exclusion criteria included significant deviation of the scan baseline 
from the orbitomeatal line (OML), a history of neurological or psychiatric disorders, as well as major intracranial 
findings detected on CT scans, such as intracranial hemorrhage, infarction, ischemia, and masses. These images 
were obtained using 15 different scanners (Brilliance 64, Optima CT680 Series, SOMATOM Definition Flash, 
NeuViz Epoch, uCT 760, SOMATOM Definition, Discovery CT750 HD, SOMATOM Force, uCT 960, NeuViz 
Glory, NeuViz Prime, Revolution CT, SOMATOM Drive, iCT 256, Aquilion ONE) from 6 manufacturers (GE 
MEDICAL SYSTEMS, UIH, NMS, SIEMENS, Philips, and Toshiba). The scan range extended from the base of 
the posterior fossa to the vertex, with a uniform image resolution of 512 × 512 and a slice thickness of 5 mm. The 
pixel size ranged from 0.39 to 0.57 mm, and the tube voltage was 120 kV.

Besides, we collected an independent validation set consisting of brain NCCT images of 91 subjects, with 23, 
20, 24, and 24 subjects in the respective age groups. This dataset was acquired between January 2023 and January 
2024 from the First Hospital of China Medical University. There was no subject overlap between the validation 
set and the construction set. The images were obtained using multiple CT scanners (Optima CT680 Series, 
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Discovery CT750 HD, uCT 960, NeuViz Epoch, SOMATOM Force, and SOMATOM Drive) with a tube voltage 
of 120 kV. The scan range, slice thickness, and image resolution matched those of the construction set. Our ulti-
mate aim is to provide a pipeline that can be applied to clinical populations with ischemic stroke. Therefore, we 
intentionally included a certain number of ischemic subjects, who all underwent NCCT scans within 12 hours 
of symptom onset, and there were areas of low intensity ischemic lesions in the MCA regions.

A waiver of consent for this study was approved by the Northeast University Biological and Medical Ethics 
Committee (Ethics Review Number: NEU-EC-2023B034S). All the data used in this study comes from previous 
clinical diagnoses and treatments, with the risks to subjects not exceeding minimal risk (minimal risk refers to 
the likelihood and severity of expected risks in the study being no greater than those encountered in daily life or 
during routine physical examinations or psychological tests). The waiver of consent will not adversely affect the 
rights and health of the subjects. Additionally, we have fully anonymized the data, which does not contain any 
personal privacy information (such as patient name, ID, date of birth, or other sensitive information) and does 
not use medical records or data that subjects have explicitly refused to allow. This study also does not involve any 
commercial interests. Detailed statistics of both datasets are presented in Fig. 1.

Pre-processing.  The main purposes of the pre-processing were to generate ASPECTS region annotation and 
standardize all NCCT images. According to the definition of ASPECTS, two key CT axial slices needed to be 
pre-determined: one at the level of the thalamus and basal ganglia, and another just rostral to the ganglionic struc-
tures8 (In the following text, we use the basal ganglia level (BGL) and supraganglionic level (SGL) to represent 
these two slices, respectively21,22). This work was completed by a neurologist (G.W.) with over 10 years of clinical 
experience in neuroscience. Meanwhile, 10 ASPECTS regions corresponding to the middle cerebral vascular ter-
ritories23 were manually annotated on these two slices of each subject as the ground truth (C=1, L=2, IC=3, I=4, 
M1-M6=5-10). For the validation set, two other neuroradiologists, namely Rater-1 and Rater-2, with 5 and 4 years 
of relevant clinical experience, were asked to independently annotate the ASPECTS regions on the pre-defined 
BGLs and SGLs. Their annotations were used as comparative references to evaluate the agreement of ASPECTS 
region mapping. In the annotation procedure, we excluded the sulcus in subjects aged 70-89 years since these 
regions were remarkable in this age group. To accelerate the following process of atlas construction, we pre-aligned 
the mid-sagittal plane to be in the vertical center of the image space. For a horizontally symmetric brain CT image 
X, it should have the minimum difference from its horizontally flipped version X′. Based on this premise, we 
employed the alignment sub-network T of the Symmetry-Enhanced Attention Network24 to accomplish the task. 
The alignment network T is an unsupervised 3D transformation network that uses the L1 loss of X and ′X  as the 
loss function. Its output parameters α ∈ 6 include translation α1:3 and rotation α4:6 components of the x, y, and 
z axes. Since we considered the horizontal symmetry of the image, only the translation in the x-direction and 
rotation along the z-axis were used to generate the quasi-symmetric image ′ =X T X( ) based on a parameterized 
sampling grid25. The final transformation was applied to the raw NCCT images and ASPECTS regions.

Furthermore, we performed threshold-based and region-based brain tissue extraction on these two slices 
to eliminate the skull and other non-brain tissue. Specifically, a confidence-based growing algorithm was 
first used to produce a coarse brain mask, where the threshold range was set to 0-120 Hounsfield Unit (HU), 
the initial neighborhood radius was set to 5 pixels, and the standard deviation multiplier was set to 12. The 
morphology-based method was then used to recover tissue with low intensity that had been mistakenly removed 
to ensure the integrity of all brain masks (radius=10 pixels). Finally, the largest connected region was extracted 
in the image as the final brain mask. All processed brain masks underwent visual inspection by the neurologist 

Fig. 1  Detailed statistics of the construction and validation sets of the ASPECTS-281.
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(G.W.) to identify extraction errors, and were manually corrected if necessary. We did not perform intensity 
normalization but normalized the in-plane resolution to 0.5 × 0.5 mm2 for all subjects using linear interpolation. 
One example of the pre-processing results along with its corresponding ASPECTS region annotation is shown 
in Fig. 2.

Atlas construction.  The overall construction pipeline of the ASPECTS-281 atlas is shown in Fig. 3. After the 
pre-processing, an initial template was randomly selected from images of each age group. Then affine registration 
(rotation, translation, scaling) was performed to spatially align all images within the age group to the initial tem-
plate. Finally, a symmetric diffeomorphic elastic registration algorithm26 based on cross-correlation similarity 
metric was applied to achieve the non-linear deformations. As the iterations increased, the images gradually 
converged toward the spatial geometric center, ultimately producing the average intensity atlas. We utilized the 
workflow defined in the antsMultivariateTemplateConstruction2.sh script from the Advanced Normalization 
Tools (ANTs, http://stnava.github.io/ANTs/)27. Default parameters were adopted to construct the atlas, including 
the iteration number (default=4), sharpening applied to the template at each iteration (default = Laplacian), 
similarity metric used for pairwise registration (default = CC), and transformation model used for registration 
(default = SyN). We tested other similarity metrics for the registration, such as mutual information (MI), mean 
square difference (MSD), and other non-linear registration schemes to improve the quality of the atlas. However, 
by visual inspection, we found that the default option of this script yielded the best results. Additionally, we 
evaluated the atlases generated with different numbers of iterations, and the corresponding visualization results 
of deformation fields are shown in Fig. 4. As the number of iterations increases, the deformation field gradu-
ally flattens out, indicating that the differences between warped subjects and each intermediate atlas gradually 
decrease. To strike a balance between the quality of the atlas and the efficiency of the construction process, we set 
the numberof iterations to 4.

Fig. 2  Example of the pre-processing result. (a) Raw NCCT image. (b) Result of the image alignment and brain 
tissue extraction. (c) Manual annotations of 10 ASPECTS regions.

Fig. 3  Construction pipeline of the ASPECTS-281 atlas.
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Compared with other atlas construction processes, we also utilized the obtained linear and non-linear defor-
mation fields to generate the warped ASPECTS regions. To achieve this goal, the affine matrices, deformation 
fields, and inverse deformation fields produced during the registration process were saved, where the two fields 
contained the non-linear deformation from the warped subjects to the intermediate atlas, and the correspond-
ing inverse non-linear deformation, respectively. We first calculated the average ASPECTS regions based on the 
affine matrices and deformation fields. Since each region strictly corresponds to a binary label, we used majority 
voting to determine the identification of the current region when different regions overlapped with one another. 
Then, we calculated the average inverse deformation and used it to generate the final warped ASPECTS regions. 
The whole process of region deformation is shown in Fig. 5. The constructed average intensity atlases and the 
corresponding ASPECTS regions were reviewed and confirmed by the neurologist (G.W.).

Data Records
The constructed ASPECTS-281 atlas is available at figshare28 (https://doi.org/10.6084/m9.figshare.26819290). 
Atlas files are divided into two categories, one corresponding to the BGL and the other to the SGL, and are stored 
in the NIfTI format with an in-plane resolution of 0.5 × 0.5 mm2. The detailed file list is summarized in Table 1. 
The suffix of each file name identifies the specific age group. Files with the keyword image are the average inten-
sity atlases, stored in short precision, while files with the keyword label are the corresponding ASPECTS region 
atlases, stored in unsigned char format.

Technical Validation
The ASPECTS atlas.  Figure 6 shows the final average intensity atlases and the corresponding ASPECTS 
regions across four age groups. The former serves as a standardized template for spatial normalization of brain 
NCCT images, while the latter provides ASPECTS regions for the subsequent diagnostic and treatment plans. The 
ASPECTS-281 atlas not only accurately reflect the general morphology of relevant anatomical structures, but also 

Fig. 4  Evolution in deformation fields during the atlas construction process. The figures from (a–d) correspond 
to the deformation fields of the iteration 1 to 4. The high and low intensity represents positive and negative 
deformation, respectively.

Fig. 5  Deformation process of the ASPECTS regions.

ASPECTS

SGL BGLAge group

10-29 SGL_image_10_29.nii.gz / SGL_label_10_29.nii.gz BGL_image_10_29.nii.gz / BGL_label_10_29.nii.gz

30-49 SGL_image_30_49.nii.gz / SGL_label_30_49.nii.gz BGL_image_30_49.nii.gz / BGL_label_30_49.nii.gz

50-69 SGL_image_50_69.nii.gz / SGL_label_50_69.nii.gz BGL_image_50_69.nii.gz / BGL_label_50_69.nii.gz

70-89 SGL_image_70_89.nii.gz / SGL_label_70_89.nii.gz BGL_image_70_89.nii.gz / BGL_label_70_89.nii.gz

Table 1.  File list of the ASPECTS-281 atlas.
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enhance the accuracy of ASPECTS region mapping in clinical practice. We evaluated the constructed atlas from 
two aspects: image quality and the accuracy of ASPECTS region mapping. The paired T-test was used to assess the 
differences in the following comparison results, with a p-value less than 0.05 indicating a significant difference.

Atlas quality validation.  The image quality of our ASPECTS-281 was validated from both visual inspection 
and quantitative analysis perspectives. As shown in Fig. 6, the boundaries of the critical nuclei, as well as the gyri 
and sulci, are sharp and clear. Additionally, the boundaries of the brain exhibit excellent smoothness. By com-
paring the atlases of different age groups, noticeable changes in relevant anatomical structures of the brain can be 
observed. As age increases, the sulci are more pronounced due to the atrophy of gray and white matter, which is 
particularly remarkable after the age of 70 years. This is consistent with the actual morphological changes in brain 
tissue. In terms of quantitative analysis, we introduced the image entropy, which is a quantitative metric to assess 
the sharpness of an image29. The lower the entropy, the sharper the image. The image entropy is defined as follows: 

E X p x p x( ) ( ( )log ( ( ))) (1)2∑= −

where p(x) is the probability of each intensity level. To calculate the image entropy, each atlas was first nor-
malized to 0-255. Then, the probability histogram was computed, where each bin represents the ratio of the 
occurrence frequency of an intensity value to the sum of the occurrence frequencies of all 256 intensity values. 
Table 2 summarizes the entropies of our average intensity atlases of different age groups in comparison with the 

Fig. 6  Constructed age-specific ASPECTS-281 atlas. The atlas for each age group includes an average intensity 
atlas and the corresponding ASPECTS regions.
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MIPLAB-NCCT atlas20 and scCT atlas19. Since both of these atlases are 3D atlases, we selected the corresponding 
slices for the BGL and SGL to calculate the image entropy. Brain tissue extraction was performed on the scCT 
atlas to remove the non-brain tissue. It can be observed that our ASPECTS-281 atlas exhibits lower entropy (i.e., 
better detail and sharpness) and shows a significant difference compared with the other two atlases (p < 0.05).

ASPECTS region validation.  To validate our atlas and enhance its clinical utility, we developed an auto-
mated pipeline that encompassed specific ASPECTS slices localization, brain tissue extraction, spatial normali-
zation, and ASPECTS region mapping. The ASPECTS slice localization aims to automatically identify the BGL 
and SGL from a brain NCCT image. To achieve this, we devised a deep neural network called ASPECTSLoc-Net, 
as illustrated in Fig. 7.

ASPECTSLoc-Net processes a sequence of 2D axial brain NCCT slices and outputs the slice index of the 
BGL. A 2D ImageNet-pretrained ResNet-50 without the fully connected (FC) layer is employed as the encoder to 
extract features from different slices, generating 2048 features for each input slice. Subsequently, a bi-directional 
long short-term memory (Bi-LSTM)30 layer with 512 hidden units is introduced to capture the relationships 
among neighboring slices. To further aggregate inter-slice features, we concatenate the pre-classification results 
and the output features of the first Bi-LSTM and pass them through two consecutive multi-resolution feature 
extraction layers. Finally, another Bi-LSTM layer is employed to locate the BGL. After the localization of the 
BGL, it is then used as a reference to determine the SGL (Clinically, it is generally believed that the SGL is 2 
cm above the BGL). The input of the network is an RGB-like image obtained by stacking three instances from 
different windows commonly used in brain CT diagnosis: brain window (WL=40, WW=80), subdural window 
(WL=75, WW=215), and bony window (WL=600, WW=2800), where WL and WW represent window level 
and window width, respectively. Input images are all linearly pre-downsampled to 224 × 224.

All experiments were implemented by PyTorch 1.7.1 with an NVIDIA A30 with 24 GB of memory on 
Ubuntu 18.04.6 LTS system. We used the binary cross entropy as the loss function. ASPECTSLoc-Net was 
trained for 100 epochs using the Adam optimizer with an initial learning rate of 0.001 and a cosine annealing 
schedule with linear warm-up. Various augmentations, including random cropping and resizing, horizontal/
vertical flip, random rotation between 0° and 30°, grid distortion, Gaussian noise, and CutMix31 with α = 1, were 

Atlas Age group Age (mean  ± std) Subject number Entropy (BGL / SGL / Mean)

ASPECTS-281

10-29 19.9  ± 5.0 66 2.22 / 2.09 / 2.15

30-49 40.0  ± 5.6 75 2.37 / 2.09 / 2.23

50-69 58.2  ± 5.7 87 2.30 / 2.15 / 2.23

70-89 76.9  ± 5.6 53 2.24 / 2.11 / 2.18

MIPLAB-NCCT — 71.9  ± 14.0 47 2.80 / 2.45 / 2.63

scCT — 61.3  ± 18.4 30 3.65 / 3.31 / 3.48

Table 2.  Entropy of the ASPECTS-281 in comparison with the MIPLAB-NCCT atlas and scCT atlas.

Fig. 7  Architecture of the ASPECTSLoc-Net. The number annotated on each module represents the dimension 
of the output features of the current layer, and N corresponds the slice number of the brain NCCT image.
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applied during training. We evaluated the model’s performance using the localization accuracy and inter-slice 
relative distance error (IS-RDE), where the IS-RDE represents the distance (in mm) between the predicted 
image slice and the ground truth (GT). Training and validation were performed using the construction set 
through 5-fold cross-validation. The mean localization accuracy and IS-RDE can reach 89.38% and 0.53 mm, 
respectively. Additionally, we tested the model on the validation set, achieving a localization accuracy of 82.42% 
and an IS-RDE of 0.88 mm.

After localizing the key ASPECTS slices, we performed brain tissue extraction of these two axial slices, regis-
tered the corresponding age-specific average intensity atlas to the subject’s image, and mapped the 10 ASPECTS 
regions accordingly. The accuracy of the mapping results was measured using the Dice Similarity Coefficient (DSC): 

DSC
A B

A B
2

(2)
∩=
+

where A and B are two regions under comparison. DSC ranges between 0 and 1, where 1 indicates perfect 
matching. We conducted two experiments to evaluate the accuracy and agreement of ASPECTS region mapping. 
First, the annotations of the neurologist were used as the GT, while the annotations of two other raters (Rater-1 
and Rater-2) served as references for comparison. We separately calculated the DSC for all ASPECTS regions 
of the validation set obtained by Rater-1, Rater-2, and the atlas-based registration method against the GT. 
The quantitative analysis results are shown in Fig. 8. The atlas-based registration method can achieve a higher 
DSC of 0.913 ± 0.021 (mean  ± standard deviation) for 10 ASPECTS regions. In contrast, the mean DSCs are 
0.880 ± 0.027 and 0.872 ± 0.031 for Rater-1 and Rater-2, respectively. It is worth noting that there is significant 
annotation discrepancy between Rater-1 and Rater-2 among different subjects in the insula and M1-M6 regions, 
with mean standard deviations of 0.044 and 0.054, respectively. This is due to the complex intensity distribution 
of the insula and the lack of explicit boundaries for the M1-M6 regions. For non-academic or less experienced 
doctors, these discrepancies may be even greater. Then, we employed a multi-GT cross-comparison method, 

Fig. 8  DSC for ASPECTS region mapping of the validation set. The dashed line and the two dotted lines in each 
violin plot represent the median and the upper/lower quartile boundaries, respectively.

ASPECTS region

C L IC I M1 M2 M3 M4 M5 M6

Atlas-Rater1 0.896 0.910 0.827 0.846 0.862 0.890 0.870 0.842 0.882 0.854

Atlas-Rater2 0.898 0.914 0.830 0.831 0.863 0.884 0.849 0.842 0.874 0.830

Atlas-Neurologist 0.942 0.942 0.908 0.898 0.896 0.926 0.926 0.879 0.912 0.898

Atlas Mean 0.912 0.922 0.855 0.858 0.874 0.900 0.882 0.854 0.889 0.860

Rater1-Rater2 0.898 0.914 0.822 0.819 0.855 0.885 0.835 0.836 0.881 0.836

Rater1-Neurologist 0.909 0.919 0.838 0.856 0.874 0.903 0.866 0.865 0.906 0.870

Rater2-Neurologist 0.909 0.920 0.837 0.837 0.870 0.895 0.845 0.859 0.890 0.848

Rater Mean 0.905 0.918 0.833 0.837 0.867 0.894 0.849 0.853 0.895 0.851

Table 3.  DSC from the multi-GT cross-comparison between atlas-based and rater-based mapping results. Atlas-
Rater1, Atlas-Rater2, and Atlas-Neurologist represent the DSC between atlas-based registration results and each 
GT. Rater1-Rater2, Rater1-Neurologist, and Rater2-Neurologist represent the DSC between the different raters.
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where the annotations from the neurologist, Rater-1, and Rater-2 were each considered to be GT. We calculated 
the DSC between the atlas-based registration mapping results and each GT, as well as the DSC between the dif-
ferent raters’ annotations. This experiment allowed us to analyze whether the atlas-based registration method 
could achieve better agreement compared to manual annotations. As shown in Table 3, the mean DSC obtained 

Fig. 9  Example of mapping results for 10 ASPECTS Regions. The left side shows the manually annotated 
ASPECTS regions (ground truth), while the right side displays the differences between the mapping results and 
the ground truth. In the difference map, blue indicates the overlapping area, red indicates the under-mapped 
area, and green indicates the over-mapped area.

ASPECTS region

Atlas Validation C L IC I M1 M2 M3 M4 M5 M6 Mean

10-29

10-29 0.941 0.948 0.909 0.912 0.933 0.943 0.941 0.915 0.938 0.912 0.929

30-49 0.926 0.933 0.885 0.886 0.879 0.906 0.847 0.842 0.906 0.852 0.886

50-69 0.913 0.901 0.830 0.873 0.871 0.899 0.866 0.835 0.892 0.862 0.874

70-89 0.852 0.887 0.748 0.789 0.870 0.858 0.832 0.840 0.869 0.794 0.834

30-49

10-29 0.925 0.932 0.884 0.840 0.870 0.913 0.841 0.834 0.912 0.878 0.883

30-49 0.950 0.951 0.921 0.895 0.900 0.935 0.932 0.885 0.921 0.900 0.919

50-69 0.931 0.923 0.870 0.835 0.846 0.909 0.913 0.842 0.894 0.885 0.885

70-89 0.873 0.915 0.808 0.710 0.829 0.875 0.897 0.808 0.847 0.846 0.841

50-69

10-29 0.929 0.921 0.861 0.886 0.891 0.922 0.877 0.831 0.892 0.896 0.891

30-49 0.935 0.941 0.893 0.899 0.900 0.927 0.921 0.882 0.902 0.869 0.907

50-69 0.940 0.935 0.902 0.893 0.900 0.919 0.933 0.890 0.904 0.884 0.910

70-89 0.899 0.931 0.865 0.780 0.855 0.881 0.896 0.807 0.827 0.819 0.856

70-89

10-29 0.884 0.897 0.753 0.854 0.846 0.871 0.829 0.888 0.913 0.855 0.859

30-49 0.890 0.929 0.822 0.793 0.837 0.891 0.904 0.841 0.894 0.896 0.870

50-69 0.896 0.925 0.842 0.837 0.839 0.897 0.896 0.834 0.888 0.888 0.874

70-89 0.938 0.939 0.907 0.896 0.884 0.913 0.910 0.869 0.905 0.893 0.905

Table 4.  DSCs for the ASPECTS regions using atlases of different age groups. The first column corresponds to 
the age groups of the atlas, and the second column corresponds to the different age groups in the validation set.
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from atlas-based registration (C: 0.912, L: 0.922, IC: 0.855, I: 0.858, M1: 0.874, M2: 0.900, M3: 0.882, M4: 0.854, 
M5: 0.889, M6: 0.860) is higher than the mean DSC between raters (C: 0.905, L: 0.918, IC: 0.833, I: 0.837, M1: 
0.867, M2: 0.894, M3: 0.849, M4: 0.853, M5: 0.895, M6: 0.851) across most ASPECTS regions (p < 0.05). One 
example of the region mapping result is presented in Fig. 9.

In addition, we analyzed the accuracy of ASPECTS region mapping separately for ischemic subjects. Due to 
the blurring of boundaries and attenuation anomalies caused by ischemic lesions, the mean ASPECTS region 
mapping accuracy for ischemic subjects is 0.882, which is lower than the 0.924 observed for healthy subjects. 
Furthermore, we compared the mean DSC of all ASPECTS regions obtained from different age group atlases. As 
shown in Table 4, using the atlas from the specific age group could yield better results with 0.929, 0.919, 0.910, 
and 0.905, respectively (p < 0.01).

In terms of efficiency, manually annotating ASPECTS regions took about 15 minutes per patient, while our 
fully automated pipeline completed the task in 15 seconds, greatly enhancing diagnostic efficiency and reducing 
doctors’ workload.

Usage Notes
The ASPECTS-281 atlas includes a series of two-dimensional atlases corresponding to the BGL and SGL across 
four age groups. We provide an automated pipeline for ASPECTS region mapping, making this atlas suitable for 
both rapid ASPECTS scoring in clinical practice as well as for relevant neuroscience research. The atlas is avail-
able in NIfTI format, allowing compatibility with various open-source tools such as ITK-SNAP and 3D Slicer.

Code availability
The complete codebase for constructing and mapping the ASPECTS-281, as well as the final atlas files of 
different age groups, are available in the GitHub repository (https://github.com/BravoSun/NCCT-atlas-for-
ASPECTS-scoring). The atlas construction pipeline consists of two modules: the pre-processing module and 
the atlas generation module. The pre-processing module is used for symmetric alignment and brain tissue 
extraction. The atlas generation module is a bash script that utilizes the ANTs package with specific parameters 
for non-linear registration. Additionally, we also develop an ASPECTS atlas mapping pipeline, which enables 
the automated localization of the BGL and SGL as well as ASPECTS region mapping. All code is implemented in 
Python, and a trained ASPECTSLoc-Net is provided.
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