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Abstract: Cell responses to changes in their redox state are significantly mediated by reversible
oxido-reductive post-translational modifications of proteins, potentially altering their activities or in-
teractions. These modifications are important for the homeostatic responses of cells to environmental
changes that alter their redox state. Such redox regulatory mechanisms not only operate to maintain
health, but can become dysregulated and contribute to pathophysiology. In this review, we focus on
the redox control of soluble epoxide hydrolase (sEH), which is widely expressed, including in blood
vessels and cardiomyocytes. We review the different types of oxidative modifications that regulate
sEH and how they may alter cardiovascular physiology and affect disease progression during stress.
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1. Introduction

Multiple post-translational modifications (PTMs) can modify proteins and alter their
stability or conformation to regulate their interactions and functional activities. Prominent
examples include acetylation, phosphorylation, palmitoylation and glycosylation, together
with a substantive array of oxidative PTMs (oxPTMs). Collectively, these modifications
orchestrate homeostatic responses of cells; however, these mechanisms of control may be
dysregulated and contribute to disease pathogenesis, including those of the cardiovascular
system.

Changes in the abundance of reactive oxygen species (ROS), reactive nitrogen species
(RNS) or cellular reducing biomolecules are altered during health and disease. Proteins
sense these perturbations in cellular redox, with ROS or RNS reacting with amino acids to
introduce oxPTMs, which can couple to a functional change that may alter physiology [1].
Significant attention has been given to the regulatory importance of the modification of
cysteine, methionine and tyrosine residues in proteins, perhaps because of their greater
propensity to forming oxPTMs.

Tyrosine residues can be oxidized to dityrosine and can also react with peroxynitrite
to form 3-nitrotyrosine [2], which can mimic regulatory tyrosine phosphorylation [3].
Methionine residues are reversibly oxidized to methionine sulfoxide, and then further
irreversibly oxidized to the sulfone [4]. The thiol groups in cysteine residues are especially
sensitive to oxidation. Depending on the species and concentration of the oxidant, cysteine
thiols can undergo a variety of different oxidative modifications. For example, cysteine
thiols can undergo persulfidation (also known as S-sulfhydration), S-nitrosylation, S-
sulfenylation or S-glutathionylation, following reactions with hydrogen sulfide, reactive
derivatives of nitric oxide (so called NOx species), hydrogen peroxide or derivatives of
glutathione (e.g., GSSG, GSNO), respectively [5–7]. Other, more stable oxidation states
that cysteine residues can form include inter-protein and intra-protein disulfide bonds, as
well as over oxidation reactions to sulfinic and sulfonic acids [5,6], as shown in Figure 1.
Electrophilic lipids, such as 15-deoxy-∆-prostaglandin (15d-PGJ2) and 10-nitro-oleic acid
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(10-NO2-OA), which we discuss in detail below, can also covalently adduct to cysteine
thiols via a Michael addition reaction [8].
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portant modulator of arterial and cardiac functions [18–25]. sEH is also a susceptibility 
factor for human heart failure, with polymorphisms that enhance hydrolase activity in-
creasing cardiovascular risk [26]. Conversely, inhibitors (or transgenic knock-outs) of sEH 
offer a broad spectrum of cardiovascular protection, including the blockade of smooth 
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Figure 1. Summary of the oxPTMs formed in protein thiols. Thiolate anions can react with a variety
of reactive oxygen or nitrogen species to form reversible (intra-protein disulfides, inter-protein
disulfides, S-sulfenylation, S-nitrosylation, S-glutathionylation, persulfidation, S-sulfenamidation,
electrophilic covalent adduction) and irreversible hyper-oxidized (S-sulfinylation, S-sulfonylation)
redox states.

Multitudes of proteins are now recognised to be regulated by various oxPTMs [9–12],
which can impact cellular homeostasis and disease pathogenesis. Although not discussed
in this focused review, how different oxPTMs influence physiology and pathogenesis
has been extensively considered elsewhere [13–16]. Mass spectrometry-based proteomics
has enabled the identification and quantification of oxPTMs, which in turn has led to a
greater understanding of the redox control of many different proteins and the consequences
for physiology or disease progression. More recently, a large-scale study quantitatively
mapped the human and mouse cysteine redox proteome in vivo [17]. This OxiMouse
project identified redox networks within tissues and provided a compendium of modified
proteins and mapped their often multiple sites of oxidation that in many cases demon-
strated significant modification stoichiometry. It is increasingly evident that redox control
of proteins is comparable with the regulation afforded by other modifications such as
phosphorylation. The focus of this review is how different oxPTMs regulate the activity
of soluble epoxide hydrolase (sEH), as well as discussing how these modifications affect
cardiovascular physiology during health and disease.

2. Soluble Epoxide Hydrolase

sEH is ubiquitously expressed, including in cardiovascular-relevant tissues such as
endothelial or vascular smooth muscle cells as well as cardiomyocytes, where it is an impor-
tant modulator of arterial and cardiac functions [18–25]. sEH is also a susceptibility factor
for human heart failure, with polymorphisms that enhance hydrolase activity increasing
cardiovascular risk [26]. Conversely, inhibitors (or transgenic knock-outs) of sEH offer a
broad spectrum of cardiovascular protection, including the blockade of smooth muscle pro-
liferation [27], reduction of atherosclerosis and hypertension [18,23,28–31], prevention and
regression of cardiac hypertrophy and HF [26,32,33], and fibrosis [34]. sEH is homodimeric
and arranged in an anti-parallel manner, comprising an N-terminal lipid phosphatase
domain and a C-terminal epoxide hydrolase domain (Figure 2A) [19]. The N-terminal
domain is capable of dephosphorylating lipids such as lysophosphatidic acids (LPA) [35,36]
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and sphingosine-1-phosphate (S1P). The hydrolase domain catalyzes the hydrolysis of
epoxy-fatty acids (EpFAs) to their corresponding diols, as shown in Figure 2 [37,38].
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Figure 2. sEH structure (A) Domain swapped homo-dimeric structure of sEH. (B–F) Overview of
various oxidative modifications of sEH and the sites at which they occur.

The active site of the hydrolase domain, as identified through biochemical and struc-
tural analysis, is located at the base of a 25 Å deep L-shaped cavity [39], where a triad of
amino acids, namely Asp335, Asp496 and His524, catalyse the epoxide hydrolysis reac-
tion [40,41]. The mechanism involves two steps, an initial ester formation between the EET
and Asp335 of the enzyme followed by the water-mediated release of the diol product that
is catalysed by Asp496/His524. Two tyrosines, specifically 383 and 466, provide support by
establishing hydrogen bonds with the oxygen of the epoxy ring, thereby positioning it for
the nucleophilic attack by the proximal aspartate [38]. These two tyrosine residues can be
nitrated to inhibit the hydrolase and will be discussed in detail below.

The most widely studied substrates of sEH are epoxyeicosatrienoic acids (EETs);
however, it can also hydrolyse epoxydocosapentaenoic acids (EpDPEs), α- and γ-epoxyo
ctadecadienoic acids (α/γ-EpODEs) and epoxyoctadecaenoic acids (EpOMEs). EETs, of
which there are four regioisomers cis 5,6-EET, 8,9-EET, 11,12-EET and 14,15-EET, are derived
from arachidonic acid. EETs have a wide range of biological activities, including dilation of
systemic or coronary arteries or, conversely, constricting those of the pulmonary system.
EETs are broadly pro-angiogenic, anti-inflammatory and limit platelet aggregation as well
as promoting fibrinolysis. Finally, EETs also enhance cardiomyocyte contractility [42–49].
Therefore, inhibiting sEH pharmacologically elevates its substrates such as EETs, allowing
them to exert their beneficial actions. Indeed, inhibiting sEH has identified the hydrolase
as an important modulator in cardiovascular and renal health, with additional roles in
nociception [19,50,51].

3. Oxidative Post-Translational Modifications of sEH

Until 2009, little was known about how sEH activity was regulated, and it was thought
to be principally determined by its expression abundance [52]. However, it is now apparent
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that a number of different oxPTMs, which are discussed below, as are their effects on
cardiovascular health and disease (summarized in Table 1), regulate this hydrolase.

Table 1. Summary of different oxPTM that modulate sEH activity and their influences on cardiovas-
cular health and disease.

oxPTM sEH Activity Potential and Known Effects
on Cardiovascular Function

Tryosine nitration Inhibited

Angiogenic
Anti-inflammatory
Cardioprotective

Anti-hypertensive
Coronary vasodilatory

Increase myocyte contraction

Electrophilic lipid adduction Inhibited

Angiogenic
Anti-inflammatory
Cardioprotective

Anti-hypertensive
Coronary vasodilatory

Increase myocyte contraction

S-nitrosation Activated

Anti-angiogenic
Vasoconstriction

Hypertrophic
Increased ischemic &

reperfusion injury

Intra-disulfide Formation Activated

Anti-angiogenic
Vasoconstriction

Hypertrophic
Increased ischemic &

reperfusion injury

3.1. Tyrosine Nitration

Barbosa-Sicard et al. showed that sEH is inhibited by tyrosine nitration (Figure 2B),
providing perhaps the first evidence that sEH could be oxidized by a PTM. Y383 and
Y466, key amino acids for enzymatic sEH activity, were nitrated by peroxynitrite (ONOO−)
or the ONOO− generator 3-morpholinosydnonimine (SIN-1) [53]. Tyrosine nitration at
either of these sites resulted in hydrolase inhibition. Streptozotocin, a compound used
to induce diabetes but interestingly also contains an N-nitroso moiety that may donate
nitric oxide, was found to increase tyrosine nitration. Traditionally, tyrosine nitration has
been associated with damage and disease. This may be due to the widely held ‘belief’ that
oxidants are principally harmful, and indeed this may be the case with peroxynitrite because
its high reactivity provides potential for non-selective oxidations. However, in this scenario,
inhibiting sEH by tyrosine nitration would be expected to increase cardioprotective EETs,
which may mitigate against dysfunction arising from other damaging modifications.

3.2. Adduction of Electrophilic Lipids to sEH

We found 15d-PGJ2 adducts to and inhibits the activity of sEH (Figure 2C) [54]. 15d-
PGJ2 is an endogenously generated electrophile that contains two α,β-unsaturated car-
bonyls that enable it to react with nucleophilic thiol moieties in proteins via Michael
addition reactions (Figure 2C). As C521 (mouse protein sequence numbering) is conserved
and proximal to the catalytic triad, as discussed above, it was identified as a likely candi-
date to mediate the electrophilic lipid and subsequent inhibition. Although other targets
of 15d-PGJ2 have been identified, with perhaps the best characterised being the nuclear
peroxisome proliferator-activated receptor γ [55], we demonstrated a causal link between
this electrophilic lipid and its ability to adductively inhibit sEH to induce coronary vessel
vasodilation [54]. This electrophilic mechanism of inhibition also contributed to coronary
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artery hypoxic vasodilation [54]. Subsequently, other electrophilic lipids, such as 10-NO2-
OA, were also found to adduct to sEH C521 to inhibit hydrolase activity (Figure 2D) [56,57].
10-NO2-OA is known to protect against myocardial infarction, preserve left ventricular
function [58], dilate arteries [59], attenuate platelet activation and reduce inflammation via
cyclic guanosine monophosphate (cGMP)-independent mechanisms [60,61]. Perhaps these
protective actions, such as the reduction in blood pressure and reducing myocardial infarct
size, may also be explained by sEH inhibition. Given the complexities of establishing if the
blood pressure lowering effects of 10-NO2-OA were due to sEH inhibition, a transgenic
knock-in mouse in which C521 was systemically replaced with a serine was generated. This
enabled investigations to determine whether electrophilic lipids exert their blood pressure
lowering actions causally by inhibiting sEH. These knock-in mice were studied in the
context of angiotensin II-induced hypertension, measuring their blood pressure lowering
response to 10-NO2-OA compared to wild-type controls. The nitro-fatty acid inhibited sEH
in wild-type mice in which EETs concomitantly accumulated and so explains the blood
pressure-lowering observed. This lowering of blood pressure was completely absent in the
knock-in mice that lack the cysteine to which the nitro-lipid adducts to cause hydrolase inhi-
bition. Interestingly, inhibition of sEH by 10-NO2-OA highlighted a mechanism to account
for the protection from hypertension afforded by the Mediterranean diet. Paradoxically,
people who consume this diet, which is rich in fats and therefore is anticipated to promote
cardiovascular disease, are in fact protected from such conditions [62,63]. The formation
of nitrated fatty acids such as 10-NO2-OA are promoted under acidic conditions in the
stomach following consumption of green leafy vegetables with nitrite and unsaturated fats
that are key components in the Mediterranean diet [64–66]. Subsequent studies identified
C423 as an additional site for electrophilic lipid adduction [57]. Although this cysteine
is not present in the murine orthologue, adduction of a lipid electrophile to this site in
recombinant human sEH was inhibitory. However, this inhibitory mechanism has yet to
be substantiated in cells or in vivo. Electrophile adduction at C423 is notable because it is
distal to the active site and can therefore be described as allosteric. Therefore, targeting
C423 may be useful in the development of allosteric sEH inhibitors [57]. C521 is located at
the exit of the hydrophobic tunnel and therefore may not be completely allosteric due to its
proximity to the active site. However, the mechanism of inhibition at C521 could potentially
be exploited by the development of novel electrophilic drugs to combat cardiovascular
disease. Collectively, our work clearly demonstrates that the enzymes’ activity can be
inhibited by electrophilic lipids.

3.3. S-Nitrosation of sEH

In 2016, Ding et al. showed sEH is activated by S-nitrosation (Figure 2E) [67]. During
myocardial reperfusion, sEH was activated and lead to a loss of cardioprotective EETs. A
trans-nitrosating nitric oxide donor, namely nitrosocysteine (CysNO), recapitulated this
activation of sEH in vitro (Figure 2E). C141 was identified as the main site of S-nitrosation,
although a number of different cysteine residues were also found to be modified in this way,
including C264, which will be considered further below. Interestingly, C141 is located in the
N-terminal domain of sEH, however due to the domain swapped anti-parallel architecture
of sEH, a SNO modification at this site perhaps stabilises bonds in the hydrolase domain
of the opposite monomer, leading to enhanced hydrolase activity. S-Nitrosoglutathione
(GSNO) is another nitric oxide donor that might be expected to activate sEH in a similar
manner as described here by CysNO. These authors also reported that GSNO similarly
activated sEH, whereas we found that it did not do this [54]. It is possible that GSNO may
induces S-glutathionylation of sEH and the effect of this disulfide modification on activity
remains unclear.

3.4. Intra-Disulfide Formation in sEH

In 2021, we described a mechanism by which sEH can be activated by oxidative intra-
disulfide formation (Figure 2F) [68]. Oxidation induced either by exogenously applied
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hydrogen peroxide or the pro-oxidant vasopressor hormone angiotensin II increased sEH
activity by catalyzing a disulfide between Cys262 and C264 (mouse protein sequence
numbering), as depicted in Figure 2D. This oxidative activation increased the hydrolysis
of vasodilatory EETs. Indeed, following angiotensin II treatment, the EET/DHET ratio
decreased, consistent with and potentially explaining, at least in part, the pressor action
of angiotensin II. This is notable, as we have previously shown that S-nitrosated proteins
generically transition to form a disulfide bond [69]; hence, it is likely that the S-nitrosation
of C264 observed by Ding et al. induced the activating intra-disulfide with C262.

4. Redox Regulation of sEH in Blood Vessels

Decreasing sEH activity, either pharmacologically or genetically, has illustrated a broad
role for this hydrolase and its EET substrates in vascular homeostasis. EETs are angiogenic,
anti-inflammatory, and suppress platelet aggregation [45,47,70,71]. Regulation of angiogenesis
is critical to the maintenance of vascular and myocardial health, with EETs able to increase en-
dothelial cell proliferation to promote such vascularization [45,72,73]. On this basis, inhibiting
sEH, because of the angiogenic roles of EETs, promotes neovascularization in ischemic
tissue. Interestingly, the redox status of the cell affects angiogenesis [74,75]. Consequently,
oxidative modifications that inhibit sEH, may be expected to promote angiogenesis. Al-
though not directly investigated in the study reporting that tyrosine nitration of sEH is
inhibitory [53], it is conceivable that this oxPTM enables nitrosative signaling to be coupled
with angiogenesis. Our group demonstrated, albeit in a cancer model, that sEH inhibition
induced by nitro-oleate adduction to C521 promoted angiogenesis [76]. Indeed, this elec-
trophilic inhibition of sEH increased cell proliferation and migration in wild-type (WT)
mice more than in C521S knock-in mice lacking the critical cysteine that renders the hy-
drolase electrophile-resistant. In direct contrast to sEH inhibition promoting angiogenesis,
increasing hydrolase activity is anticipated to reduce it. Therefore, following S-nitrosation
or disulfide bond formation, namely the scenarios mentioned above that activate sEH, a
decrease in cell proliferation and migration may be expected. However, treatment with a
diol restored blood flow in sEH null mice to levels observed in WT mice during hind limb
ischemia [77]. Similarly, sEH null mice displayed attenuated sprouting angiogenesis in
their retinas, which could again be rescued by the application of the diols [78]. Therefore,
in these scenarios, increasing sEH activity by either S-nitrosation or disulfide formation
may be beneficial. While it is clear that sEH plays a role in angiogenesis, further research
is required to elucidate how sEH is regulated to elicit its opposing angiogenic effects in
different tissues and the precise roles redox regulation play in specific cells or scenarios.

The anti-inflammatory actions of EETs also contribute to vascular homeostasis. 11–12 EET
decreased the number of adherent and rolling mononuclear cells in mice following TNF-
injections [79]. Similarly, sEH null mice or in AUDA-BE treated mice had an attenuated
inflammatory response to lipopolysaccharide compared to WTs [80]. Likewise, sEH inhi-
bition not only decreased infiltration of macrophages in angiotensin II-induced or deoxy-
corticosterone (DOCA) salt hypertension, but also attenuated renal inflammation [81,82].
Despite evidence that sEH inhibition is anti-inflammatory, more research is needed to
establish whether the sEH redox state is modulated in such scenarios, which is likely given
the roles of oxidants in inflammation [83]. As tyrosine nitration and electrophilic lipid
adduction both inhibit sEH, it is conceivable that each of these mechanisms increase EETs
and their anti-inflammatory actions—a prospect that warrants further investigations.

EETs are vasodilators that induce vascular smooth muscle cell (VSMC) hyperpolar-
ization and the activation of large-conductance calcium activated potassium channels
(KCa) to cause arterial dilation [47,84]. Some evidence indicates that EETs can also activate
Ca2+-induced intermediate-conductance (IKCa) and small-conductance (SKCa) potassium
channels that may also participate in cell hyperpolarization [85], which spreads via gap
junctions [47]. EETs can also activate transient receptor potential vanilloid channel 4 on
VSMCs [86]. EETs released by endothelial cells are also thought to activate a yet unidenti-
fied EET receptor on VSMCs, leading to adenylate cyclase and protein kinase A activation,
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activating BKCa and ATP-sensitive potassium (KATP) channels to induce hyperpolarization
and vasodilation [19]. Based on the vasodilatory actions of ETTS, inhibiting the hydro-
lase either through pharmacological or genetic manipulation decreased blood pressure in
several different animal models of hypertension [30,31,81,87,88]. As discussed above, we
found that the electrophilic lipid NO2-OA, covalently adducted to sEH at C521 to inhibit
it, increased EETs/DHETs, thereby lowering blood pressure in angiotensin II-induced
hypertensive mice. This study clearly demonstrates a role for the redox control of sEH
in blood pressure regulation and the pathogenesis of hypertension. It is plausible that
other mechanisms of inhibitory sEH oxidation, such as tyrosine nitration, may also couple
to vasodilation. On the other hand, oxidative modifications that activate the enzyme are
anticipated to have the opposite effect and induce vasoconstriction instead due to the
increased hydrolysis of vasodilatory EETs. Interestingly, the vasopressor angiotensin II not
only increases cellular H2O2 [89,90] but also decreases EETs in mice, consistent with sEH
being oxidized in this scenario [68].

5. The Role of Redox Regulation of sEH in the Heart

Myocardial sEH has been significantly investigated in terms of cardiac pathophysi-
ology, with relatively few studies investigating its role in physiological functions during
health. However, similar to the dilation of the systemic vasculature, EETs can also relax
the coronary vasculature by activating KCa channels [91]. Our work with 15d-PGJ2 also
demonstrated that EETs relax the coronary vasculature, whereby the electrophilic lipid in-
duced a prominent and sustained vasodilation in ex vivo perfused rat hearts. This coronary
vasodilation was due to 15d-PGJ2 adducting to C521 and inhibiting sEH, a mechanism that
contributed to coronary hypoxic vasodilation [54].

In myocytes, 5,6-EET or 11,12-EET increased cell shortening and intracellular calcium
concentrations [92]. Other studies have since demonstrated that EETs can inhibit cardiac
myocytes Na+ channels [93], activate L-type Ca2+ channels [94], as well as increase KATP
channel openings [95]. Despite these effects on cardiac myocyte ion channel activity, very
few investigations have explored EETs action on normal cardiac function, perhaps because
of the difficulty of functionally separating the contractile actions of EETs from their coronary
vasodilatory actions [47]. Further research is required to establish if there is a role for redox
control of sEH in these processes. However, because oxPTMs that inhibit sEH will likely
increase EETs, they may reasonably be anticipated to increase cardiac myocyte contraction.

The role of myocardial sEH in cardioprotection has been widely studied. Hearts
were protected from cardiac hypertrophy as well as myocardial ischemia and reperfusion
injury when the hydrolase was absent in sEH null mice or was pharmacologically inhibited
in WTs [33,88,96]. Cardioprotection has been attributed to the EETs that are increased
when sEH is absent in knockout animals or inhibited pharmacologically. In terms of
redox regulation of sEH and cardioprotection, electrophilic lipid adduction to C521 in sEH
alleviated cardiac hypertrophy induced by angiotensin II [56]. Although this protection
from hypertrophic growth is likely explained by the blood pressure-lowering action of
the lipid, a contribution from the inhibition of cardiomyocyte sEH is also plausible. Our
observation is consistent with other studies showing that classical sEH inhibitors not only
prevented maladaptive growth during cardiac pressure load in rodents, but in some cases
reversed established hypertrophy [33,96].

Administering 10-NO2-OA to hearts prior to ischemia and reperfusion protected them
from loss of contractile function [97], which is likely to be partially mediated by it inhibiting
sEH and so increasing EETs that have established cytoprotective actions. Although sEH
inhibition via either electrophilic lipid adduction or tyrosine nitration may be anticipated
to protect against myocardial ischemia and reperfusion injury, further research is required
to determine this.

Interestingly, following angiotensin II-induced cardiac hypertrophy or ischemia and
reperfusion injury, sEH activity is increased [33,98]. This may be expected as sEH expres-
sion is increased upon angiotensin II treatment [98], as well as after ischemic injury [99].
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However, this increased expression did not fully explain the increase in hydrolase activ-
ity, consistent with the prospect of oxidative activation [67,68]. During hypertrophy or
ischemia and reperfusion, ROS are increased as NADPH oxidases and xanthine oxidase
are stimulated, producing superoxide and H2O2 [90,100,101]. These oxidants may account
for the increased hydrolase activity observed, considering that we have demonstrated that
peroxide molecules activate sEH [68].

6. Perspectives and Future Directions

It notable that the Oximouse compendium shows that a number of cysteine residues
in sEH, both in the human and mouse proteome, are susceptible to oxidation, and these are
altered during aging in various different tissues [17]. The Oximouse dataset demonstrated
that there is not an overall increase in protein oxidation with age, but instead that the redox
networks are remodeled [17]. In fact when looking at sEH in this dataset, it is apparent
that some cysteines become more oxidized during aging, whereas others are concomitantly
reduced. Although the number of these cysteines have previously been identified as sites
of oxidation, including C521, C141 and C423, further research is required to elucidate the
functional significance of the other sites identified.

For a protein to be considered truly redox regulated, the oxPTMs need to be able to be
reversed as this enables dynamic, two-way control. In terms of the oxPTM in sEH discussed
above, one wonders about their reversibility and if they are enzymatically reversed. In the
case the intra-protein disulfide in sEH, we provided evidence that thioredoxin reduces the
disulfide back to the basal reduced state [68]. S-nitrosylated proteins can supposedly be
reversed by thioredoxin [102], however this has yet to be determined specifically for sEH.
Although not conclusive, as its identity remains elusive, there is evidence for a cellular
denitrase that reverses protein tyrosine nitration [103]. Such a denitrase may reverse the
inhibitory modification at Y383 and Y466. Formation of the covalent protein modification
with either 15d-PGJ2 or NO2-OA and sEH was thought to be irreversible, with proteolysis
being the main mechanism of reversal. However, there is now evidence that electrophilic
nitroalkylation is reversible and may be mediated by GSH [104].

Interestingly, the studies describing covalent adduction of endogenous electrophilic
lipids offers some hope for the generation of a novel class of sEH inhibitors which have ad-
vantages over classical inhibitors [105]. The sites of this endogenous inhibitory mechanism
may be exploited for the design of novel drugs, which may be used to target hyper-
tension and other cardiovascular dysfunction. Covalent compounds have traditionally
been avoided in the development of therapies, as they were thought to non-selectively
conjugate with many different proteins. However, this view has been challenged by
studies showing that covalent compounds can offer selectivity and potency benefits over
traditional drugs [106–109]. Indeed, there are a number of widely used drugs, such as
penicillin and aspirin [107], which mediate their therapeutic actions via covalent adduction
to target proteins.

Previously, antioxidants have been tested as a therapy for cardiovascular diseases in
an attempt to combat excessive oxidant production. However, despite multiple clinical
trials assessing their efficacy, the outcomes have been disappointing, with no cardiovascular
protection observed, and in some instances they were even harmful [110,111]. However,
these studies failed to consider the homeostatic and adaptive oxidant signaling that may
be lost with antioxidant interventions. Therefore, by understanding specific actions of
different ROS or RNS, it may be possible to target precise oxidation events with antioxidants.
Interestingly, certain antioxidants can paradoxically oxidize proteins. For example, the
antioxidant resveratrol can convert to a reactive quinone and then oxidize Protein Kinase G
Iα [112]. How antioxidants influence sEH activity is worthy of exploration.

This review has primarily focused on the hydrolase domain of sEH. However, as
mentioned above, sEH also contains an N-terminal lipid phosphatase domain [113,114]
which can dephosphorylate LPA [35,36] and S1P. As LPA and S1P are important modulators
of vascular homeostasis, the redox regulation of the N-terminal phosphatase may also
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play a role in the context of cardiovascular health and disease. Interestingly, Oximouse
compendium indicates that the cysteine residues within the N-terminal domain can be
redox modulated [17]. Likewise, there are different isoforms of epoxide hydrolase, in-
cluding microsomal epoxide hydrolase, epoxide hydrolase 3 and epoxide hydrolase 4.
Although minimally expressed in cardiac cells, it would be interesting to determine if they
are redox controlled.

7. Closing Thoughts and Considerations

It is now abundantly evident that many proteins are regulated by oxPTMs that couple
changes in cellular redox status to functional responses of proteins and the cells they are
found in. Over the last 20 years or so, we have increasingly changed our view of the role
of oxidants in cells and tissues. Although they have important roles in dysregulation and
disease pathogenesis, there is a plethora of evidence for their regulatory roles during health
and adaptive changes that limit disease progression. It is evident that the redox regulation
of cardiac and vascular sEH is highly intricate, and much remains to be understood. Impor-
tantly, redox control of the hydrolase contributes both to protective as well as maladaptive
pathways, and this likely depends upon the specific ROS source and their concentration
and locality to sEH, as shown in Figure 3.
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