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Abstract

Interactions between proteins play a key role in many cellular processes. Studying protein-protein interactions that share
similar interaction interfaces may shed light on their evolution and could be helpful in elucidating the mechanisms behind
stability and dynamics of the protein complexes. When two complexes share structurally similar subunits, the similarity of
the interaction interfaces can be found through a structural superposition of the subunits. However, an accurate detection
of similarity between the protein complexes containing subunits of unrelated structure remains an open problem.

Here, we present an alignment-free machine learning approach to measure interface similarity. The approach relies on the
feature-based representation of protein interfaces and does not depend on the superposition of the interacting subunit
pairs. Specifically, we develop an SVM classifier of similar and dissimilar interfaces and derive a feature-based interface
similarity measure. Next, the similarity measure is applied to a set of 2,80662,806 binary complex pairs to build a hierarchical
classification of protein-protein interactions. Finally, we explore case studies of similar interfaces from each level of the
hierarchy, considering cases when the subunits forming interactions are either homologous or structurally unrelated. The
analysis has suggested that the positions of charged residues in the homologous interfaces are not necessarily conserved
and may exhibit more complex conservation patterns.
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Introduction

Interactions between proteins form protein complexes and

underlie many cellular processes [1]. When studying evolution of

protein interactions or predicting and structurally characterizing

new interaction interfaces, the concept of interaction similarity often

plays a principal role [2,3,4]. The properties of similar interfaces

have been analyzed on a large scale by a number of research groups.

For instance, it has been shown that the geometry of interactions is

often conserved between similar pairs of proteins [2]. Another study

has revealed that homologous proteins often have their binding sites

in similar locations on protein surfaces to interact with other,

sometimes unrelated, proteins [4]. While similarity of the interfaces

in homologous protein complexes is not surprising, it is not clear to

what extent two structurally unrelated complexes can have similar,

‘‘analogous’’, interfaces. Recently, a new phenomenon of molecular

mimicry in host-pathogen interactions has been reported, where a

pathogenic protein acquires a binding surface similar to that of a

host protein, presumably through convergent evolution [5,6,7,8]. As

a result, the pathogenic protein competitively binds to another host

protein, forming an analogous interface, similar to the interface

between the two host proteins, and thus hijacking an important

cellular function. The available experimental data suggest that

pathogenic agents extensively use the molecular mimicry to their

advantage [6]. Molecular mimicry can also occur in the intra-

species interactions [9]. Studying analogous interfaces is challenging

since it requires an accurate method to detect similarity between the

interfaces of structurally unrelated protein-protein interactions.

Several approaches to quantify the interface similarity have

been proposed to date. Some approaches rely on a superposition

of the entire structures of the interacting proteins [10,11]. For

instance, this can be done by calculating the ligand root mean

square deviation (L_RMSD) measure, which is defined as a RMSD

value between the back-bones of the smaller subunits (ligands),

once the corresponding larger subunits (receptors) are superim-

posed [12]. While such an approach can provide the most

accurate estimation of the interaction similarity between the

closely related complexes, it may not be applicable to the cases of

distant homology between the protein complexes, or even

convergent evolution, where an accurate superposition of subunits

is not feasible. Another way to define the interaction similarity is

through the similarity of the corresponding interaction interfaces.

This can be done by using an RMSD measure calculated only for

the superposed interface structures, while not taking into account

the overall structures of the interacting subunits [3,13,14,15]. The

latter approach, while faster than the one using the whole-subunit

superposition, could further benefit from additional information

about the interacting residues.

Interaction similarity is also used to cluster protein-protein

interactions [3,14,16,17]. For instance, an interface prediction and

classification system, Prism, defines structural similarity by aligning

the binding sites that form each interface using MultiProt software
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[18]. In total, there are 21,684 interfaces collected in Prism, which

are clustered into 3,799 clusters based on their structural

similarity. Another classification system, SCOPPI, uses a two-

stage classification system to cluster binding sites within each

SCOP family [16]. In the first stage, the binding sites are clustered

based on a sequence pattern of their contact residues. In the

second stage, the initial groups of binding sites are merged into the

larger clusters, based on the similarity of geometrical features of

the binding sites. The interfaces can then be clustered, based on

the clustering of their binding sites. While classification of protein

interactions of homologous subunits has been addressed by several

approaches, an accurate classification of analogous interfaces

remains a challenge.

The goal of this work is finding an accurate alignment-free

interface similarity measure and demonstrating its advantages and

applicability. First, we introduce an accurate structure-based

interface similarity measure that is used to generate a training set

of similar and dissimilar interfaces. We then describe a feature-

based interface similarity measure by employing a supervised

learning approach, which is trained on the known structures of

protein-protein interfaces. Furthermore, we apply the feature-

based similarity measure to develop (i) a proof-of-concept

hierarchical classification of protein interactions, and (ii) a data

structure for efficient search and retrieval of similar interfaces. The

classification can be useful in the evolutionary studies of protein

interactions, as illustrated by our case study analysis.

Methods

Our methods are organized as follows. First, we define and

compare two structure-based interface similarity measures,

iiRMSD and siRMSD. Second, we apply the more accurate of

the two measures to a non-redundant set of protein interfaces to

determine reliable positive and negative training sets for our

feature-based measure. Third, we use the training set to obtain two

Support Vector Machine (SVM) models, resulting in two feature-

based interface similarity measures. Finally, we employ one of the

new feature-based similarity measures to (i) define a structure-

based hierarchical classification of protein interaction interfaces on

a large scale, and (ii) design a data structure for the interface search

and retrieval problem.

Basic concepts: Homology and analogy in protein-
protein interactions

We first formally define the concepts of a protein-protein interaction,

protein binding site, and protein interaction interface since these concepts

will be used throughout the paper. A protein-protein interaction is

defined as a triple (S1, S2, O), where S1 and S2 are the two

interacting subunits (either proteins or protein domains), and O is

their relative orientation. A residue r1 of one subunit is in contact

with residue r2 of another subunit if r1 has at least one atom within

6 Å of an atom of r2. The set of all residues from one subunit that

are in contact with any residues of another subunit constitutes a

protein binding site. For a protein-protein interaction, its

interaction interface is defined by a triple (B1, B2, C), where B1

and B2 are the binding sites of the interacting subunits, and C is a

set of all pairs of residues that are in contact.

We next introduce three types of similar interaction interfaces

based on the protein-protein interactions they mediate. Two

protein-protein interactions that share similar interfaces are called

homologous if a subunit in the first interaction shares homology with

a subunit in the second interaction, and the remaining two

subunits also share homology between each other. Two protein-

protein interactions that share similar interfaces are called common-

partner analogous if a subunit in the first interaction shares homology

with a subunit in the second interaction, while the remaining two

subunits are structurally unrelated. Finally, two protein-protein

interactions that share similar interfaces are called analogous if both

subunits in the first interaction are structurally unrelated to

subunits in the second interaction. The protein interfaces formed

by interactions of the three types are called homologous, common-

partner analogous, and analogous, correspondingly.

Comparing two structure-based similarity measures
To train a feature-based similarity measure, one needs to

generate two reliable training sets of similar (positive training set)

and dissimilar (negative training set) interfaces. This is done by

employing a structure-based similarity measure, a commonly used

approach to compare homologous interfaces or interfaces formed

by the same subunits [12]. The set-generating protocol consists of

three stages (Fig. 1). First, we define two structure-based interface

similarity measures: one that relies on structural superposition of

the entire protein complexes and another one that relies on

superposition of the protein interfaces. Second, we prepare a

candidate dataset of pairs of non-redundant protein-protein

interactions, where each participating subunit is classified based

on its evolutionary relationships to other subunits. Third, we

compare the structure-based similarity measures and apply the

most accurate measure to the candidate dataset to determine a

positive training set that includes homologous and common-

partner analogous pairs of interfaces and a negative training set of

structurally unrelated interfaces.

The first structure-based similarity measure, the interaction

interface RMSD (iiRMSD), is defined by superposing overall

structures of the interacting subunits, similar to L_RMSD measure,

used in CAPRI docking assessment [12]. Given two protein-

protein interactions, one between subunits A1 and A2 and another

one between subunits B1 and B2, we calculate iiRMSD through the

following steps:

1. Structurally align subunit Ai with another subunit Bj (i,j = 1,2)

using MultiProt software [18]; calculate Ca-only RMSD

between the corresponding residues of the binding sites of Ai

and Bj

2. For each alignment Ai2Bj:

2.1 Superpose the remaining two subunits according to the

alignment; and calculate Ca-only RMSD between the

corresponding residues of the binding sites of remaining

subunits

2.2 Calculate an average of the two Ca-only RMSD values

3. Select the smallest of the calculated averages over four possible

superposition scenarios for Ai and Bj.

The second similarity measure, the superposed interface RMSD

(siRMSD), is defined as the Ca-based RMSD between the

corresponding residues of the structurally superposed interaction

interfaces. The structural superposition of interfaces is done using

the same MultiProt software [18]. Thus, in contrast to iiRMSD,

siRMSD is guided exclusively by the local structure of the

interaction interfaces, which can potentially lead to the incorrect

detection of similar interfaces, specifically when the interface

structures are small.

Next, we compare accuracies of both measures by applying

them to a dataset of homologous and dissimilar protein interfaces

extracted from 3D Complex, a non-redundant database of protein

complexes that are classified based on their similarity in sequence,

Structural Similarity of Protein Interfaces
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structure, or topology [19]. The hierarchical classification system

in 3D Complex consists of 12 levels: protein complexes of different

topologies are separated at the first level, while complexes of the

same topology and geometry but with varied sequence identities

are separated at one of the last 8 levels (Levels 4–12). In this work,

the pairs of complexes were selected from the third, Quaternary

Structures (QS), level. At this level, protein complexes grouped in

the same cluster have the same topology, domain architecture, and

stoichiometry, as well as share the evolutionarily related proteins.

Our simple assumption behind extracting similar interaction

interfaces from 3D Complex is that two structurally similar protein

complexes are likely to have structurally similar interaction

interfaces. First, 5,924 pairs of structurally similar complexes are

selected from 4,005 clusters of protein complexes at the QS level of

3Dcomplex. We randomly select two complexes from each cluster

if it has more than one protein complex. It is not difficult to see

that all collected pairs of similar interfaces satisfy our definition of

homologous interfaces. Second, we generate a set of 4,491 pairs of

structurally unrelated protein complexes. To do so, pairs of

complexes are randomly selected from different clusters, such that

the pairs of binary interactions extracted from these complexes are

formed by four different subunits (i.e., different homologous chain

IDs for all four subunits). To exclude a rare possibility of different

binding modes that can occur for a pair of homologous or even

identical proteins, all pairs of obtained proteins are manually

checked using subunit sequence similarity and symmetry infor-

mation from 3D Complex.

Finally, iiRMSD and siRMSD measures are calculated and

compared for all similar and dissimilar interface pairs in the

dataset. Specifically, we use Bhattacharyya Coefficient based

metric [20] to compare the distributions of similarity values

between the sets of similar and dissimilar interfaces generated by

Figure 1. A protocol for obtaining a reliable set of similar and dissimilar interface pairs. First, two structure-based similarity measures,
iiRMSD and siRMSD, are evaluated on a dataset collected from 3D Complex database. Second, a non-redundant domain-domain interaction data set is
obtained from PDB, SCOP and CATH. Third, iiRMSD is used to classify positive (similar) and negative (dissimilar) training sets of pairs of interaction
interface structures.
doi:10.1371/journal.pone.0019554.g001
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each measure. Based on evaluation of the histograms obtained

from iiRMSD and siRMSD similarity distribution, using n = 50 bins

(see section Comparison of structure-based interface similarity measures in

Results), iiRMSD is selected to obtain the set of similar and

dissimilar protein interfaces.

Obtaining training sets of similar and dissimilar protein-
protein interfaces

To obtain reliable training sets of interaction interfaces, we

calculate the iiRMSD values between the pairs of interfaces

extracted from a diverse non-redundant set of protein-protein

interactions. First, the protein-protein interactions are collected

from PIBASE, a database of protein interaction structures [21].

Second, we remove the interaction structures with resolution

worse than 2.5 Å (the resolution is obtained from the protein Data

Bank, PDB [22]) and interactions formed by redundant subunits.

We define redundant subunits as the structures that share at least

95% sequence identity, using ASTRAL SCOP 1.75 [23]. In total

1,383 non-redundant binary protein interactions are extracted

from the high-resolution structures. Third, each of the two

subunits in a protein-protein interaction is assigned a SCOP

Superfamily ID [24]. Proteins from the same SCOP Superfamily

are evolutionary related, based on structural, functional, and

sequence evidence. Fourth, all interactions are grouped based on

their SCOP Superfamily IDs such that interactions within the

same group share the same pairs of assigned SCOP Superfamily

IDs. Finally, we consider only those groups that have two or more

interactions, resulting in 585 groups of 2,296 interfaces in total.

As mentioned before, our positive training set of similar

interfaces includes homologous and common-partner analogous

interfaces. Ideally, one would like to have a positive set that

includes all three types of similar interfaces: homologous,

common-partner analogous, and analogous. However, it is not

feasible to generate a reliable set of analogous interfaces using

iiRMSD or any other similarity measure that relies on subunit

superposition since it may not be possible to structurally align the

pairs of interacting subunits. While it may be feasible to implement

the definition of the analogous interface using a similarity measure

that relies solely on the interface superposition such as siRMSD,

selecting a reliable set of analogous interfaces for the positive set

using such method remains a problem.

To obtain the set of homologous interfaces, we consider all

possible non-redundant interface pairs within the same SCOP

Superfamily group of interfaces. In total, we have considered

7,206 interface pairs. Then, we select a pair of interfaces as similar

interfaces if the iiRMSD measure between them is smaller than

8 Å. This threshold was selected to minimize the number of false-

positives, based on our analysis of iiRMSD values for similar and

dissimilar interfaces (see section Comparison of structure-based

interface similarity measures in Results). As the result, we obtained

372 pairs of homologous interaction interfaces (Table 1). We will

refer to these data as PositiveH. To obtain the set of common-

partner analogous interfaces, we first determine all pairs of

interfaces that share a common SCOP Superfamily for exactly one

subunit in each interface. In total, 14,509 pairs of interface SCOP

Superfamily groups containing 29,180 interface pairs were

selected. For each interface pair we calculate the iiRMSD measure,

which requires superposition of only one pair of subunits and

therefore can be applied to a pair of interfaces with other two

subunits being structurally unrelated. We then use the same upper

bound of 8 Å to define similar interfaces, resulting in 480 pairs of

common-partner analogous interfaces. We will refer to these data

as PositiveC.

To obtain a negative set of dissimilar interface pairs, two

strategies are considered. In the first strategy, we compare a

‘native’ interface from the dataset of non-redundant interactions,

described earlier, with a ‘decoy’ interface formed using the same

subunits. The subunits are first detached and then re-docked by a

protein docking method. In the second strategy, we compare a

pair of native interfaces. Specifically, in the first strategy we

randomly select 4,309 native interfaces; for each pair of subunits

forming an interface, a set of 4,309 decoy interfaces is then

obtained by detaching the subunits followed by their re-docking

using PatchDock software [25]. The iiRMSD measure is then

calculated between the native interface and each of the decoy

interfaces; the lower and upper threshold of 15 Å and 25 Å,

respectively, are used to select the final set of dissimilar interface

pairs. The lower threshold is selected based on the evaluation of

iiRMSD measure. The upper threshold is used to exclude extreme

dissimilarities that are due to any significant errors in alignments

and can reduce the sensitivity of our SVM classifiers. In total, 599

dissimilar native-decoy interface pairs have been determined

(Table 1). We will refer to these data as NegativeND.

In the second strategy, we determine the set of structurally

unrelated interface pairs extracted exclusively from native

structures by (1) randomly selecting a pair of interactions from

the non-redundant set, such that all four subunits forming the

interactions belong to four different SCOP Superfamilies,

(2) determining the iiRMSD values between the interfaces, and

(3) applying the same lower and upper thresholds (15 Å and 25 Å)

as in the first strategy. As a result, 723 dissimilar native-native

interface pairs were selected (Table 1). We will refer to these data

as NegativeNN.

A machine learning approach to train a feature-based
similarity measure

To determine whether two interaction interfaces are similar

without the use of structural alignment, we train a feature-based

similarity measure using a Support Vector Machines (SVM)

approach [26]. SVMs have been successfully used in a number of

bioinformatics applications [27,28]. Given a positive training set of

n1 pairs of similar and n2 pairs of dissimilar interfaces, where each

pair is represented as a vector of N numerical features,

xi = (x1,x2,…,xN), the basic goal is to train a classifier that would

classify a pair of the interfaces as either similar or dissimilar. In its

simplest form, the problem can be viewed as finding a hyperplane

that separates two classes of points maximizing a margin defined

by the closest to the hyperplane positive and negative examples.

The formalism can be expanded by introducing non-linear

classifiers defined through the kernel functions, For our approach

Table 1. Positive and negative datasets.

Dataset Subsets NIP Total Threshold

Positive set PositiveH 372 852 iiRMSD,8 Å

PositiveC 480

Negative set NegativeNN 723 1322 15 Å,iiRMSD and iiRMSD,25 Å

NegativeND 599

NIP is the number of interface pairs from each subset of the positive and
negative datasets after the RMSD thresholds are applied. Total is the number of
pairs in each dataset. iiRMSD is used to define an upper threshold for the
positive set (8 Å) as well as the lower and upper thresholds for the negative set
(15 Å and 25 Å). The thresholds are imposed to minimize the number of false
positives and negatives.
doi:10.1371/journal.pone.0019554.t001
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we employ two widely used non-linear kernel functions: the

polynomial kernel, KP(x,x’)~(Sx,x’Tz1)d , where d is degree of

the polynomial, and the radial basis function (RBF),

KG(x,x’)~exp({ x{x’k k2=c). For both, SVM training and

testing, we used SVMlight software [29].

Our approach consists of three main stages (Fig. 2). First, two

datasets of interface pairs are extracted from our training sets. The

first dataset includes a positive set of 852 interface pairs (372 from

PositiveH and 480 from PositiveC sets), and a negative set of 599 pairs

from NegativeND set. The second dataset includes the same positive

set, but the negative set combines 723 interface pairs from

NegativeNN and 599 from NegativeND sets. Second, for each interface

structure, we calculate a 53-dimensional vector, which consists of

features describing geometrical and physico-chemical characteris-

tics of the interfaces. For the training procedure, all interface

feature vectors are paired up, resulting in 106-dimensional feature

vectors. Third, two SVM classifiers are trained: classifier ModelND

is based on the first dataset and classifier ModelNDNN is based on the

second dataset. Fourth, for each model, a protein interface

similarity measure d(I1, I2) is defined for two interfaces, I1 and I2 as

the distance between the 106-dimensional feature vector and the

separating hyperplane. We then convert the measure to a distance

by subtracting each value from the observed maximum.

Interestingly, when analyzing the converted similarity measure

values calculated for the entire set of 2,80662,806 interface pairs

(which is later used for hierarchical classification; see next section

Structure classification of interaction interfaces under Methods), we found

that the measure obeys the triangle inequality rule. Finally, during

the testing stage, we evaluate the accuracy of the feature-based

similarity measures based on the two SVM models.

There are 5 different types of features that constitute each 53-

dimensional feature vector. The first feature type is a one-

dimensional feature defined as the difference between the numbers

of contact residues in each interface. The second type represents

statistics on the residue contact pairs between 7 basic residue

groups based on the physico-chemical characteristics of the

residues. The residue groups include aromatic, aliphatic, hydro-

phobic, small, negatively charged, positively charged, and polar

residues, where each amino acid residue may belong to more than

one group (Table 2) [30]. The occurrence frequency of a pair of

contact residues in each pair of residue groups is calculated adding

(768)/2 = 28 dimensions. The third feature type consists of 4

surface patch parameters [31]. These are interface solvent

accessible surface area (ASA), protrusion, planarity, and hydro-

phobicity. The interface ASA is defined as the sum of two protein

binding site ASAs, where each binding site ASA is calculated as an

average of each contact residue ASA, calculated by NACCESS

[32]. A protrusion index gives an absolute value for the extent to

which a residue protrudes from the surface of a protein, and is

defined as an average of the protrusion indices of each residue,

computed using Protruder software [33]. The planarity of each

interface is calculated by Surfnet, a software that evaluates the root

mean square deviation (RMSD) of all interface atoms from the

fitted least squares plane [34]. The hydrophobicity of each

interface is defined as an average of the hydrophobicity values of

each interface residue assigned using the hydrophobicity scale

[35]. The last feature type is concerned with the hot spot residues

in each interface. A hot spot residue in a protein interface is defined

as a residue that makes significant contribution to the binding free

energy. We use a computational alanine scanning approach to get

all hot spot residues for an interface [36]. This feature type is

calculated as a 20-dimensional vector, where the i-th coordinate of

the vector corresponds to the occurrence frequency of the i-th

residue type as a hot spot residue.

The contribution of the individual features is analyzed using an

SVM attribute evaluating protocol implemented in Weka [37].

This protocol is based on the SVM Recursive Feature Elimination

method using weight magnitude as the ranking criterion [38]. To

evaluate the obtained classification results for the two SVM

models, we use a standard leave-one-out cross validation protocol for

each SVM classifier [29]. The accuracy, fAC, is calculated as

fAC~ NTPzNTNð Þ=N, where NTP and NTN are the numbers of

true positives and negatives, and N is the number of classified

interfaces. The precision, fPR, is calculated as fPR~NTP=
NTPzNFPð Þ and the recall, fRE, is calculated as

fRE~NTP= NTPzNFNð Þ.

Structure classification of interaction interfaces
Using the new feature-based interface similarity, we develop a

hierarchical classification of protein interfaces and applied it to a

set of 2,80662,806 interface pairs. The 2,806 interfaces are

randomly sampled from our non-redundant set described in the

previous section; they constitute ,1% of all structurally deter-

mined interfaces [39]. The sampling procedure has been shown to

reflect the distribution of similar interfaces among different SCOP

Figure 2. An overview of machine learning approach to
determine interface similarity measure. First, interface structures
are extracted from the training sets of similar and dissimilar interaction
interfaces. Second, for each pair of interfaces a 106-dimensional feature
vector is calculated. Third, a Support Vector Machines classifier is
trained and evaluated using the above datasets. Last, a protein interface
similarity measure d(I1, I2) is defined for two interfaces, I1 and I2, as the
distance between the corresponding106-dimensional feature vector
and the separating hyperplane.
doi:10.1371/journal.pone.0019554.g002
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Superfamilies. We use ModelNDNN, as it has the higher accuracy in

classifying dissimilar native interfaces (see section Assessment of the

new feature-based interface similarity measure under Results). The

hierarchy consists of three levels (Fig. 3), and is inspired by the

classifications of protein structures, such as SCOP and CATH

[16,40]. At the first level, A-level, any two interactions from the

same class can be analogous, common-partner analogous, or

homologous. At the second level, C-level, two interactions from the

same class can be either common-partner analogous or homolo-

gous. At the last level, H-level, only homologous interactions are

allowed to be in the same class.

The hierarchy is obtained by first applying a similarity-based

clustering procedure using the similarity measure derived from

ModelNDNN and then by imposing on each cluster the definitions of

the three levels, starting from A-level and ending with H-level. To

cluster interfaces, we used the K-medoid clustering method [41] on

the whole data set of 7,873,636 interface pairs. K-medoid

clustering is a generalization of K-means clustering not requiring

for the similarity measure to satisfy the triangle inequality. To find

an optimal threshold on the number of clusters, we use the

Silhouette method, which compares the tightness and separation

of clusters [42]. Each obtained cluster corresponds to an A-level

class, as all interface pairs are similar to each other, while the

interacting subunits may or may not be homologous (Fig. 3). Each

A-level class is further split into one or more C-level classes by

comparing the SCOP Superfamily IDs of all interacting proteins

within the A-level class. Specifically, all interfaces whose subunits

share at least one SCOP Superfamily ID in common are grouped

into the same C-level class. Each C-level class is further split into

one or more H-level classes; interfaces with both subunits sharing

the same two SCOP Superfamily IDs are grouped in the same H-

level class.

Similarity-based retrieval of interaction interfaces
The above 3-level hierarchical clustering can be useful for

studying the evolutionary and functional relationships between

the protein-protein interactions with similar interfaces. However,

it is likely to be inefficient for the interface retrieval problem,

which asks: Given a query protein interface, how can one

accurately and efficiently find a similar protein interface in a

large interface dataset? Solving this problem requires develop-

ment of a system for large-scale data organization, search and

retrieval. In this section, we present an approach to index a

protein interface database and make it searchable using an M-

Tree [43]. The designed M-Tree is a data structure that relies on

the feature-based representation of the interfaces. Specifically, we

construct M-Tree in a top-down manner starting with an empty

tree and iteratively adding each interface into the tree by

recursively descending the tree to locate the most suitable leaf

node. As a result, complete M-Tree contains each interface as a

leaf node. The internal nodes of M-tree contain the routing

objects that describe branch objects covering radius, and

distances to each child node where the distance is defined by

our feature-based similarity measure. To search for a similar

interface, one recursively traverses all the paths that satisfy the

distance restriction starting from the root. The methodology is

applied to the same set of 2,806 interfaces (see previous

subsection).

We assess the accuracy of each interface query by finding if the

retrieved similar interface has the lowest value of iiRMSD among

all interfaces in the data set. Specifically we introduce a retrieval

error, ER:

ER~iiRMSD(Iq,Ir){arg min
x

(iiRMSD(Iq,Ix)),

Table 2. Amino acid residue classes according to their physicochemical properties.

Aliphatic Aromatic Positive Negative Small Hydrophobic Polar

ALA 0 0 0 0 1 1 0

ARG 0 0 1 0 0 0 1

ASN 0 0 0 0 1 0 1

ASP 0 0 0 1 1 0 1

GYS 0 0 0 0 1 1 0

GLU 0 0 0 1 0 0 1

GLN 0 0 0 0 0 0 1

GLY 0 0 0 0 1 1 0

HIS 0 1 1 0 0 1 1

ILE 1 0 0 0 0 1 0

LEU 1 0 0 0 0 1 0

LYS 0 0 1 0 0 1 1

MET 0 0 0 0 0 1 0

PHE 0 1 0 0 0 1 0

PRO 0 0 0 0 1 0 0

SER 0 0 0 0 1 0 1

THR 0 0 0 0 1 1 1

TRP 0 1 0 0 0 1 1

TYR 0 1 0 0 0 1 1

VAL 1 0 0 0 1 1 0

Six classes of residues were defined, where a residue may belong to more than one class.
doi:10.1371/journal.pone.0019554.t002

Structural Similarity of Protein Interfaces

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19554



where Iq is a query interface, and Ir is a retrieval interface. The

efficiency of each method will be estimated by the average retrieval

time.

Results

In this section, we first present the results of comparing two

structure-based similarity measures. Second, we describe evalua-

tion results for a new feature-based similarity measure. Third, we

compare our similarity-based classification with the currently

existing methods. Then, we introduce the proof-of-concept of a

hierarchical classification system for similar protein-protein

interactions. We conclude with the description of several case

studies of similar interfaces.

Comparison of structure-based interface similarity
measures

To compare accuracies of the two structure-based similarity

measures, iiRMSD and siRMSD, we applied them to a set of 5,924

similar and 4,005 dissimilar pairs of protein interfaces (see section

Evaluating structure-based similarity measures under Methods). The

interfaces were obtained from 2,816 protein complexes sampled

from the 3Dcomplex dataset [19]. In total, 8,614 binary

interaction interfaces formed by 9,144 subunits were extracted

from these complexes, averaging ,3 binary interfaces per

complex. Among 8,614 binary complexes, 81.8% were homodi-

mers, and 18.2% were heterodimers.

The analysis of the iiRMSD and siRMSD value distributions for

the similar and dissimilar interfaces (Fig. 4) revealed that on

average, the dissimilar interface pairs had larger iiRMSD and

siRMSD values (mean values are 20.6 and 15.8, correspondingly)

than similar pairs (mean values are 14.8 and 14.7). In addition, the

mean value difference between the similar and dissimilar interfaces

was larger when using the iiRMSD measure (Dm is 4.7 for iiRMSD

and 1.1 for siRMSD). A more detailed analysis using Bhattachar-

yya Coefficient based metric [20] also showed the larger distance

between the distributions of iiRMSD values for the similar and

dissimilar interface pairs (dBC = 0.36), compared to the distribu-

tions of siRMSD values (dBC = 0.23). This suggests that iiRMSD may

differentiate better between the similar and dissimilar interfaces

than siRMSD. Therefore, for our SVM-based approach, we used

iiRMSD to select similar and dissimilar interfaces for the training

sets.

Assessment of the new feature-based interface similarity
measure

We first obtained a set of positive examples consisting of 852

similar interface pairs and a set of negative examples consisting of

1,322 dissimilar interface pairs (Table 1). Both positive and

Figure 3. Hierarchical classification of interaction interfaces. Similar shapes correspond to homologous proteins. Three levels of structurally
similar interaction interfaces are defined. A single cluster at H-level, C-level, and A-level can include homologous, common partner analogous, and
analogous interfaces, correspondingly.
doi:10.1371/journal.pone.0019554.g003
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Figure 4. Histograms of the distributions of (A) iiRMSD and (B) siRMSD values on the datasets of similar and dissimilar interfaces.
Both datasets are obtained from 3D Complex database. On average, the dissimilar interface pairs had larger iiRMSD and siRMSD values (mean values
are 20.6 and 15.8, correspondingly) than similar pairs (mean values are 14.8 and 14.7). In addition, the mean value difference between the similar and
dissimilar interfaces was larger when using the iiRMSD measure (Dm is 4.7 for iiRMSD and 1.1 for siRMSD).
doi:10.1371/journal.pone.0019554.g004

Figure 5. Distribution of SCOP class ID pairs from the training dataset of protein-protein interactions. The dataset covers all SCOP class
IDs, while the uneven distribution of the pairs is consistent with the unevenness in the overall distribution of protein structures across the SCOP
classes.
doi:10.1371/journal.pone.0019554.g005
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negative datasets were scattered across all major SCOP classes

(SCOP class IDs are from a to g). The majority of interactions,

however, were mediated by the subunits from four SCOP classes,

a, b, c, and d (Fig. 5), which was consistent with the unevenness of

the protein structure distribution across the SCOP classes (SCOP

release version 1.75, June 2009 [24]).

The leave-one-out cross-validation was done for each SVM

model using the same positive set and two different negative sets

(NegativeND for ModelND, and NegativeND and NegativeNN for

ModelNDNN). For each model, we tested both kernels, polynomial

and RBF (Table 3). We found that the overall performance of

ModelND (in terms of accuracy, precision, and recall) is significantly

better for both kernels than that one of ModelNDNN. A more

detailed analysis revealed that the difference was mainly due to a

higher rate of the true positives (93.7% for ModelND vs. 64.2% for

ModelNDNN); the rate of the true negatives was also higher for

ModelND (91.0% for ModelND vs. 85.9% for ModelNDNN). ModelND was

also evaluated on a negative set of native-native dissimilar

interfaces (NegativeNN) and compared with the leave-one-out

evaluation of ModelNDNN on the same set. We found that being

trained on the negative set of native-decoy interface pairs

(NegativeND), ModelND cannot generalize well to classify dissimilar

native-native interface pairs. It was able to correctly classify only

18.5% of the native-native interface pairs; ModelNDNN identified

76.6%, which was similar to its performance on the native-decoy

set. Comparing polynomial and RBF kernels revealed similar

performances, although the overall performance of the RBF kernel

was slightly better for both SVM models. Finally, we found that

the performance of both similarity measures was several percent

better when considering a positive set consisting exclusively of the

interfaces at H-level, compared with the positive set consisting of

the interfaces at C-level. For instance, the cross-validation

accuracy when using RBF kernel and testing both models on

similar interfaces at H-level was 92.8% for ModelND and 84.5% for

ModelNDNN. Similarly, the cross-validation accuracy, using the same

kernel, while testing both models using similar interfaces at C-level

was 90.5% for ModelND and 77.0% for ModelNDNN.

The 106 features may not have equal contributions to the

feature-based similarity measure (Table 4). The evaluation of

features using Weka identified the most important features for

both models (Table 4 and Table 5). While the sets of top 20 ranked

features for both models had only 5 features in common, the

highest ranked feature, defined as the difference of number of

contacts between two interfaces, was the same. Other important

common features included planarity and ASA of the first interface,

as well as the number of contact pairs in the second interface

formed either between the aromatic and hydrophobic or between

the negative and hydrophobic residues.

Comparison to existing interface classification methods
To further evaluate the obtained SVM interface similarity

classifiers, each classifier was compared to the state-of-art methods

to classify protein-protein interfaces, SCOPPI [16] and Prism [17].

For both methods, the similarity of the interfaces was defined

through their classification. Two interfaces were defined similar/

dissimilar if they belonged to the same/different SCOPPI or Prism

class, respectively. The classification data included 8,205 clusters

of similar interfaces for Prism and 10,269 clusters for SCOPPI;

they were provided by the research groups who developed the

methods. We first tested both methods on the positive subset of the

training set (Table 6). Since in the provided SCOPPI and Prism

datasets, the classification was done exclusively to the sets of

similar interactions, we only considered a subset of the positive set

that included interaction pairs at H-level. We found that SCOPPI

correctly classified 48.0% and PRISM only 15.9% of homologous

interfaces from our training set. Such performance could be

attributed either to a limited coverage of the classification systems

or to a low accuracy of the similarity measures. In comparison,

ModelND correctly predicts the homologous interfaces in 98.1%,

while ModelNDNN does so in 75.0% (based on the leave-one-out

cross-validation results for homologous interfaces).

We next tested the two methods on a negative subset of the

training set (Table 6). As both classification systems are for

comparing two biological interactions, we excluded the decoy-

native interface pairs from the negative set. We found that

SCOPPI was able to correctly detect 98.1% of dissimilar pairs and

Prism did so for only 6.6%, with the remaining 93.4% of pairs

being unclassified. We compared the results only with ModelNDNN,

which correctly classified 66.4% of dissimilar interfaces. ModelND

was trained to distinguish only between the decoy and native

interfaces, and thus performed poorly on the dissimilar native-

native interface pairs.

Hierarchical classification of similar interactions
Our next goal was to construct a proof-of-concept of a

biologically meaningful classification of the interaction interfaces,

using the feature-based similarity measure. For this purpose, we

used the second SVM model, due to its consistency on both

positive and negative datasets of the native-native interfaces. The

similarity measure was used to obtain the all-against-all SVM

distance matrix for the set of 2,80662,806 interfaces. The cluster

analysis using Silhouette method resulted in the number of clusters

K = 140, which were the clusters at A-level (Fig. 6). Following the

protocol to cluster the interfaces at the other two levels (see section

A machine learning approach in Methods), we obtained 1,892 clusters at

C-level, and 2,085 clusters at H-level (Table 7). Out of 2,806

randomly sampled interactions, 1,610 and 1,363 interactions

formed 1-member clusters at the H-level and C-level, respectively.

The overall clustering procedure took 71 hours and 18 minutes on

a single core of the Intel Xeon Quad processor (2.4 GHz). The

current bottleneck is the feature calculation, which took 70 hours

and 9 minutes. Calculating the SVM-based similarity took

30 minutes and hierarchical clustering took another 30 minutes.

The theoretical time complexities for each of the three steps are

O(N), O(N2), and O(N2), where N is the number of interfaces.

Evaluation of the interaction interface retrieval
We next assess the performance of the feature-based similarity

measure in the search and retrieval of an interface from a large

interface dataset. We first randomly selected 100 interfaces from

the whole dataset and used each interface as a query. The

remaining 2,706 protein interfaces were used to build an M-Tree

(see subsection Similarity-based retrieval of interaction interfaces under

Table 3. Leave-one-out cross validation of two SVM models.

ModelND ModelNDNN

Kernel Acc Pre Rec Acc Pre Rec

RBF 92.6% 93.7% 93.7% 77.4% 74.6% 64.1%

Polynomial 92.0% 92.8% 93.7% 76.5% 70.1% 69.6%

ModelND is trained on PositiveH, PositiveC, and NegativeND. ModelNDNN is trained
using the same positive set, and a negative set that includes NegativeND

together with NegativeNN. Accuracy (Acc), precision (Pre), and recall (Rec) were
calculated for both kernerls, RBF and Polynomial.
doi:10.1371/journal.pone.0019554.t003
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Methods). We calculated the average retrieval error ER
AVE and

results showed that for 20% of queries, ER
AVE,0.28 Å, for 50% of

queries ER
AVE,1.25 Å, and for 80% of queries ER

AVE,3.8 Å. The

average retrieval time was 0.8 s. The experiments were conducted

on a Linux server with AMD Opteron dual-core 1000 series

processors and 2GB RAM.

Homology and analogy in protein-protein interactions:
Case studies

Using results of the hierarchical clustering, a detailed case study

analysis was performed. For this analysis, we considered pairs of

protein complexes with detected interface similarity at each of the

three levels of hierarchy.

This example allowed us to formulate a hypothesis about a new

conservation mechanism in charged residues located at the

interfaces. Indeed, one would expect from two homologous and

highly similar interactions to have conserved charged residues,

since the latter usually play an important role in forming the

protein interactions. However, when comparing the positions of

charged between the interfaces, contrary to these expectations, we

found the charged residues in different locations. From the point of

view of sequence or structure alignment, this would mean that the

charged residues are not conserved, yet they are still presented in

both interfaces.

In the first case study (Fig. 7A), the interfaces clustered at H-

level are both formed by homodimers whose subunits belong to

the same SCOP Superfamily (SCOP ID: 54427). The first

interface is formed by two nuclear transport factor-2 subunits

(PDB ID: 1gyb, chains C, D), and the second interface by the

association domains of Ca(2+)/calmodulin-dependent protein

kinase II (PDB ID 1hkx, chains I, J). While subunits from each

interaction belong to a different SCOP Family (SCOP IDs are

54431 and 89851 for subunits forming the first and second

interactions, correspondingly), structural superposition of the

interfaces revealed their significant structural similarity (here and

further, the interface superposition was done by MAPPIS software

[44]). We next analyzed the conservation of charged residues

between the interfaces. The first interface had two pairs of charged

interacting residues. Since charged residues often play an

important role in the protein interactions, we expected that the

charged residues in the two homologous and highly similar

interactions were structurally and sequentially conserved. On the

contrary, we detected seven charged residue pairs in the second

interface. When the corresponding binding sites were superposed,

we found that that these charged residue pairs are not structurally

conserved between the two interfaces.

For our next case study (Fig. 7B), we selected two interfaces

clustered into the same C-level cluster. One interface is formed by

an intra-chain interaction between the N- and C-terminal domains

of O-methyltransferase (PDB ID: 1kyw, chain A), while another is

formed by an inter-chain interaction between two C-terminal

domains of another O-methyltransferase homodimer (PDB ID:

1tw2, chains A and B). Since N- and C- terminal domains of the

Table 4. Top 20 ranked features for both SVM models.

Model No. 1 Model No. 2

Feature ID Description of features Feature ID Description of features

105 difference of number of contacts between two interfaces 105 difference of number of contacts between two interfaces

29 ASA of first interface 30 planarity of first interface

81 ASA of second interface 64 number of Aromatic-Hydrophobic contacts in the second
interface

30 planarity of first interface 76 number of Small-Hydrophobic contacts in the second
interface

64 number of Aromatic-Hydrophobic contacts in the second interface 29 ASA of first interface

53 number of Aliphatic-Aliphatic contacts in the second interface 83 protrusion of the second interface

71 number of Negative-Negative contacts in the second interface 21 number of Negative-Hydrophobic contacts in the first
interface

82 planarity of second interface 44 ratio of Asn hotspots in the first interface

28 number of Polar-Polar contacts in the first interface 16 number of Positive-Small contacts in the first interface

69 number of Positive-Hydrophobic contacts in the second interface 34 ratio of Cys hotspots in the first interface

86 ratio of Cys hostspots in the second interface 50 ratio of Ile hotspots in the first interface

92 ratio of Phe hotspots in the second interface 73 number of Negative-Hydrophobic contacts in the second
interface

90 ratio of Tyr hotspots in the second interface 106 difference of ASA between two interfaces

73 number of Negative-Hydrophobic contacts in the second interface 19 number of Negative-Negative contacts in the second
interface

74 number of Negative-Polar contacts in the second interface 11 number of Aromatic-Small contacts in the second interface

62 number of Aromatic-Negative contacts in the second interface 100 ratio of Thr hotspots in the second interface

67 number of Positive-Negative contacts in the second interface 68 number of Positive-Small contacts in the second interface

58 number of Aliphatic-Hydrophobic contacts in the second interface 98 ratio of Glu hotspots in the second interface

97 ratio of Lys hotspots in the second interface 39 ratio of Gln hotspots in the first interface

56 number of Aliphatic-Negative contacts in the second interface 33 ratio of Trp hotspots in the first interface

The ranking was obtained using the SVM attribute evaluating protocol implemented in Weka software package.
doi:10.1371/journal.pone.0019554.t004
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two O-methyltransferases are not structurally related, the two

interactions are not homologous. The complexes were then

superposed by aligning the only two structurally similar subunits.

Surprisingly, we found that (i) binding sites forming the two

interfaces have geometrically similar surfaces, and (ii) locations of

the binding sites on the surfaces of structurally similar subunits are

in close proximity and are partially overlapped. Moreover, when

analyzing the conservation of the charged residues in these

interfaces, we observed an intriguing phenomenon. We detected a

pair of charged residues whose location was conserved between the

two interfaces but whose charges were swapped when comparing

one interface with another (LYS 117.A in contact with ASP 120.A

in the first interface, and GLU 89.A in contact with ARG 17.B in

the second one).

Finally, in the third case study (Fig. 7C), we considered two

structurally unrelated binary complexes that were clustered into

the same A-level cluster. The first complex is an intra-chain

interaction of the C- and NM- domains of acyl-CoA dehydroge-

nase (PDB ID: 1ege, chain C) and the second one is a glycerol-

conducting channel homodimer (PDB ID: 1fx8, chain A). The

subunits for the two complexes were from structurally unrelated

SCOP Superfamilies (SCOP IDs are 47203 and 56645 for the first

complex, and 81338 for both subunits of the second complex). The

analysis of the interfaces showed their significant similarity in

shape and secondary structure. However, the interface in the first

complex had multiple charged residues agglomerated at one part

of the interface, while the interface of second complex had a single

pair of the charged residues. In addition, the analysis of the

charged residues revealed that they were located on the opposite

sides of the two interfaces.

Discussion

In this paper, we present an accurate alignment-free interface

similarity measure and demonstrate its advantages and applica-

bility. We have shown that the measure has a significantly greater

coverage than the alignment based methods while preserving high

Table 6. Comparison of SCOPPI, PRISM with ModelND and
ModelNDNN.

Dataset Classified SCOPPI Prism ModelND ModelNDNN

H-level Similar 48.0% 15.9% 98.1% 75.0%

Dissimilar 51.0% 3.2% 1.88% 25.0%

Unknown 1.0% 80.9% 0.0% 0.0%

Dissimilar
native-native

Similar 0.0% 0.0% - 33.6%

Dissimilar 98.1% 6.6% - 66.4%

Unknown 1.9% 93.4% - 0.0%

The accuracies for each classifier were calculated using homologous interfaces
from the positive set and dissimilar native-native interfaces from the negative
sets. The results for ModelND and ModelNDNN were based on the leave-one-out
cross-validation. Unknown classification results refer to the percentage of those
interface pairs that were not classified by either SCOPPI or Prism.
doi:10.1371/journal.pone.0019554.t006

Table 5. Minimum, Maximum, and Median of feature values for top 20 ranked features for both SVM models.

Model No. 1 Model No. 2

Positive set Negative set Positive set Negative set

ID Min Max Med Min Max Med ID Min Max Med Min Max Med

105 0.00 328.00 35.00 2.00 732.00 130.00 105 0.00 328.00 35.00 0.00 732.00 103.00

29 35.40 146.80 51.20 31.90 168.40 69.90 30 1.48 8.16 4.59 0.48 12.90 4.15

81 0.00 0.23 0.11 0.05 0.19 0.11 64 0.00 0.14 0.03 0.00 0.37 0.02

30 0.00 0.36 0.09 0.00 1.00 0.13 76 0.00 0.50 0.08 0.00 0.20 0.08

64 0.00 0.14 0.03 0.00 0.09 0.02 29 35.30 146.80 51.10 31.90 168.40 61.30

53 0.00 0.09 0.01 0.00 0.12 0.01 83 0.00 55.40 4.49 0.00 55.40 4.49

71 0.00 0.09 0.01 0.00 0.04 0.01 21 0.00 0.09 0.01 0.00 0.33 0.02

82 1.08 9.03 4.52 3.60 8.45 5.13 44 0.00 0.33 0.04 0.00 1.00 0.03

28 0.00 0.36 0.09 0.00 1.00 0.13 16 0.00 0.15 0.02 0.00 0.30 0.02

69 0.00 0.08 0.01 0.00 0.05 0.01 34 0.00 0.27 0.00 0.00 0.33 0.00

86 0.00 0.27 0.00 0.00 0.19 0.00 50 0.00 0.33 0.06 0.00 1.00 0.04

ß92 0.00 0.37 0.05 0.00 0.18 0.04 73 0.00 0.17 0.01 0.00 0.28 0.02

90 0.00 1.00 0.07 0.00 0.31 0.07 106 0.01 84.40 6.37 0.01 122.10 17.90

73 0.00 0.17 0.01 0.00 0.09 0.02 19 0.00 0.05 0.00 0.00 0.12 0.00

74 0.00 0.16 0.02 0.00 0.09 0.02 11 0.00 0.17 0.02 0.00 0.20 0.01

62 0.00 0.07 0.00 0.00 0.04 0.01 100 0.00 0.33 0.06 0.00 0.50 0.06

67 0.00 0.08 0.01 0.00 0.05 0.01 68 0.00 0.19 0.02 0.00 0.22 0.02

58 0.00 0.27 0.04 0.00 0.14 0.03 98 0.00 0.55 0.06 0.00 0.50 0.0ß7

97 0.00 0.33 0.05 0.00 0.30 0.08 39 0.00 0.28 0.04 0.00 1.00 0.03

56 0.00 0.07 0.00 0.00 0.05 0.01 33 0.00 0.25 0.00 0.00 0.50 0.00

For each of the top 20 ranked features (ID stands for the feature ID), the minimum (Min), maximum (Max), and median (Med) values were individually calculated for the
positive and negative sets.
doi:10.1371/journal.pone.0019554.t005
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accuracy. In addition, we have demonstrated that the high

coverage allows generating a comprehensive SCOP-like hierar-

chical classification of similar interaction interfaces as well as

efficiently solving the interface search and retrieval problem.

Finally, we have presented an example of how the measure could

be used to suggest a new biological phenomenon.

Throughout this work, we have constructed three datasets of

interaction interfaces. The first dataset consists of (i) homologous

interface pairs that are obtained exclusively from structurally

similar binary complexes extracted from 3D Complex database,

and (ii) dissimilar interface pairs obtained from the same database.

The purpose of this dataset is determining which of the structure-

based similarity measures is more accurate: the one that relies on

superposition of the entire subunits, or the one that relies on the

interaction interfaces only. In the second dataset, we collected as

diverse datasets of similar and dissimilar interfaces as we could

reliably get using a structure-based similarity measure. Our

protocol removes potential bias in the interaction data, by

ensuring that each family of structurally similar subunits

contributes equally to the dataset. While this is an important step

for an accurate SVM training, the protocol would not reflect the

actual distribution of the interactions across the pairs of

homologous families. To account for that, we built the third

dataset, which not only serves as a test bed for constructing a

classification system of the entire structural interactome, but also

allows us to study biological phenomena occurring in similar

interfaces. All datasets can be downloaded at: http://korkinlab.

org/datasets/i_similarity/i_sim_data.html

Based on the assessment results of the two SVM classifiers and

their comparison with the state-of-art interface classification

systems, we have made several conclusions. First, we suggest that

the ModelND can be efficiently used when modeling protein-protein

Figure 6. Average Silhouette value against different number of clusters (K). An obvious knee point (K = 140) is selected as the number of
clusters.
doi:10.1371/journal.pone.0019554.g006

Table 7. A three-level hierarchy obtained using the new
feature-based interface similarity measure.

Level Clusters Avg Min Max 1-member

H 2,085 1.4 1 9 1,610

C 1,892 1.5 1 13 1,363

A 140 20.0 3 83 0

For each level, the number of clusters (Clusters), the average, minimum, and
maximum numbers of members per cluster (Avg, Min, and Max), and the
number of clusters with one member (1-member) were calculated.
doi:10.1371/journal.pone.0019554.t007

Structural Similarity of Protein Interfaces

PLoS ONE | www.plosone.org 12 May 2011 | Volume 6 | Issue 5 | e19554



interactions by a comparative approach, e.g., comparative docking,

where the modeled interfaces are matched against a database of

biological interfaces. Second, we conclude that the main advantages

of our approach, compared to the current methods, include better

coverage and higher accuracy on detecting similar interfaces. On

the other hand, our approach could further benefit from improving

the detection of dissimilar interfaces.

Hierarchical classification of the interaction interfaces resulted

in a significant number of 1-member clusters at C- and H-levels.

This is not surprising, as the interfaces clustered into the same C-

or H-level cluster have an additional constraint: one or both

interacting subunits must belong to the same SCOP superfamily.

The probability of two interactions to have one of the two subunits

in the same SCOP superfamily is small, since the average number

of members per each SCOP superfamily in the considered set of

non-redundant interactions (,2.3) is significantly smaller than the

total number of SCOP Superfamilies for the same set (1,225). As a

result, the total number of expected clusters with multiple

interactions is expected to be low at C- and H-levels.

The performance analysis of the hierarchical classification

protocol suggests that expanding the hierarchical classification to

the entire set of protein-protein interactions is feasible. Indeed, the

feature calculation, while taking the most time per each interface

among the three steps (see section Hierarchical classification of similar

interactions under Results), has the complexity that is linear of the

number of available binary interactions. Thus, since the current

dataset constitutes ,1% of the structural interactome [39] this step

can be completed in the same time (,70 hrs) but on a 100-node

cluster. Due to their quadratic complexities, stages two and three

are expected to take ,50 hrs each on the same cluster.

We have also demonstrated the applicability of the feature-based

similarity to the problem of interface search and retrieval.

Specifically, for a query interface one can accurately and efficiently

find a similar interface from a large interface dataset. This proof-of-

concept may have important implications for other bioinformatics

approaches, e.g. for comparative docking, where the candidate

interface models are searched against the database of native

interfaces or for functional annotation of novel protein interactions.

Finally, for each case study, we have detected and analyzed the

charged residues located at the interfaces. The analysis has

revealed an interesting phenomenon, where the relative positions

of charged residues in similar interfaces are either swapped

between the interacting binding sites or appear in different regions

of the interfaces. The principal role of the charged residues in

forming interaction interfaces has been well studied [45,46,47].

However, a recent analysis of the residue conservation in the

protein interfaces showed that the charged residues are less

conserved than hydrophobic or aromatic residues [48]. The

properties of the charged residues found in our case studies are

consistent with that conclusion. Our findings may also suggest that

for some protein-protein interactions, a mere presence of the

charged residues in the interface, not requiring the conservation of

charged residue locations at the interface, is sufficient to the

complex formation.

Figure 7. Case studies of similar interactions. (A) H-level interactions (iiRMSD = 2.93 Å), (B) C-level interactions (iiRMSD = 6.12 Å), and (C) A-level
interactions (iiRMSD = 6.19 Å). Subunits from the first interaction together with the corresponding interface and binding sites are colored gold and
light yellow. Subunits from the second interaction (and their interfaces and binding sites) are colored dark and light grey. Positively and negatively
charged residues in the first interaction are colored blue and red, while in the second interaction they are colored cyan and magenta,
correspondingly. Superposition refers to the superposed interactions, interfaces, and binding sites.
doi:10.1371/journal.pone.0019554.g007
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