
VACCINE DESIGN

Chimeras could help in the fight
against leptospirosis
Understanding the structure of an antigen can guide the design of

improved antigen-based vaccines.
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L
eptospirosis is a disease that affects

humans and animals worldwide, with a

high prevalence in tropical and subtropi-

cal regions. The Leptospira bacteria that cause

the disease colonize the kidneys of wild and

domestic animals, and humans come into con-

tact with these bacteria via the urine of infected

animals – primarily rats in urban areas

(Bharti et al., 2003). Symptoms of leptospirosis

range from a mild influenza-like illness to severe

infections that are fatal in over half of cases

(Marotto et al., 1999). The lack of an effective

vaccine has hampered efforts to prevent and

control the disease.

Vaccines contain substances that allow the

host immune system to learn how to recognize a

particular pathogen. The parts of the pathogen

that are recognized by the immune system are

known as antigens, and immune molecules

called antibodies bind to these antigens as part

of the immune response.

Current vaccines against leptospirosis consist

of whole inactivated bacterial cells, which induce

the host immune system to produce antibodies

against lipopolysaccharide molecules in the

outer membrane of the bacteria. However, these

vaccines only provide short-term immunity

against the specific varieties of bacteria that are

included (in their inactivated form) in the vaccine

(Adler and de la Peña Moctezuma, 2010).

Moreover, there are more than 250 serum varie-

ties of Leptospira, so developing a vaccine that

is effective against all of them with this method-

ology is unrealistic.

Advances in recombinant DNA techniques,

allied to whole-genome sequencing and bioin-

formatics technologies, have led to a new

approach for the identification of vaccine candi-

dates. This approach, known as reverse vaccinol-

ogy, uses the genome of the pathogen to

predict the exact part of an antigen that anti-

bodies interact with (Rappuoli et al., 2014).

However, despite these advances, only a few

antigens that protect against leptospirosis have

been identified. Now, in eLife, Yung-Fu Chang

and Robert Oswald of Cornell University and col-

leagues – including Ching-Lin Hsieh and Christo-

pher Ptak as joint first authors – report a

valuable step forward in efforts to develop an

effective vaccine against pathogenic Leptospira

(Hsieh et al., 2017).

LigB is a protein found on the surface of path-

ogenic forms of Leptospira (Matsunaga et al.,

2003). It contains a short N-terminal domain

(which anchors it to the outer membrane of the

bacterium), twelve consecutive immunoglobulin-

like domains (called LigB1-12), and a large non-

immunoglobulin-like domain at the C-terminal

end. The 12 central domains can be divided into

a conserved region (LigB1-7) and a more vari-

able region (LigB7-12; Ptak et al., 2014). LigB
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has been considered the most promising target

for an effective vaccine (Conrad et al., 2017),

but controversial results suggested only a partial

immunization (Yan et al., 2009; Silva et al.,

2007) or did not confer sterilizing immunity (pro-

tection against infection as well as disease;

Evangelista et al., 2017).

Hsieh et al. combined structural biology with

immunoreactive assays to determine the region

of the LigB protein that most strongly induces

an immune response. They used small-angle

X-ray scattering to determine the low-resolution

structure of the LigB1-12 region by working their

way along this region, imaging five of the

domains at a time. The final structure demon-

strated an extensive surface area that is present

across almost all of the 12 domains. This

provides a high degree of exposure to the host

immune system.

To confirm the capability of the protein to

induce a host immune response, Hsieh et al.

used two truncated forms of LigB – one that

consisted of LigB1-7, and one formed of LigB7-

12 – to generate a library of anti-LigB monoclo-

nal antibodies. The bactericidal activity of these

antibodies was evaluated by measuring how

they interacted with LigB and how well they

adhered to the surface of pathogenic Lepto-

spira. These interactions were then correlated

with the ability of the monoclonal antibodies to

kill the bacteria in the presence of innate

immune proteins called serum complement. By

blocking important domains of LigB, monoclo-

nal antibodies render Leptospira susceptible to

attack and killing by complement proteins.
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Figure 1. Schematic representation of how structural biology contributes to vaccine design. Sequencing the genome of a pathogen (top left) makes

it possible to clone protein-based antigens – the features of the pathogen that are detected by antibodies in the host immune system. When mice are

injected with the purified antigens, cells in their spleen produce monoclonal antibodies (mAbs) via cells called hybridomas. By studying the structure of

the antibodies, and identifying the regions that interact most strongly with the antigens, researchers can build chimeric proteins from these regions.

The effectiveness of the chimera as a vaccine for the pathogen can then be tested in animal models and human clinical trials.
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Using a technique called nuclear magnetic

resonance spectroscopy, Hsieh et al. worked out

the structure of the monoclonal antibody

domains that have bactericidal activity. These

data helped them to build chimera proteins

from selected domains that were then used to

immunize hamsters against virulent Leptospira

(Figure 1). One chimera containing just three

domains – LigB10-B7-B7 – afforded better pro-

tection to hamsters than longer constructs, such

as LigB7-12 (which contains six domains).

The results of Hsieh et al. reinforce previous

work that showed that structural biology repre-

sents a powerful tool for structure-based vaccine

design. Their findings have significantly

advanced our knowledge of LigB and represent

an important step toward an improved vaccine

against leptospirosis.
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