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Devil in the details: how can we avoid
potential pitfalls of CATS regression
when our data do not follow a Poisson
distribution?
Zoltán Botta-Dukát
Centre for Ecological Research, Vácrátót, Hungary

ABSTRACT
Background. Community assembly by trait selection (CATS) allows for the detection
of environmental filtering and estimation of the relative role of local and regional
(meta-community-level) effects on community composition from trait and abundance
data without using environmental data. It has been shown that Poisson regression of
abundances against trait data results in the same parameter estimates. Abundance data
do not necessarily follow a Poisson distribution, and in these cases, other generalized
linear models should be fitted to obtain unbiased parameter estimates.
Aims. This paper discusses how the original algorithm for calculating the relative role
of local and regional effects has to be modified if Poisson model is not appropriate.
Results. It can be shown that the use of the logarithm of regional relative abundances
as an offset is appropriate only if a log-link function is applied. Otherwise, the link
function should be applied to the product of local total abundance and regional relative
abundances. Since this product may be outside the domain of the link function, the
use of log-link is recommended, even if it is not the canonical link. An algorithm
is also suggested for calculating the offset when data are zero-inflated. The relative
role of local and regional effects is measured by Kullback-Leibler R2. The formula
for this measure presented by Shipley (2014) is valid only if the abundances follow a
Poisson distribution. Otherwise, slightly different formulas have to be applied. Beyond
theoretical considerations, the proposed refinements are illustrated by numerical
examples. CATS regression could be a useful tool for community ecologists, but it
has to be slightly modified when abundance data do not follow a Poisson distribution.
This paper gives detailed instructions on the necessary refinement.

Subjects Ecology
Keywords CATS, Community assembly, glm, Ajusted R-squared, Traits

INTRODUCTION
The community assembly by trait selection (CATS) method developed by Shipley et
al. allows for the detection of environmental filtering of traits without using data on
acting environmental variables (Shipley, Vile & Garnier, 2006; Shipley, 2010). Moreover, its
extension (Shipley, 2014) can estimate the relative role of environmental filtering, meta-
community effects (mass effect or dispersal limitation), and demographic stochasticity. In
its original form, CATS minimizes the Kullback–Leibler divergence between the relative
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abundance expected a priori and the predicted relative abundances under the constraint that
weighted trait means (CWMs) have to be equal in the predicted and observed communities.
This approach uses observed trait means as the input and does not require the observed
abundances (see its implementation in FD package; Laliberté, Legendre & Shipley, 2014).
This fact suggests that the method could be applied to any type of abundance data if
relative abundances can be calculated (i.e., relative abundances are the weights in the
CWM calculation).

Warton, Shipley & Hastie (2015) have shown that a Poisson-regression for abundances
using species’ traits as predictors and the logarithm of relative abundances expected
a priori as an offset results in the same parameter estimates. The Poisson regression
has three assumptions: (1) the abundance values follow a Poisson distribution; (2) the
logarithm of expected abundances is a linear function of trait values; and (3) observations
are independent (conditional on trait values). Violation of the third assumption has
implications for interference (see e.g., Warton, Shipley & Hastie, 2015; Ter Braak, Peres-
Neto & Dray, 2017 for discussion on interference, when independence assumtion is
violated due to species interactions). However, it does not lead to biased estimates of
model parameters. Violation of the first and second assumptions may result in biased
parameter estimates.

The ‘‘examples’’ section will illustrate that violation of the Poisson assumption may lead
to false conclusions.

A Poisson distribution of abundances can be assumed when they are measured by a
number of individuals. Even in this case, the abundances may be over-dispersed (i.e., the
variance is higher than the mean), while a Poisson distribution implies equal mean and
variance. Abundance is often measured in other units: estimated cover, biomass, and
frequency of presence, and sometimes, only presence/absence data are available. Replacing
the maximum entropy formalism with maximum likelihood (ML) fitting of generalized
linear models (GLMs) allows for a generalization of CATS that relaxes the distribution
assumption. FollowingWarton, Shipley & Hastie (2015), we refer to GLMs for abundances
with trait values as predictors as CATS regression. These models are not mathematically
equivalent to CATS, but they have the same goal as CATS using distributional assumptions
that better fit the abundance data at hand.

Depending on the unit of abundances, different distributions can be assumed.
Presence/absence data can be modeled by logit-regression and assuming a binomial
(Bernoulli) distribution (Warton & Hui, 2010). Assuming independent sampling points,
the frequency of occurrence in sampling points (e.g., pin points; Goodall, 1952) can also be
modeled by a binomial distribution (see Damgaard, 2008; Damgaard, 2009) for relaxing of
the independence assumption). If the number of individuals counted in a sampling with
fixed intensity (e.g., fixed sampling area or trapping time), the simplest assumption is that
abundances follow a Poisson distribution. However, abundance datamay be over-dispersed
(i.e., the variance is higher than mean), zero-inflated (the number of zeros is higher than
expected from the fitted distribution), or both.

Over-dispersed counts can be modeled by a negative binomial distribution (O’Hara &
Kotze, 2010) or Conway-Maxwell-Poisson distribution (Lynch, Thorson & Shelton, 2014).
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For count data with excessive zeros, zero-inflated or two-part (hurdle) models can be
fitted (Zuur et al., 2009; Blasco-Moreno et al., 2019). If the total number of individuals is
fixed in sampling instead of the sampling intensity, the number of individuals in each
species follows a multinomial distribution (Chong & Spencer, 2018). The abundance of
plant species is often described by their cover (which is often visually estimated). Cover
data can be analyzed by (zero-inflated) beta-regression (Damgaard & Irvine, 2019). When
individuals considerably differ in size, biomass may be a better abundance measure than
the number of individuals. For modeling biomass data, a Tweedie distribution could be
applied. It assumes that the mean-power relationship follows the Taylor law. If the power
parameter p is in the range of 1<p<2, a Tweedie distribution is mathematically equivalent
to a compound Poisson-gamma distribution (i.e., the sums of the Poisson-distributed
number of individuals each have a gamma distributed mass). This distribution has a point
mass at zero (i.e., an absence of species) (Dunstan et al., 2013).

All of these distributions can be applied in generalized linear models. The interpretation
of fitted parameters is similar for all distributions: a positive parameter value means
that a higher trait value results in higher expected abundance. However, the relationship
is nonlinear (except when applying an identity link) and depends on the applied link
function. Therefore, plotting the expected abundances against traits gives a more detailed
picture. For interference, the same procedures can be applied irrespective of the distribution
(Warton, Shipley & Hastie, 2015; Ter Braak, Peres-Neto & Dray, 2017). Thus, at first glance,
generalization of the CATS regression seems to be straightforward. However, there are two
points that need more consideration: choosing/interpreting offset terms and calculating
the explained variation. The aims of this paper are (1) to show that recommendations for
the original CATS model should be reconsidered when a Poisson distribution is replaced
by another distribution and (2) to give a general solution for this replacement and detailed
recommendations for the most often used distributions.

Modeling meta-community effect via offset
Beyond local trait selection, larger-scale effects can also influence species’ local abundance.
High propagule pressure can increase the local abundance of species that are abundant in
the surroundings. On the other hand, locally well-adapted species may be missing from the
local community due to propagule limitation. The unique property of CATS is that it can
measure the relative importance of local and meta-community-scale (dispersal) processes
(Shipley, 2014).

If species survival, growth, and reproduction were independent of their traits, local
abundances would differ from the meta-community-level means due to demographic
stochasticity only (including stochasticity of dispersal). In this case, local abundances could
be predicted well from mean abundances at the meta-community level, while using traits
as predictors would not improve the fit. At the other extreme, when species abundances are
independent of dispersal processes (i.e., no mass effect or propagule limitation) and fully
determined by local processes, knowledge on the meta-community-level abundance would
not be able to improve our ability to predict local abundances (Shipley, 2014). Therefore,
the heart of CATS is the fitting of models with and without information on abundances
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in the meta-community level. Shipley (2014) called this information the ‘‘neutral prior.’’
However, Warton, Shipley & Hastie (2015) called attention to the term ‘‘prior’’ as being
associated with Bayesian statistics, where it has a specific meaning. To avoid confusion, we
will refer to it as ‘‘abundances expected a priori,’’ where ‘‘a priori’’ means ‘‘before knowing
local conditions.’’

The abundances expected a priori can be included into CATS regression models via
offset terms. Warton, Shipley & Hastie (2015) suggested using the logarithm of relative
abundances at the meta-community level in a Poisson regression to reproduce the original
CATS model. This study discusses whether this suggestion is generally valid irrespective of
the link function.

The aim of CATS models is to predict relative abundances of species, not to explain
differences in total abundances among sites, whichmay be caused by differences in sampling
intensity. Therefore, they always contain an intercept. The relative abundance predicted by
a model containing only an intercept and offset should be equal to the relative abundances
expected a priori (π):

ŷi∑S
i=1 ŷi
=πi (1)

where ŷi is the predicted abundance of species i, S is the number of species, and πi is
relative abundances expected a priori of species i. For most of the fitted models (but not
for zero-inflated and two-stage models), ŷi=µi, where µi is the location parameter of the
fitted distribution. Therefore, µi will be used instead of ŷi where appropriate. If a canonical
link is applied and the model contains an intercept term, the sum of predicted values is
equal to the sum of observed values (ytot ). Thus, requirement Eq. (1) could be written in
the following form:

µi=πiytot . (2)

The GLM with an intercept and offset but no predictors can be written in the following
general form:

h(µi)=β0+Oi (3)

where h() is the link function, β0 is the intercept, and Oi is the offset for species i.
Substituting Eq. (2) into Eq. (3), we obtain the following system of linear equations (note
that the left side of equations can be replaced by numbers calculated from data on hand):

h
(
πiytot

)
=β0+Oi. (4)

This system contains S +1 variables (O1, O2, . . . , OS and β0), but only S equations, so it
has no unique solution. It can be solved by choosing an arbitrary value for O1. Then, the
other offsets can be calculated with the following formula:

Oi= h
(
πiytot

)
−h

(
π1ytot

)
+O1. (5)

In Poisson and negative binomial regression, the canonical link is the natural logarithm
(Dobson, 2002). Thus,

Oi= ln
(
πiytot

)
− ln

(
π1ytot

)
+O1= ln(πi)− ln(π1)+O1. (6)
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In this case, it is appropriate to choose O1 = ln(π1), which leads to the offset
recommended by Warton, Shipley & Hastie (2015). For other link functions, the simplest
choice is O1 = 0. However, this approach has two limitations. First, πiytot has to be
within the domain of the link function. For example, for binomial and beta distributions,
where the canonical link is logit(x), offsets can be calculated only if πiytot < 1; otherwise,
ln
(
πiytot/

(
1−πiytot

))
cannot be calculated. The second limitation is that a canonical link

is not always the most appropriate link function, and sometimes, another link function has
to be chosen. For example, for a Tweedie distribution with power parameter 1<p<2, the
canonical link would be (Ohlsson & Johansson, 2006):

h(µ)=
−1
p−1

µ−(p−1). (7)

When the exact value of power parameter p is unknown, it can be estimated from
data during model fitting, but in this case, the log-link is applied in R packages mgcv
(Wood, 2017) and glmmTMB (Brooks et al., 2017). If a canonical link is not used, the sum
of expected values may differ from the sum of observed values. But Eq. (1) remains true
irrespective of the link function, and it can be converted to:
µi

µ1
=
πi

π1
. (8)

Combining Eqs. (3) and (8) results in:

h−1(β+Oi)

h−1(β+O1)
=
πi

π1
(9)

where h−1(x) is the inverse of link function.
Setting O1 to an arbitrary value leads to a nonlinear equation system with S equations

and S variables. Solving such a system is often a hard task. The situation would be much
simpler if the following were true:

h−1(β+Oi)= h−1(β)h−1(Oi). (10)

In this case, choosing Oi = h(πi) satisfies condition Eq. (9). Since h(x)= ln(x) and
h−1(x)= ex satisfy condition Eq. (10), it is reasonable to use log-link even if it is not the
canonical link (for example, instead of logit in a binomial model). In medical statistics,
binomial GLM with log-link is called relative risk regression, which is often recommended
due to the easier interpretation of proportions than odds ratios (Marschner, 2015). If
log-link is used with a binomial distribution, iteratively reweighted least squares (the
standard method for fitting GLMs) may fail to converge to the maximum likelihood
estimate (Marschner & Gillett, 2012). Therefore, alternative estimation procedures were
developed and are implemented in the logbin R package (Donoghoe & Marschner, 2018).
Log-link for beta regression is also available in the betareg R package (Cribari-Neto &
Zeileis, 2010).

Using the mentioned distributions, we suppose that all data come from the same
distribution, and only their parameters depend on species. In this case, the relative
abundances at the meta-community level can be estimated by:

πi=
mi∑
mi

(11)
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where mi is the mean abundance of species i in plots representing the meta-community.
Note that since only the ratio of relative abundances expected a priori are used, the offset
could be simply Oi= ln(mi) instead of Oi= ln(πi).

If there are excessive zeros, it could be supposed that some of the zeros do not come from
the distribution of ‘‘normal’’ abundances. Zero-inflated and two-part (hurdle) models are
based on this assumption. In these models, there are two equations for two location-type
parameters.

A zero-inflated model supposes that positive counts and some of the zeros comes from a
Poisson or negative binomial process, while some zeros are ‘‘structural zeros’’ (i.e., species
cannot occur there). The two parameters in this case are the probability of structural
zeros (p) and the expected value of the Poisson or negative binomial process (µ) (Zuur
et al., 2009). For estimating offsets, we must know the probability of structural zeros at
the meta-community. Therefore, it seems that zero-inflated models have low practical
relevance when a meta-community effect has to be modeled.

A two-part (hurdle) model fits two separate models: a binomial model for
presence/absence data and a truncated Poisson or negative binomial model for positive
abundances. In this case, the two parameters are the probability of presence (p) and mean
of the Poisson or negative binomial distribution (µ), from which the fitted zero-truncated
distribution is deduced (not the mean of the truncated distribution itself) (Zuur et al.,
2009). For simplicity, let us imagine that we really fit a two-part model as two separate
GLMs. The first GLM is a binomial model for binary data. Therefore, we estimate offsets
using the standard procedure (but mean abundances at the meta-community level have
to be calculated from binary data). In the second GLM, we fit a truncated Poisson or
truncated negative binomial distribution for the non-zero abundances. Similar to Poisson
regression, it is assumed that ln(µi) is a linear combination of trait values and the offset,
but the expected abundance is the following for a Poisson distribution:

ŷi=
µi

1−exp(−µi)
. (12)

For a negative binomial distribution, the expected abundance is:

ŷi=
µi

1−
(
µi+θ
θ

)−θ (13)

ŷi is the expected or mean abundance of species i when it present, while µi is the expected
or mean abundance when only structural zeros are excluded. For setting the offset, we need
a priori expectation for the latter.

The meta-community level mean of species’ abundance when present (m+i ) can be easily
estimated. Assuming a Poisson process, the mean abundance excluding structural zeros
(m̃i) can be estimated by solving the following nonlinear equation:

m+i =
m̃i

1−exp(−m̃i)
(14)

If a negative binomial distribution is assumed, a similar approach can be applied if θ is
known. Then, ln(m̃i) could be used as an offset.
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Relative importance of environmental selection and
dispersal processes
The relative importance of local and meta-community-level processes can be calculated
from variation explained by models containing only traits (as independent variables), only
offset (calculated from meta-community-level abundances; see above), or both traits and
offset (Shipley, 2014). Using the classic R2 as a measure of explained variance is suitable
only in OLS regression. Different generalizations of R2 are suggested for GLMs (Cameron
& Windmeijer, 1996; Cameron & Windmeijer, 1997; Menard, 2000; Nakagawa & Schielzeth,
2013). Shipley (2014) proposed using a generalization based onKullback–Leibler divergence
(Cameron & Windmeijer, 1997).

I will show below that formula Eq. (4) from Shipley (2014) is valid for only a Poisson-
model, and different formulas have to be used for other distributions. A definition of
Kullback–Leibler R2 is not available for models with an offset; therefore, solution for this
case by Shipley (2014) and its alternatives will be discussed. Increasing the number of
predictors (traits) always improves the fit of the model (i.e., increases the Kullback–Leibler
R2). Therefore, R2 values of models with different numbers of predictors (traits) cannot be
compared. Shipley (2014) proposed an ‘‘adjustment’’ procedure based on randomization
of traits. Although this procedure is correct, it is time consuming for large datasets . Thus,
an alternative deterministic adjustment is proposed.

R2 for models without offset
Kullback–Leibler R2 is a generalization of the classic R2 used in ordinary least squares
regression:

R2
= 1−

∑(
yi− ŷi

)2∑(
yi−y

)2 =
∑(

yi−y
)2
−
∑(

yi− ŷi
)2∑(

yi−y
)2 (15)

where
∑(

yi− ŷi
)2 and∑(

yi−y
)2 are the squared Euclidean distances between observed

values and predictions of models with and without predictors, respectively. Therefore, R2

is a proportional decrease of distance between model prediction and observed values due
to the inclusion of predictors in the model. For other distributions, the squared Euclidean
distance can be replaced with Kullback–Leibler divergence with the same interpretation:

R2
KL= 1−

K
(
y;µ

)
K
(
y;µ0

) = K
(
y;µ0)

−K
(
y;µ

)
K
(
y;µ0

) (16)

where y is the vector of observed values, and µ and µ0 are vectors of values predicted by
the evaluated and intercept-only models, respectively.

Table 1 shows that distributions that could be used in CATS regression belong to the
exponential family, so their density functions can be written in the following general form
(McCullagh & Nelder, 1999):

f
(
y;ψ,φ

)
= exp

{
yψ−b(ψ)

a(φ)
− c

(
y,φ

)}
(17)
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Table 1 Defining distributions widely used for modeling abundances using notations of exponential family. See Eq. (17) for explanation of no-
tations.

Distribution ψ b(ψ) a(φ) c
(
y,φ

)
Gaussian (Normal) µ ψ2

2 σ 2 σ 2 ln(2πσ 2)+y2

2σ 2

Poisson lnµ eψ 1 −lny!

Binomial ln µ

n−µ nln
(
1+eψ

)
1 ln

(
n
y

)
Negative binomial ln µ

µ+θ
−θ ln

(
1−eψ

)
1 ln 0(θ)y!

0(y+θ)

Tweedie(1<p<2) µ1−p

1−p
[ψ(1−p)](2−p)/(1−p)

2−p φ
0 ify = 0

lnW
(
y,0
)
− lny ify > 0

Zero-truncated Poisson lnµ eψ+ ln
[
1−exp

(
−eψ

)]
1 −lny!

Zero-truncated negative binomial ln µ

µ+θ
−θ ln

(
1−eψ

)
+ ln

[
1−

(
1−eψ

)−θ] 1 ln 0(θ)y!
0(y+θ)

Notes.
Notation: 0(x) is the gamma-function.

where ψ is the natural or canonical parameter, φ is the dispersal parameter, and a, b, and
c are specific functions. The mean and variance of y are:

E
(
y
)
=µ= b′(ψ)

Var
(
y
)
= a(φ)b′′(ψ)

(18)

where b′ and b′′ are the first and second derivatives of function b. Note that negative
binomial and Tweedie distributions belong to this family only if parameters θ and p are
known constants. Function h(µ)=ψ is called a canonical link function.

For members of the exponential family, Kullback–Leibler divergence can be calculated
as the difference between the likelihood of a full model (i.e., a model where predicted and
observed values are equal) and a fitted model (Cameron & Windmeijer, 1997):

K
(
y;µ

)
= 2

[
l
(
µfull
;y
)
− l
(
µ;y

)]
. (19)

Thus, for members of the exponential family, R2
KL could be deduced as a corrected version

of likelihood ratio R2or McFadden R2:

R2
L= 1−

l
(
µ;y

)
l
(
µ0;y

) . (20)

A drawback of R2
L is that its maximum is not 1, but 1−

[
l
(
µfull
;y
)
/l
(
µ0
;y
)]
. Since its

minimum is zero, R2
L can be rescaled to the interval of 0–1 by dividing it by its maximum,

which results in R2
KL:

R2
L(

1− l(µfull ;y)
l(µ0;y)

) = l
(
µ0
;y
)
− l
(
µ;y

)
l
(
µ0;y

) /
l
(
µ0
;y
)
− l
(
µfull
;y
)

l
(
µ0;y

)
=

l
(
µ0
;y
)
− l
(
µ;y

)
l
(
µ0;y

)
− l
(
µfull;y

) =R2
KL. (21)
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Substituting Eqs. (19) into (16) results in:

R2
KL= 1−

l
(
µfull
;y
)
− l
(
µ;y

)
l
(
µfull;y

)
− l
(
µ0;y

) = l
(
µ;y

)
− l
(
µ0
;y
)

l
(
µfull;y

)
− l
(
µ0;y

) . (22)

McCullagh & Nelder (1999) called 2
[
l
(
µfull
;y
)
− l
(
µ;y

)]
the scaled deviance (D∗), so

R2
KL can also be calculated from scaled deviances (D∗) or deviances (D) of fitted and

intercept-only models:

R2
KL= 1−

D∗
(
µ;y

)
D∗
(
µ0;y

) = 1−
D
(
µ;y

)
/a(φ)

D
(
µ0;y

)
/a(φ)

= 1−
D
(
µ;y

)
D
(
µ0;y

) . (23)

If there is no offset, in a generalized linearmodel fitted byML estimationwith a canonical
link, the expectations in an intercept-only model is equal to the mean of observed values:
µ0
= y . Formulas for this case are listed in Appendix S1. Appendix S2 shows that formula

Eq. (4) from Shipley (2014) is equivalent to the formula given for a Poisson regression in
Appendix S1.

These formulas assume that the likelihood is a function of µ only, and if there are other
parameters, their values are constants known a priori (i.e., not estimated during regression).
If these parameters are estimated in regression, we can obtain different estimates for
the evaluated and the intercept-only models. For a negative binomial distribution with
unknown dispersion (θ), Cameron & Windmeijer (1996) suggested using a parameter
estimated for an evaluated model when the likelihood of full and intercept-only models
is calculated. Applying this approach, R2

KL may decrease when a regressor is added to the
model due to changes in estimated θ . The same approach can be applied for the power
parameter of a Tweedie distribution. GLM fitting programs usually give the log-likelihood
of the fitted model and the deviance of fitted and intercept-only models.

R2 for models with offset
In the previous section, µ was the prediction of model containing an intercept and
predictors (traits), while µ0 was the prediction of an intercept-only model. A possible
solution for how we should include the offset is to define µ0 as the prediction of a model
without predictors (i.e., a model containing only an intercept and offset). At first glance,
it seems to be a natural generalization of R2 shown in the previous section. However,
there is a drawback in this approach: the effect of meta-community-level processes cannot
be directly measured since R2 for models containing only an intercept and offset (but
no traits) would always be zero. Shipley (2014) suggested an indirect measure of a pure
meta-community effect:

R2(traits;offset)−R2(traits)

1−R2(random traits)
. (24)

The nominator is an adjustment for removing bias (see next section on adjustment), so
now, we should focus on the denominator. This subtraction is based on the assumption
that R2(traits) is the variation explained by traits, while R2(traits;offset) is the variation
explained by traits and offset (i.e., meta-community effect) together. However, this
assumption is not satisfied when in calculation of R-squared µ0 is the prediction of a
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model containing only an intercept and offset. To understand why, we should recall
the geometric interpretation of Kullback–Leibler R2 shortly mentioned above: R2 is the
proportional decrease of distance between observed and predicted values (or proportional
improvement of fit) due to the inclusion of predictors in the model. Therefore, in Eq.
(24), both R2(traits) and R2(traits;offset) are proportional improvements of fit due to the
inclusion of traits, but they are proportional to different original distances of observed
and predicted values. Therefore, their difference has no simple interpretation and does not
measure the pure meta-community effect.

Instead of defining µ0 as a prediction of a model without a predictor, it could be defined
as a prediction of an intercept-only model, even if an offset is applied. This definition
allows us to calculate a meaningful R2 for models with offset but no predictors as a direct
measure of the meta-community effect. This definition may result in negative R2 when
including an offset increases the distance between observed and predicted values instead of
decreasing it. A negative value is nonsense if R2 is interpreted as explained variation, but it
is meaningful if R2 is interpreted as a proportional change in the distance between observed
and predicted values. This geometric interpretation seems more useful in CATS regression,
where it has a meaning that includes meta-community-level relative abundances decreases
the goodness-of-fit.

Note that in R environment, to avoid negative R2 values, the following formula is applied
instead of Eq. (15):

R2
= 1−

∑(
yi− ŷi

)2∑(
yi− ŷi

)2
+
∑(

ŷi−y
)2 . (25)

If there is no offset, Eqs. (15) and (25) result in the same value, but they differ if offset
is applied. A generalization of Eq. (25) could be:

R2
= 1−

K
(
y;µ

)
K
(
y;µ

)
+K

(
µ;µ0

) . (26)

Adjusted R2 and partitioning of explained variation
As a goodness-of-fit measure, a drawback of R2 (both in the classic form and its
generalization) is that including an additional predictor in the model always increases
R2, even if the predictor is independent of the dependent variable. Therefore, it has a
positive expected value instead of zero when a dependent variable is not related to the
predictors. To remove this bias, Fisher (1925) suggested using the following adjustment:

R2
adj = 1−

(
1−R2) n−1

n−k−1
(27)

where n is the number of data points, and k is the number of predictors.
Unfortunately, this adjustment is valid for only for ‘‘classic’’ R2 of ordinary least squares

regression. Since Shipley (2014) has not found a similar solution for Kullback–Leibler R2,
he proposed a procedure based on reshuffling trait values to remove the bias. Although the
suggested procedure is correct, it has no unique result, in contrast to the correction using a
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closed form. Ricci (2010) has shown that there is a simple general adjustment for R2
KL when

the dependent variable follows a distribution belonging to the exponential family. Let us
write the formula for R2

KL using scaled deviances:

R2
KL=

D
(
µ0
;y
)
−D

(
µ;y

)
D
(
µ0;y

) . (28)

Recall that R2
KL is the proportional improvement of model fit. Let us focus on the

denominator, which is the absolute improvement. In a bias-corrected version, the
absolute improvement should be zero when predictors have no effect on the dependent
variable. Under this condition, for members of the exponential family, D

(
µ0
;y
)
−D

(
µ;y

)
approximately follows a Chi-square distribution with degree of freedom equals to the
number of predictors (k). Since the expected value of the Chi-square distribution is its
degree of freedom, the following is an approximately bias-free goodness-of-fit measure:

R2
KL,adj =

D
(
µ0
;y
)
−D

(
µ;y

)
−k

D
(
µ0;y

) . (29)

Appendix S3 shows that Eq. (27) is a special case of Eq. (29) for a Gaussian distribution
with dispersion estimated from the data. Note that Ricci (2010) applied an alternative
derivation of adjustment by generalization of the shrinkage factor and used the deviance
instead of the scaled deviance in the formulas.

For partitioning variation, we should fit models containing both traits and offset and
models with only traits and only offset. Let us denote the corresponding adjusted R2 values
by R2(trait; offset), R2(trait), and R2(offset), respectively. R2(trait; offset) measures the
whole variation explained by studied traits and relative abundances at themeta-community
level. The pure trait effect (i.e., variation explained only by traits) is R2(trait; offset)-
R2(offset), while the pure meta-community effect is R2(trait; offset)- R2(trait). Variation
that can be explained by both traits and the meta-community effect is R2(trait)+R2(offset)-
R2(trait; offset). These formulas are analogous to partitioning of the variation of community
composition into environmental and spatial components (Borcard, Legendre & Drapeau,
1992; Peres-Neto et al., 2006).

EXAMPLES
Examples are presented to illustrate the main messages of the paper. First, example 1
shows how setting an inappropriate distribution leads to biased parameter estimates. Next,
Example 2 shows that it is important to choose an appropriate offset, and finally Example
3 illustrates why variation components should be estimated in a new way.

Examples uses new R package CATSregression publicly available on GitHub (https:
//github.com/BottaDZ/CATSregression/). The package’s vignette shows more examples
using field data.

Example 1: fitting Poisson model to over-dispersed counts
The first example illustrates the problems that arise when an inappropriate model is fitted.
The type of abundance often clearly determines the type of model to be fitted. However,
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when abundance is measured by a number of individuals, a Poisson or negative binomial
model should be fitted depending on whether there is a random or aggregated spatial
pattern of individuals. If the spatial pattern is random, the number of individuals will
follow a Poisson distribution, where the variance is equal to the mean. An aggregated
spatial pattern leads to over-dispersed counts (i.e., the variance is higher than mean),
which can be modeled by a negative binomial distribution.

The presence of over-dispersion can be checked by comparing the Akaike Information
Criteria of Poisson and negative binomial models or using diagnostic plots of residuals
(Fig. 1). Dunn-Smyth (or randomized quantile) residuals (Dunn & Smyth, 1996) are
especially useful for this purpose because if the model’s assumptions (specified distribution
and log-linear relationship) are satisfied, they follow a standard normal distribution
(Warton, Shipley & Hastie, 2015; Feng, Li & Sadeghpour, 2020).

This example uses simulated data. Abundances (y) of 20 species in a plot were simulated.
Abundances follow a negative binomial distribution with a mean that has a log-linear
relation to values of a trait. The dispersion parameter is constant, and trait values follow a
normal distribution:

yi∼NegBin
(
µi= exp(0.5∗xi),θ = 1

)
xi∼N (m= 10,σ = 3).

(30)

The simulation was repeated 50 times, and Poisson and negative binomial models were
fitted to each simulated plots separately. Figure 1 shows a typical diagnostic plot, which
has a strong nonlinearity of the QQ plot indicating that the distributional assumption of
a Poisson regression is not satisfied. The diagnostic plots of a negative binomial model do
not indicate any problem.

The estimated slopes are dispersed around the real value (0.5) in both Poisson and
negative binomial models (Fig. 2). The variation among estimates was higher in the
Poisson distribution, while the confidence intervals were narrower due to the neglect of
over-dispersion. These two facts together may result in over-interpretation of differences
in the strength of selection among plots.

Example 2: choosing appropriate offset
The second example illustrates the importance of choosing an appropriate offset, without
which fitted relative abundances may differ considerably from the relative abundances
in the meta-community, even if no traits are included in the model. The example uses
the dataset of Raevel, Violle & Munoz (2012), which contains the abundance (number of
individuals) of 97 species at 52 sites. Data were transformed into a presence/absence scale,
and then meta-community-level abundances were measured as the number of occurrences
at the 52 sites.

For modeling of the presence/absence data, a binomial distribution has to be applied.
The canonical link for this distribution is the logit link. The proposed way of calculating
the offset for the logit link in this paper cannot be applied because the product of the
number of species in the plot and relative abundance at the meta-community scale was
larger than one in 39 species-site combinations (and it excludes 22 of 52 sites). Therefore,
the logarithm of relative abundances in the meta-community was used.
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Figure 1 Diagnostic plots of models fitted to one community of Example 1. The fan shape of points in
residuals vs. fitted values plot (upper row) and departure from the expected line in QQ-plot (bottom row)
indicate that Poisson model is inappropriate due to over-dispersion.

Full-size DOI: 10.7717/peerj.12763/fig-1

Two link functions were tested: the canonical (logit) link and log link, as suggested in
this paper. The latter was fitted using the logbin package (Donoghoe & Marschner, 2018).

A model containing only intercept and offset terms was fitted, so the predicted relative
abundances in plots should equal to the relative abundance in the meta-community. This
requirement was satisfied in the model using log link (not shown). However, when the
canonical link was used, there is a non-linear relationship between two vectors of relative
abundances (Fig. 3).

Example 3: comparing formulas for estimation of variation
components
The aim of the next example is to compare variation components estimated by the method
of Shipley (2014) and the new method proposed in this paper. Simulated data were used,
where trends of variation components were predictable. Data were generated using the

Botta-Dukát (2022), PeerJ, DOI 10.7717/peerj.12763 13/20

https://peerj.com
https://doi.org/10.7717/peerj.12763/fig-1
http://dx.doi.org/10.7717/peerj.12763
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Figure 2 Estimated slopes with their 95% confidence intervals in 50 simulated plots of Example 1. Red
horizontal line indicates the real slope used in the simulation.

Full-size DOI: 10.7717/peerj.12763/fig-2
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Figure 3 Relationship betweenmeta-community level and predicted relative abundances in model
without traits using logit link. Since local selection is not modelled, points should lie the red 1:1 line.

Full-size DOI: 10.7717/peerj.12763/fig-3
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Figure 4 Comparing variation components calculated by Shipley’s formulas and new formulas pro-
posed in this paper. Components calculated by two ways show good agreement.

Full-size DOI: 10.7717/peerj.12763/fig-4

following model:

yi∼Poisson(λi)
logλi= a+ logπi+ s∗ ti

(31)

where πi is the meta-community-level relative abundances, |s| is the strength of selection,
and ti is the trait value. To remove changes due to total community size, the intercept (a)
was set to:

a= logA− log
∑
i

πiesti . (32)

Thus,
∑
λi=A for any value of s.

The species pool consists of 50 species, and their traits follow a standard normal
distribution. The expected community size (A) was set to 2500, and the strength of
selection (s) changes from 0 to 3. Pure selection and pure meta-community effects were
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Figure 5 Variation components in simulated communities that differ in strength of selection calcu-
lated by formulas proposed in this paper. As expected, meta-community effect decreases, while selection
effect increases with increasing strength of selection, and the former is near zero at s= 0 when there is no
selection in the simulation.

Full-size DOI: 10.7717/peerj.12763/fig-5

calculated for each simulated community separately using formulas from Shipley (2014)
and the method proposed in this paper.

There is a good agreement between variation components calculated by the two ways
(Fig. 4). As expected, the pure meta-community effect decreases, while the pure selection
effect increases with increasing strength of selection, and the later was about zero at s= 0
(Fig. 5). The joint effect and unexplained variation do not change considerably with
changing strength of selection.

CONCLUSIONS
CATS regression is a useful part of community ecologists’ toolbox to understand how the
environment selects species through trait-environment relationships, as well as to estimate
the relative role of local environmental selection and meta-community-level processes in
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the assembly of communities. In its original version using maximum entropy formalism
(Shipley, Vile & Garnier, 2006; Shipley, 2010), the assumptions of the methods remain
hidden. Converting the maximum entropy formalism into a GLM (Warton, Shipley &
Hastie, 2015) made the assumptions explicit. Warton, Shipley & Hastie (2015) focused on
the most important assumption (the distribution of abundance values) and the central
part of the method (the estimation of parameters). The original version assumes a Poisson
distribution, and not only parameter estimates, but also the additional parts of the method
(defining offset terms and calculating R-squared values) may change when data follow an
other distribution.

Parameter estimation for different distributions is a well-known statistical problem, and
a user can easily choose the appropriate function (or option of the applied function). This
paper focused on additional parts of the method, which are more specific and have thus
received little attention so far. Theoretical considerations and examples illustrated that
naively using algorithms developed for a Poisson distribution may be misleading when
data follow other distributions. The recommendations formulated in this paper could help
to avoid these potential pitfalls.

ACKNOWLEDGEMENTS
Thanks to Bill Shipley and Nigel Yoccoz for their helpful comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was supported by the National Research, Development and Innovation Office
of Hungary (No, 124671). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
National Research, Development and Innovation Office of Hungary: 124671.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Zoltán Botta-Dukát analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and field data are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12763#supplemental-information.

Botta-Dukát (2022), PeerJ, DOI 10.7717/peerj.12763 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.12763#supplemental-information
http://dx.doi.org/10.7717/peerj.12763#supplemental-information
http://dx.doi.org/10.7717/peerj.12763#supplemental-information
http://dx.doi.org/10.7717/peerj.12763


REFERENCES
Blasco-Moreno A, Pérez-CasanyM, Puig P, Morante M, Castells E. 2019.What does a

zero mean? Understanding false, random and structural zeros in ecology.Methods in
Ecology and Evolution 10:949–959 DOI 10.1111/2041-210X.13185.

Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of
ecological variation. Ecology 73:1045–1055 DOI 10.2307/1940179.

Brooks ME, Kristensen K, Van BenthemKJ, Magnusson A, Berg CW, Nielsen A,
Skaug HJ, Machler M, Bolker BM. 2017. glmmTMB balances speed and flex-
ibility among packages for zero-inflated generalized linear mixed modeling.
DOI 10.3929/ETHZ-B-000240890.

Cameron AC,Windmeijer FAG. 1996. R-squared measures for count data regression
models with applications to health-care utilization. Journal of Business & Economic
Statistics 14:209–220 DOI 10.2307/1392433.

Cameron CA,Windmeijer FAG. 1997. An R-squared measure of goodness of fit for
some common nonlinear regression models. Journal of Econometrics 77:329–342
DOI 10.1016/S0304-4076(96)01818-0.

Chong F, Spencer M. 2018. Analysis of relative abundances with zeros on environmental
gradients: a multinomial regression model. PeerJ 6:e5643 DOI 10.7717/peerj.5643.

Cribari-Neto F, Zeileis A. 2010. Beta Regression in R. Journal of Statistical Software
34:1–24 DOI 10.18637/jss.v034.i02.

Damgaard C. 2008.Modelling pin-point plant cover data along an environmental
gradient. Ecological Modelling 214:404–410 DOI 10.1016/j.ecolmodel.2008.03.012.

Damgaard C. 2009. On the distribution of plant abundance data. Ecological Informatics
4:76–82 DOI 10.1016/j.ecoinf.2009.02.002.

Damgaard CF, Irvine KM. 2019. Using the beta distribution to analyse plant cover data.
Journal of Ecology 107:2747–2759 DOI 10.1111/1365-2745.13200.

Dobson AJ. 2002. An introduction to generalized linear models. Boca Raton: Chapman &
Hall/CRC.

DonoghoeMW,Marschner IC. 2018. logbin: an R package for relative risk re-
gression using the log-binomial model. Journal of Statistical Software 86:1–22
DOI 10.18637/jss.v086.i09.

Dunn PK, Smyth GK. 1996. Randomized quantile residuals. Journal of Computational
and Graphical Statistics 5:236–244 DOI 10.1080/10618600.1996.10474708.

Dunstan PK, Foster SD, Hui FKC,Warton DI. 2013. Finite mixture of regression model-
ing for high-dimensional count and biomass data in ecology. Journal of Agricultural,
Biological, and Environmental Statistics 18:357–375 DOI 10.1007/s13253-013-0146-x.

Feng C, Li L, Sadeghpour A. 2020. A comparison of residual diagnosis tools for diagnos-
ing regression models for count data. BMCMedical Research Methodology 20:175
DOI 10.1186/s12874-020-01055-2.

Fisher RA. 1925. The influence of rainfall on the yield of wheat at Rothamsted. Philo-
sophical Transactions of the Royal Society of London. Series B, Containing Papers of a
Biological Character 213:89–142 DOI 10.1098/rstb.1925.0003.

Botta-Dukát (2022), PeerJ, DOI 10.7717/peerj.12763 18/20

https://peerj.com
http://dx.doi.org/10.1111/2041-210X.13185
http://dx.doi.org/10.2307/1940179
http://dx.doi.org/10.3929/ETHZ-B-000240890
http://dx.doi.org/10.2307/1392433
http://dx.doi.org/10.1016/S0304-4076(96)01818-0
http://dx.doi.org/10.7717/peerj.5643
http://dx.doi.org/10.18637/jss.v034.i02
http://dx.doi.org/10.1016/j.ecolmodel.2008.03.012
http://dx.doi.org/10.1016/j.ecoinf.2009.02.002
http://dx.doi.org/10.1111/1365-2745.13200
http://dx.doi.org/10.18637/jss.v086.i09
http://dx.doi.org/10.1080/10618600.1996.10474708
http://dx.doi.org/10.1007/s13253-013-0146-x
http://dx.doi.org/10.1186/s12874-020-01055-2
http://dx.doi.org/10.1098/rstb.1925.0003
http://dx.doi.org/10.7717/peerj.12763


Goodall D. 1952. Some considerations in the use of point quadrats for the analysis of
vegetation. Australian Journal of Biological Sciences 5(1):1–41 DOI 10.1071/BI9520001.

Laliberté E, Legendre P, Shipley B. 2014. FD: measuring functional diversity from
multiple traits, and other tools for functional ecology. R Package Version 1.0-12.

Lynch HJ, Thorson JT, Shelton AO. 2014. Dealing with under- and over-dispersed
count data in life history, spatial, and community ecology. Ecology 95:3173–3180
DOI 10.1890/13-1912.1.

Marschner IC. 2015. Relative risk regression for binary outcomes: methods and
recommendations. Australian & New Zealand Journal of Statistics 57:437–462
DOI 10.1111/anzs.12131.

Marschner IC, Gillett AC. 2012. Relative risk regression: reliable and flexible methods for
log-binomial models. Biostatistics 13:179–192 DOI 10.1093/biostatistics/kxr030.

McCullagh P, Nelder JA. 1999.Generalized linear models. London: Chapman & Hall.
Menard S. 2000. Coefficients of determination for multiple logistic regression analysis.

The American Statistician 54:17–24 DOI 10.1080/00031305.2000.10474502.
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from

generalized linear mixed-effects models.Methods in Ecology and Evolution 4:133–142
DOI 10.1111/j.2041-210x.2012.00261.x.

O’Hara RB, Kotze DJ. 2010. Do not log-transform count data.Methods in Ecology and
Evolution 1:118–122 DOI 10.1111/j.2041-210X.2010.00021.x.

Ohlsson E, Johansson B. 2006. Exact credibility and tweedie models. ASTIN Bulletin
36:121–133 DOI 10.1017/S0515036100014422.

Peres-Neto PR, Legendre P, Dray S, Borcard D. 2006. Variation partitioning of species
data matrices: estimation and comparison of fractions. Ecology 87:2614–2625
DOI 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

Raevel V, Violle C, Munoz F. 2012.Mechanisms of ecological succession: insights from
plant functional strategies. Oikos 121:1761–1770
DOI 10.1111/j.1600-0706.2012.20261.x.

Ricci L. 2010. Adjusted -squared type measure for exponential dispersion models.
Statistics & Probability Letters 80:1365–1368 DOI 10.1016/j.spl.2010.04.019.

Shipley B. 2010. From plant traits to vegetation structure. In: Chance and Selection in the
Assembly of Ecological Communities. Cambridge: Cambridge University Press.

Shipley B. 2014.Measuring and interpreting trait-based selection versus meta-
community effects during local community assembly. Journal of Vegetation Science
25:55–65 DOI 10.1111/jvs.12077.

Shipley B, Vile D, Garnier É. 2006. From plant traits to plant communities: a statistical
mechanistic approach to biodiversity. Science 314:812–814
DOI 10.1126/science.1131344.

Ter Braak CJF, Peres-Neto P, Dray S. 2017. A critical issue in model-based inference
for studying trait-based community assembly and a solution. PeerJ 5:e2885
DOI 10.7717/peerj.2885.

Warton DI, Hui FKC. 2010. The arcsine is asinine: the analysis of proportions in ecology.
Ecology 92:3–10 DOI 10.1890/10-0340.1.

Botta-Dukát (2022), PeerJ, DOI 10.7717/peerj.12763 19/20

https://peerj.com
http://dx.doi.org/10.1071/BI9520001
http://dx.doi.org/10.1890/13-1912.1
http://dx.doi.org/10.1111/anzs.12131
http://dx.doi.org/10.1093/biostatistics/kxr030
http://dx.doi.org/10.1080/00031305.2000.10474502
http://dx.doi.org/10.1111/j.2041-210x.2012.00261.x
http://dx.doi.org/10.1111/j.2041-210X.2010.00021.x
http://dx.doi.org/10.1017/S0515036100014422
http://dx.doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0706.2012.20261.x
http://dx.doi.org/10.1016/j.spl.2010.04.019
http://dx.doi.org/10.1111/jvs.12077
http://dx.doi.org/10.1126/science.1131344
http://dx.doi.org/10.7717/peerj.2885
http://dx.doi.org/10.1890/10-0340.1
http://dx.doi.org/10.7717/peerj.12763


Warton DI, Shipley B, Hastie T. 2015. CATS regression –a model-based approach
to studying trait-based community assembly.Methods in Ecology and Evolution
6:389–398 DOI 10.1111/2041-210X.12280.

Wood SN. 2017.Generalized additive models: an introduction with R. Boca Raton London
New York: CRC Press/Taylor & Francis Group.

Zuur AF, Ieno EN,Walker NJ, Saveliev AA, Smith GM. 2009. Zero-truncated and zero-
inflated models for count data. In:Mixed effects models and extensions in ecology
with R. Statistics for biology and health. New York: Springer New York, 261–293
DOI 10.1007/978-0-387-87458-6_11.

Botta-Dukát (2022), PeerJ, DOI 10.7717/peerj.12763 20/20

https://peerj.com
http://dx.doi.org/10.1111/2041-210X.12280
http://dx.doi.org/10.1007/978-0-387-87458-6_11
http://dx.doi.org/10.7717/peerj.12763

