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Abstract
Brain metastases are seen in 20%-50% of patients with metastatic solid tumors. On the other
hand, leptomeningeal disease (LMD) occurs more rarely. The gold standard for the diagnosis of
LMD is serial cerebrospinal fluid (CSF) analyses, although in daily practice, the diagnosis of
LMD is often made by neuroimaging. Leptomeningeal metastases (LM) have been a relative
contra-indication to radiosurgery. It can be noted that focal LMD can be difficult to distinguish
from a superficially located/cortical-based brain metastasis which is not a contra-indication for
radiosurgery. Hence, justifying the need of a reliable diagnosis method.

The goal of this study was to determine the inter-observer reliability of contrast-enhanced
magnetic resonance imaging (gdMRI) in the differentiation of focal cortical-based metastases
from leptomeningeal spread.

This is a retrospective review of a prospectively collected database of patients with brain
metastases. A total of 42 cases with superficial lesions were selected for review. Additionally,
eight control cases demonstrating deep and/or white-matter based lesions were included in the
study.

Three neuroradiologists and three radiation oncologists were asked to review each study and
score the presence of LM. Inter-observer agreement was calculated using group-derived
agreement coefficients (Gwet’s AC1 and Gwet's AC2). Pair-wise inter-observer agreement
coefficients never reached substantial values for trichotomized outcomes (LMD, non-LMD or
indeterminate) but did reach a substantial value in a minority of cases for dichotomised
outcomes (LMD or non-LMD). The control subgroup analysis revealed substantial agreement
between most pairs for both trichotomized and dichotomised outcomes.

We observed low inter-observer agreement amongst specialists for the diagnosis of focal LMD
by gdMRI. Neuroimaging should not be relied upon to make treatment decisions, notably to
deny patients radiosurgery.
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Introduction
Brain metastases occur in 20%-50% of patients with advanced cancer. Leptomeningeal disease
(LMD) is diagnosed in 5%-10% of patients with otherwise metastatic cancer, although rates
approaching 20% have been reported in autopsy series [1-2]. The gold standard for the
diagnosis of LMD is serial cerebrospinal fluid (CSF) analyses, which has a sensitivity of
approximately 55% on the first CSF examination and reaches up to 85% sensitivity when done
thrice - while maintaining a theoretical specificity of 100% [3-4]. The presence of malignant
cells in a sample of CSF, cranial nerve palsies or widespread meningeal enhancement
(particularly in the cerebellar folia) is convincing evidence of a process that is not amenable to
focal treatment. On the other hand, nodular lesions described as being of leptomeningeal
origin can cause more therapeutic ambiguity. In current practice, diagnosis of LMD is also often
made without CSF analysis, using gadolinium-enhanced magnetic resonance imaging (gdMRI)
of the brain and/or spinal cord, which is reported to have a sensitivity and specificity of
approximately 75% [5-6]. LMD thus diagnosed can represent a relative contra-indication to
stereotactic radiosurgery.

The goal of this study is to characterize the inter-observer reliability of gdMRI to differentiate
focal cortical-based metastases from focal LMD in the context of known metastatic disease.

Materials And Methods
This is a retrospective study of cerebral magnetic resonance imaging (MRI) studies of patients
suspected to have focal leptomeningeal metastases (LM). All patients included in this study
underwent radiosurgery between 2009 and 2013. The study protocol was approved by our
institutional ethics review board.

We completed a retrospective review of a prospectively collected database of 438 patients with
known primary disease and neurological symptoms referred for evaluation to our tertiary care
center radiation-oncology clinic between May 2009 and June 2013. Of these patients, 174 had a
reviewable planning MRI prior to intervention in radiation-oncology. These pre-intervention
studies were screened randomly by a single author (FG, neuroradiologist with 15 years of
experience) until 42 cases were selected for review, while blinded to the original imaging report.
The sole inclusion criteria was the presence of one or more enhancing cortical-based lesions.
Cases demonstrating widespread leptomeningeal or cranial nerve enhancement, as well as
cases with previous radiosurgery or surgery were excluded from the study, as were cases with
suboptimal study quality. Additionally, eight control cases were included in the study,
consisting of eight patients demonstrating only deep and/or white-matter based lesions.

Readers included three neuroradiologists (two senior staff members (5-18 years of experience)
and a neuro-radiology fellowship trainee) and three radiation oncologists with active
radiosurgery practices (5-15 years of experience).

All MRIs studies were independently reviewed by each of our six examiners using our
institution’s Picture Archiving and Communication System (PACS), and were assigned to one of
three diagnostic categories (LMD, non-LMD, indeterminate). To establish a diagnosis per
specialty, cases who received the same diagnostic label by two readers were assigned to that
category, while cases who received three different diagnoses were re-evaluated by the three
specialists to establish a consensus diagnosis.

In addition to analysing the data using a ternary scale (LMD, non-LMD, indeterminate),
statistical analyses were also performed using a binary scale, in which cases assigned to
the “indeterminate” category were clustered with cases assigned to the “non-LMD” category,
based on the assumption that patients without a firm diagnosis of LMD would be treated in a
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similar fashion in regards to radiotherapy.

Inter-rater coefficients were calculated between each pair of readers using Gwet’s AC1 and
AC2, for dichotomized and trichotomized ratings respectively, due to their more robust nature,
allowing inter-observer analyses on data demonstrating a low prevalence index and presence of
constants, notably in the controls. Gwet’s AC1 and AC2 was also used to derive group inter-
rater coefficients amongst the entire cohort, as well as subgroups (amongst radiologists, radio-
oncologists and between the two specialties, using the consensus agreements described above).

Agreement coefficients are interpreted using the highest benchmark level that is associated
with the smallest cumulative membership probability (CMP) that exceeds 95% [7]. The specific
benchmark was the one described by Landis and Koch [8] (< 0, poor agreement; 0-0.20, slight
agreement; 0.21-0.40, fair agreement; 0.41-0.60, moderate agreement; 0.61-0.80, substantial
agreement; and 0.81-1.00, almost perfect agreement).

Results
While some cases achieved an agreement by all readers, some other cases presented more
ambiguous lesions thus causing division amongst readers (Figures 1-2).

FIGURE 1: Patient 1 magnetic resonance imaging (MRI)
causing division between readers
T1-weighted gadolinium enhanced images of candidate lesions causing division between readers
(A: Coronal view, B: Axial view, C: Coronal view).
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FIGURE 2: Patient 2 magnetic resonance imaging (MRI)
causing division between readers
T1-weighted gadolinium enhanced images of candidate lesions causing division between readers
(A: Coronal view, B: Axial view).

In trichotomized ratings, only one out of the 42 cases and only three out of the eight controls
were assigned to the same diagnostic category by all six raters. All other studies were assigned
to two different diagnostic categories (out of three) by at least two raters, with variable
agreement amongst the rest of the raters. In dichotomized ratings, these numbers rose to nine
out of 42 cases and four out of eight controls. In both trichotomized and dichotomized ratings,
only the non-leptomeningeal category was assigned by all six raters. No consensus was
obtained within the leptomeningeal category.

Ternary inter-rater agreement coefficients amongst pairs of raters ranged from poor (AC1 = -
0.16; 95% CI: -0.50, 0.19) to fair (AC1 = 0.56; 95% CI: 0.34, 0.79), while they ranged from poor
(AC1 = 0.18; 95% CI: 0, 0.49) to substantial (AC1 = 0.80; 95% CI: 0.66, 0.95) in binary analyses.
Using cumulative membership probabilities, only one inter-rater coefficient reached a
substantial value for the dichotomized ratings, while none did so for the trichotomized ratings.

In the control subgroup analysis, inter-rater agreement coefficients amongst pairs of raters
ranged from poor (AC2 = 0.25; 95% CI: -0.55, 1.06) to almost perfect (AC2 = 0.94; 95% CI: 0.82,
1.06) for trichotomized ratings, while they ranged from poor (AC1 = 0.34; 95% CI: -0.37, 1.058)
to perfect agreement (AC1 = 1.00) for dichotomized ratings. Out of 15 pairs of raters, seven
demonstrated an inter-rater agreement coefficient > 0.61 for trichotomized ratings; 11 for
dichotomized ratings. 

Interrater agreement coefficient amongst the entire cohort was slight (AC2 = 0.19; 95% CI: 0.01,
0.38) for trichotomized ratings and fair (AC1 = 0.43; 95% CI: 0.28, 0.59) for dichotomized
ratings. By specialty, inter-rater agreement coefficients amongst radiologist was slight (AC2 =
0.35; 95% CI: 0.14, 0.57) for trichotomized ratings and moderate (AC1 = 0.66; 95% CI: 0.50, 0.82)
for dichotomized ratings, while radio-oncologists demonstrated poor (AC2 = 0.17; 95% CI: -
0.05, 0.40) and slight agreement (AC1 = 0.34; 95% CI: 0.13, 0.54) for trichotomized and
dichotomized ratings, respectively (Table 1). Agreement between the two specialties was poor
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for both trichotomized (AC2 = -0.13; 95% CI: -0.34, 0.084) and dichotomized (AC1 = 0.02; 95%
CI: -0.150, 0.193) ratings (Table 2). For controls, group-derived inter-rater agreement
coefficients reached a substantial value for the entire cohort, for both trichotomized (AC2 =
0.60; 95% CI: 0.18, 1.02) and dichotomized (AC1 = 0.68; 95% CI: 0.32, 1.04) ratings.

 Coefficient
Inference/Subjects

StdErr 95% C.I. Interpretation using CMPs

Radiologists (n=3)
Ternary Gwet's AC2 0,35452 0,10929 0.135 to 0.574 Slight

Binary Gwet's AC1 0,66208 0,07901 0.503 to 0.821 Moderate

Radio-oncologists (n=3)
Ternary Gwet's AC2 0,17477 0,10993 -0.046 to 0.396 Poor

Binary Gwet's AC1 0,33685 0,10196 0.132 to 0.542 Slight

Cohort (n=6)
Ternary Gwet's AC2 0,19222 0,09073 0.011 to 0.375 Slight

Binary Gwet's AC1 0,43436 0,07789 0.278 to 0.591 Fair

TABLE 1: Group derived inter-rater agreement coefficients
Gwet's AC1: Gwet Inter-rater agreement coefficient; Gwet's AC2: Gwet Inter-rater agreement coefficient with quadratic weighting;
StdErr: Standard error of agreement coefficients; 95% C.I.: 95% Confidence interval; CMP: Interpretation of agreement coefficients
based on benchmark values described by Landis and Koch, using cumulative membership probabilities (CMPs).

 Coefficient

Inference/Subjects

StdErr 95% C.I.
Interpretation using
CMPs

Radiologists (n=3) vs Radio-
oncologists (n=3)

Ternary
Gwet's
AC2

-0,12700 0,10546
-0.338 to
0.084

Poor

Binary
Gwet's
AC1

0,02135 0,08579
-0.150 to
0.193

Poor

TABLE 2: Group derived inter-specialty agreements coefficients
Gwet's AC1: Gwet Inter-rater agreement coefficient; Gwet's AC2: Gwet Inter-rater agreement coefficient with quadratic weighting;
StdErr: Standard error of agreement coefficients; 95% C.I.: 95% Confidence interval; CMP: Interpretation of agreement coefficients
based on benchmark values described by Landis and Koch, using cumulative membership probabilities (CMPs).

Discussion
Cortical-based metastases are difficult to differentiate radiologically from focal leptomeningeal
carcinomatosis. Our study demonstrates significant variability in the interpretation of studies
demonstrating cortical-based enhancing disease, both amongst clinicians and radiologists.
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However, inter-rater agreement was nonetheless higher amongst neuro-radiologists (moderate)
than radio-oncologists (slight), suggesting increased reliability of certain radiological signs,
best evaluated with radiological expertise.

LMD remains a clinical diagnosis, based on clinical symptoms, imaging, and cerebrospinal fluid
analysis. Presence of CSF cytology remains the gold standard, with 60% sensitivity on initial
puncture, 80% total sensitivity on second puncture and 2%-5% sensitivity increase per
following repeated collection [9]. Most diagnostic algorithms recommend initial evaluation
with a CSF profile, CSF cytology and gdMRI of the neuroaxis, with at least one additional
lumbar puncture if initial CSF cytology is negative [9-12]. Meanwhile, the frequency of LM-
related MRI abnormalities for solid tumors on neuroaxis imaging varies from 56% to 65%,
depending on the primary [13]. Although in some cases, the constellation of clinical symptoms
of LMD combined with bulky LMD on neuroaxis imaging may obviate the need for lumbar
puncture, our study shows that, in more mitigated cases, focal cortical-based metastases are
difficult to differentiate from focal LMD [3-4,6]. In such cases, we advocate that imaging
findings should be correlated by CSF analysis, serial of need be, before LMD can be diagnosed,
in large part because of the implication for treatment, most notably radiotherapy.

Although there is no universally accepted standard treatment for LMD, whole-brain
radiotherapy (WBRT) is often considered in this patient population. While some cases can
benefit from WBRT, this treatment does expose healthy brain tissue to high doses of
radiations [14]. Adverse effects of cerebral radiation therapy may include neurocognitive
disorders, radionecrosis and, rarely, radiation-associated meningiomas (RAM) [15].
Alternatively, stereotactic surgery (SRS) achieve high rate of local control while diminishing
radiation exposure to the rest of the brain [2].

Ross et al. outlined the importance of a clearly established diagnostic before exposing patients
to SRS or WBRT, as the implications of misdiagnosis might either be radiation overexposure or
missed tumors [16]. Flickinger et al. argue that imaging alone represents an accepted diagnostic
tool although they report a 2.3% chance of misdiagnosis, when imaging is not confirmed by CSF
analysis [17]. Alternatively, Wolf et al. suggest that the use of SRS might successfully treat focal
LMD and delay WBRT for some patients [2]. Consequently, radiosurgical approach has been
used as a treatment for focal LMD [2,18].

Therefore, because LMD is often difficult to differentiate from cortical based metastases and
because initial focal radiotherapy may delay whole-brain radiotherapy, we argue that patients
with a known solid primary neoplasm and equivocal imaging findings for LMD should still be
considered for stereotactic surgery initially.

Conclusions
The diagnosis of nodular LMD as opposed to cortical-based brain metastases on gadolinium-
enhanced brain MRI demonstrates low inter-observer agreement amongst specialists, both
radiologist and radio-oncologists. If imaging findings may alter the treatment approach, they
should at least be confirmed by serial CSF analysis.
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