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The Asymmetric Active Coupler: 
Stable Nonlinear Supermodes and 
Directed Transport
Yannis Kominis1, Tassos Bountis2,† & Sergej Flach3,4

We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with 
gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there 
exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between 
gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal 
dynamics enabling directed power transport functionality.

Energy transport between coupled systems or different modes of the same system is one of the most fundamental  
problems in physics and the controlled and directed transport is of great importance in many technological  
applications such as electronic and optical devices. For the latter, the design and implementation of integrated 
photonic devices is a major challenge requiring the realization of a set of fundamental elements for photonic  
circuitry, such as couplers, switches, diodes and isolators for the directed transport of the optical power1.

The nonlinear coherent coupler2,3 has been widely studied as a basic photonic component allowing for 
power-sensitive energy transport. The presence of nonlinearity, in principle, allows for the breaking of 
Lorentz-reciprocity which is a key mechanism for various applications related to unidirectional dynamics and 
optical isolation4,5. It has been shown6,7 that the presence of gain and/or loss in this system renders its dynamics 
more complex and enriches its functionality. Moreover, in the case where the gain in one channel is exactly equal 
to the loss in the other channel, the coupler can be considered as a PT -symmetric dimer, and has been shown to 
possess unidirectional dynamics8,9 which is the key property for an optical diode. Similar properties have been 
studied for a large variety of such PT -symmetric photonic structures, extending the theoretical interest on these 
systems10–14, to realistic experimental studies on light propagation in coupled waveguide structures based either 
on AlGaAs heterostructures15 or on Fe-doped LiNbO3

16 at wavelengths of 1550 nm and 514.5 nm, respectively. 
The PT -symmetric systems have been considered for important applications such as the non-reciprocal light 
transmission17–19, the observation of asymmetric transport20,21, the study of active coupling mechanisms22, and 
the synthesizing of unidirectionally invisible media23. Also, PT -symmetric cavities have been studied with 
respect to interesting properties of resonant mode control and selection, which is of crucial importance in laser 
physics24–26. The presence of gain and loss along with the nonlinearity of a photonic structure has also been shown 
to support bright and dark solitons in dual-core systems27–30 and to provide soliton control capabilites in photonic 
structures with homogeneous gain and loss31,32 as well as in structures with symmetric33 or nonsymmetric34,35 
spatially inhomogeneous gain and loss. Finally, we stress the relation of the underlying model of active photonic 
structures, consisting of coupled mode equations, with similar models used in the study of quantum systems 
including Bose-Einstein and exciton-polariton condensates36–38.

The PT -symmetric dimer is known to generate unstable dynamics above the parameter threshold which 
separates the PT -exact phase from the PT -broken phase39. One way to regain stability is to use the analogy to 
dissipatively coupled exciton-polariton condensates in the weak lasing regime36,37. In the optical coupler case this 
implies to place an active medium in the evanescent wave region of the coupler22. This is a rather complicated and 
intricate experimental task, because the pumping in the evanescent wave region can easily lead to an overpump-
ing, which will substantially modify the used underlying model equations.
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In this work, we investigate a much more straightforward and simpler way by raising the restriction of any 
symmetry in a system with gain and loss. More specifically, we study the most general case of a nonlinear 
Asymmetric Active Coupler (AAC) where the two constituents can be dissimilar and can also have arbitrary gain 
and loss. The dynamics of the system is shown to possess stable power transport features enabling interesting 
functional properties. The dynamical regimes crucially depend on the existence of constant-intensity Nonlinear 
Supermodes (NS) resulting from the dynamical balance between the effects of nonlinearity, coupling, gain and 
loss. The existence of stable NS allows for the directed power transfer. Surprisingly, it is the absence of symmetry, 
that enables the existence of finite-power modes of the system, in contrast to the PT -symmetric coupler8,39–43 
where no such modes exist and the undesirable effect of unbounded power increase takes place. Regarding the 
case of non-Hermitian continuous systems, spatially uniform constant-intensity waves are shown to exist only 
under restrictive conditions between the spatial profiles of the real and the imaginary parts of the respective com-
plex potential13. The freedom in the selection of the system parameters, provides potential for multifunctional 
capabilities of the AAC as a basic component for integrated photonic circuitry.

Model and Methods
Coupled Mode Equations.  For an Asymmetric Active Coupler (AAC), the modal amplitudes of the two 
individual waveguides are governed by the coupled mode equations
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where βj +​ iαj is the complex propagation constant of waveguide j with aj >​ 0(<​0) referring to loss (gain), κ/2 is 
the linear coupling coefficient and γ, σ are the nonlinear SPM and XPM parameters, respectively6. Let us intro-
duce  the  Stokes parameters:  = + = − = + = −⁎ ⁎ ⁎ ⁎S A A S A A S A A A A S i A A A A, , , ( )0 1

2
2

2
1 1

2
2

2
2 1 2 1 2 3 1 2 1 2 . 

While S0 measures the total power in the coupler, the component S1 quantifies the deviation from an exact power 
balance in both waveguides. The coupled mode Equations (1 and 2) can then be written as
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We consider cases where α1α2 <​ 0 so that the sign of the parameter α =​ α1 −​ α2 determines whether the first 
waveguide has loss and the second has gain (α >​ 0) or vice versa (α <​ 0). The crucial parameters δ =​ α1 +​ α2 and 
β =​ β1 −​ β2 determine the excess gain/loss and the asymmetry of the coupler and are quantifying the deviation 
from the PT  symmetry point at which δ =​ β =​ 0. Finally χ =​ γ(1 −​ σ). From the definition of the Stokes parame-
ters it follows that = + +S S S S0

2
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2 so that the dynamics of the system of differential Equations (3–6) essen-

tially takes place in a three-dimensional and is described by the Stokes vector ≡


S S S S( , , )1 2 3 , governed by 
Eqs (4–6).

In the absence of gain and loss (δ =​ α =​ 0), the total power is conserved so that S0 is invariant. Moreover, in this 
case there exists an additional invariant β κ χ κΓ = + +S S S( / ) ( /2 )2 1 1

2. The dynamics of the system is integrable 
and can be completely described in terms of these two invariants44,45. For the symmetric coupler (β =​ 0) it has 
been shown that system dynamics is similar to that of a Duffing equation, that has stable and unstable fixed points 
which correspond to Nonlinear Supermodes, and nonharmonic periodic orbits for the evolution of the Stokes 
vector2,3. The dynamics of the system is reciprocal with respect to initial conditions corresponding to symmetric 
power distribution in the two waveguides.

The presence of gain and loss renders the dynamics of the system non-integrable in general and results in 
complex dynamics6,7. In the special case where the coupler is PT -symmetric (δ =​ 0), there exist two new invari-
ants of motion, rendering the system integrable, despite the fact that the total power S0 is not conserved8,40,41,46,47. 
The dynamics of the system is non-reciprocal. However, no finite-power Nonlinear Supermodes exist since the 
total power of the system continuously increases or decreases, depending on the sign of α.

Results
Existence and Stability of Nonlinear Supermodes.  The introduction of asymmetry in the structure 
allows for the existence of fixed points of the system of differential Eqs (4–6) which correspond to finite-power, 
constant-intensity Nonlinear Supermodes of the AAC. These supermodes represent optical fields that propagate 
unchanged along the coupler despite of the presence of gain, loss, asymmetry and nonlinear effects. They are 



www.nature.com/scientificreports/

3Scientific Reports | 6:33699 | DOI: 10.1038/srep33699

obtained by zeroing the left hand sides of Equations (4–6). We first note that there exists always a trivial zero fixed 
point O for which = = =S S S 01 2 3 .

In order to find the nontrivial supermodes, it is useful to define the normalized Stokes vector as =
�� �
F S S/ 0. 

Then the nonzero fixed points for any set of parameter values are located on the surface of a Bloch sphere of unit 
radius and are given by =±

��
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where φ ≡ |∆ Λ |±tan( /2) / , Λ = ± ∆ + ∆ − − ∆± K( 1)/(1 )2 2 2 . Surprisingly the location of the nonlinear 
supermodes are described by only two parameters Δ​ and K on the unit Bloch sphere. These parameters are 
obtained in units of the parameter α as δ α∆ ≡ / , κ α≡K / . In addition, the normalized nonlinearity parameter 

χ α≡X /  enters the conditions for the existence of the nonlinear supermodes:

− ≤ ∆ ≤K1 1 (10)2 2

∆ − Λ > .±X B( ) 0 (11)

As shown in Fig. 1, the location of the Nonlinear Supermodes for different Δ​ depends on whether K is greater 
or less than unity, and all curves touch at their common points at = ±

��
F ( 1, 0, 0). The two Nonlinear Supermodes 

(corresponding to different signs of F2
(0)) are symmetric with respect to the plane F2 =​ 0. Opposite values of Δ​ and 

K result in fixed points symmetric with respect to the planes F1 =​ 0 and F3 =​ 0. The value of F1 is of particular 
importance since it is directly related to the ratio of modal amplitudes of the two waveguides. For F1 >​ 0 (F1 <​ 0) 
the modal amplitude of the first (second) waveguide is larger and as F1 →​ 1(−​1) all the power tends to concentrate 
on the first (second) waveguide. The total power cannot be located in a single waveguide as long as α1, α2 ≠​ 0. 
Therefore we have = ∆ <F 11

(0)  and there is always nonzero power in both waveguides. However, appropriate 
parameter selection can reduce the power in one of the waveguides at any desirable level, resulting in sufficient 
power contrast. Moreover, it is readily shown from the sign of F1

(0) that, for the case of net loss (α1 +​ α2 >​ 0) most 
of the power is located at the waveguide with gain, whereas for the case of net gain (α1 +​ α2 <​ 0) most of the power 
is located in the lossy waveguide.

Figure 1.  The location of the two Nonlinear Supermodes ±

��
F( )( )0  (red/blue curves) of the Asymmetric Active 

Coupler on the surface of a Bloch sphere of unit radius for different values of K >​ 0 and Δ. Different curves 
correspond to given values of K and varying Δ​. The topology of the curves depends drastically on whether K is 
greater or less than unity. For K =​ 1 the curves intersect at =

��
F (0, 0, 1). All curves are tangent at 

= ±
��
F ( 1, 0, 0).
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The existence of the Nonlinear Supermodes depends on the parameters of the structure through the condi-
tions (10) and (11). For |K| >​ 1, the NS exist for Δ​ lying in the value range |Δ​| <​ 1 whereas for |K| <​ 1 the NS exist 
for the two disjoint value ranges defined by − < ∆ <K1 12 . In terms of the waveguide parameters, condition 
(10) is written as κ α α− ≤ ≤/4 02

1 2 , implying that, for the existence of a Nonlinear Supermode, it is necessary to 
have one waveguide with gain and one with loss (not necessarily of equal amplitude), as expected, in order to have 
some power balance. Note that, this condition is much less restrictive than symmetry conditions such as in the 
PT -symmetric couplers. The existence of the two NS also depends crucially on the value of 

β β α α= − −B ( )/( )1 2 1 2  as shown from the condition (11), so that, depending on the degree of asymmetry of 
the two waveguides, there exist either two, one or zero NS. More specifically, for Δ​X >​ 0 the Nonlinear 
Supermodes +

��
F(0) and −

��
F(0) exists for B >​ Λ​+ and B >​ Λ​−, respectively, whereas for Δ​X <​ 0 the inequalities for B are 

reversed. The total power of the two nonlinear supermodes is given by = − Λ ∆± ±S B X( )/0,  so that >− +S S0, 0,  
for Δ​X >​ 0, whereas the opposite holds for Δ​X <​ 0.

The stability of the Nonlinear Supermodes is determined by the eigenvalues of the Jacobian matrix of the sys-
tem (4–6). The domains of existence of the Nonlinear Supermodes ±

��
F( )(0)  as obtained by the conditions (10) and 

(11) in the (Δ​, B) parameter space are shown along with their stability type in Fig. 2 for α =​ 1 and X =​ 1, K >​ 1  
(a) and K <​ 1 (b). For K >​ 1 there exist a stable NS for every value of |Δ​| <​ 1 [Fig. 2(a)] in contrast to the case 
where K <​ 1 [Fig. 2(b)]. In both cases a stable NS exists in parameter regions where Δ​B >​ 0. Both NS bifurcate 
from the zero state S0 =​ 0 at the points B =​ Λ​± with eigenvalues λ α= −∆ + Λ ∆±i0, ( / ).

It is worth noticing that the system of coupled mode equations (1,2) is invariant under the “staggering” trans-
formation γ →​ − ​γ, → − ⁎A A1 1 , → ⁎A A2 2 , β1,2 →​ −​β1,2. Therefore, the existence and stability of the NS for a 
defocusing nonlinearity (γ, X <​ 0) can be directly determined from the case of a focusing nonlinearity (γ, X >​ 0) 
by inverting the signs of β1,2, and, in that sense, the two cases are dynamically equivalent. This is in contrast to the 
case of an actively coupled dimer where the two cases undergo different dynamics, and the defocusing case has 
blow-up regimes39.

Apart from the nonzero fixed points corresponding to NS, for any parameter set (including  
symmetric and nonsymmetric cases) there exists a zero fixed point O of Eqs (1 and 2) corresponding to a trivial  
(zero) state with eigenvalues and eigenvectors given by λ = Ω + ∆ ± + +α i B i K( ( ) )1,2 2

2 2  and 
= − + ± + + −e B i K B i K[( ( )/ [( )/ ] 1 ) ,1]1,2

2 1 , where β β αΩ = +( )/1 2 . The dependence of the stability of 
the trivial (zero) state O on the parameters of the AAC is also depicted in Fig. 2.

Directed power transport and unidirectional dynamics.  The asymmetry of the structure allows for 
nonreciprocal dynamics and directed transfer of power between the two waveguides. In the following we investi-
gate the dynamics of the system for the initial conditions ≡ = ±



S S S S( , , ) ( 1, 0, 0)1 2 3  corresponding to the 
cases where power is initially launched exclusively in one of the two waveguides. The case of an AAC with param-
eters corresponding to Fig. 2(b) for various values of B is investigated in Fig. 3. For B =​ 0.8 it is shown [Fig. 3(a)] 
that both initial conditions result in an asymmetric distribution of power between the two waveguides, corre-
sponding to the stable NS with S1/S0 =​ −​Δ​ =​ −​0.7. No matter in which waveguide the initial power is injected, the 
system evolves to a stable state where the ratio of the modal amplitudes in the two waveguides is 

= − ∆ + ∆ = .A A/ (1 )/(1 ) 0 181
2

2
2  and the total power is = .+S 0 640, . For B =​ 0.2, as shown in Fig. 2(b), 

there is no stable NS. The initial condition =
��
F (1, 0, 0) evolves to the zero state (center of the Bloch sphere) 

whereas the initial condition = −
��
F ( 1, 0, 0) evolves to a state of continuously increasing S0 (blow up solution) 

corresponding to the point (−​1, 0, 0) of the Bloch sphere, as shown in Fig. 3(b). Finally, for B =​ −​0.2, again no 
stable NS exists, but both initial conditions evolve to the state of continuously increasing S0 (blow up solution) 
corresponding to the point (−​1, 0, 0) of the Bloch sphere, as shown in Fig. 3(c), similarly to the case of a PT
-symmetric coupler8. In all three cases the dynamics of the system is nonreciprocal and directed power transfer 
takes place. However, only under parameter values for which a stable Nonlinear Supermode exists, the system 
evolves to a final state of finite total power.

Figure 2.  The domains of existence of stable (s) and unstable (u) Nonlinear Supermodes ±

��
F( )( )0  of the 

Asymmetric Active Coupler in the (Δ, B) parameter space for α = 1 and X = 1. (a) K =​ 1.2, (b) K =​ 0.8. The 
zero fixed point O exists for all parameter values but it is stable only in the regions marked with O(s).
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The above feature can be further exploited for the operation of the AAC as a unidirectional element. The 
power contrast between the two waveguides for a state corresponding to a Nonlinear Supermode is directly deter-
mined by the parameter Δ​. From the conditions for the existence of a stable NS (10) and (11), as depicted in 
Fig. 2, it is shown that as |Δ​| approaches unity - corresponding to ideal contrast - an increasing value of B is 
required. For a value Δ​ =​ 0.95 both initial conditions = ±

��
F ( 1, 0, 0) evolve to a final state with a ratio of modal 

amplitudes = .A A/ 0 0261
2

2
2 , as shown in Fig. 4, so that independently of the waveguide in which the power is 

initially launched the system evolves to a final state where the total power is finite and almost all power is located 
in the second waveguide. Note that the amount of power remaining in the first waveguide can be set as small as 
desired, by choosing a Δ​ close to unity and appropriate values for B and K. It is worth emphasizing that the final 

(a)

(b)

(c)
Figure 3.  Nonreciprocal dynamics of an Asymmetric Active Coupler with α =​ 1, X =​ 1, K =​ 0.8, Δ​ =​ 0.7 and 
B =​ 0.8 (a), B =​ 0.2 (b), B =​ −​0.2 (c). Initial conditions corresponding to initial power injected exclusively in one 
of the two waveguides (cores) are located at the poles of the Bloch sphere = ±

��
F ( 1, 0, 0) (red/blue curves). The 

insets depict the evolution of the Stokes vector on a Bloch sphere of unit radius. (a) Existence of a stable NS; the 
trivial (zero) fixed point is unstable: No matter in which waveguide the power is initially launched, the final 
power distribution in the two waveguides is determined by the stable NS. (b,c) Nonexistence of a stable NS; the 
trivial (zero) fixed point is stable: (b) When the power is launched in the first waveguide it evolves to the trivial 
state (red dotted curve), whereas when power is launched in the second waveguide, it evolves to an unbounded 
(blow up) state where power is located in the second waveguide; (c) No matter in which waveguide the power is 
initially launched it evolves to the unbounded (blow up) state where power is located in the second waveguide.
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state has a finite total power S0 =​ 1.85 for B =​ 4, in contrast to PT -symmetric couplers where the final system state 
corresponding to optical isolation has continuously increasing total power8. As shown in Fig. 4(a), the initial 
condition corresponding to power injected exclusively at the first waveguide leads to an evolution according to 
which the system initially approaches the unstable trivial solution (zero fixed point) and subsequently evolves to 
the stable nonzero fixed point corresponding to the Nonlinear Supermode. This dynamical feature suggests a 
unidirectional functionality in the sense that power transport between one end of the first waveguide and the 
other end of the second waveguide is possible, since power can be transferred in the forward direction from the 
first to the second waveguide but not in the backward direction from the second to the first waveguide.

Discussion
In conclusion, we have investigated new possibilities for directed transport in active structures, opened by raising 
the restriction of spatial symmetry of the conservative and non-conservative properties of the system. For the 
case of an Asymmetric Active Coupler, it has been shown that it is the absence of symmetry that allows for the 
existence of finite-power Nonlinear Supermodes that can be utilized for power transport control and unidirec-
tional functionality. The results are quite general and directly applicable to any type of active dimer where similar 
coupled mode models are used, such as coupled cavities19, lasers24–26, electronic circuits20,21, and quantum systems 
including Bose-Einstein and exciton-polariton condensates36–38. Moreover, they can also be generalized for active 
oligomers and networks41.
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