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The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in
the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT
often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather
than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping
of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested
that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software
tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively deci-
pher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower
for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not
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NIPD uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling
cell-free DNA pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and
cfDNA by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves perfor-

mance, particularly in indels and biparental loci. These results emphasize the importance of using widely
accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a
benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD
closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promot-
ing informed choices among families and physicians.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the discovery of fetal DNA in maternal plasma [1], interest
in noninvasive prenatal testing (NIPT) of genetic disorders in the
fetus has been steadily growing. Such cell-free DNA (cfDNA) is a
mixture of both maternal and fetal DNA; both the amount of cfDNA
and the fraction of fetal DNA within it increases throughout preg-
nancy. The most prominent success of NIPT is the screening of
chromosomal abnormalities, especially Down syndrome, but also
trisomies 13 and 18, and sex chromosome abnormalities [2-4].
Due to this success, the current reason that many women undergo
an invasive procedure, e.g. amniocentesis or chorionic villus sam-
pling (CVS) is to test for large sub-chromosomal deletions and
duplications. Therefore, these types of genetic abnormalities are
becoming available through NIPT as well [5-8]. In the last few
years, NIPT has also become available for monogenic disorders
caused by point mutations. Initially, bespoke tests were suggested
for up to one mutation or one gene simultaneously [9]. Nowadays,
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commercially available NGS panels consist of up to 30 genes [10].
However, false negative results in tailored tests and panels [11],
together with the growing interest in prenatal whole exome/gen-
ome sequencing (WES/WGS) from amniocentesis and CVS [12-
18], have prompted a demand for noninvasive prenatal WES/WGS.

In several studies, genome-wide noninvasive sequencing of the
cfDNA in maternal plasma was shown to reveal the entire fetal
genome [19-21]. In these studies, fetal positions where only the
father was heterozygous were genotyped in a straightforward
manner, based on the presence or absence of the paternal alternate
allele in the plasma. However, for maternal-only heterozygous
positions, these methods required the maternal haplotype infor-
mation, since both maternal alleles are present in the plasma.
Genome-wide haplotyping relies on costly technologies that
require expertise and that are less available; their resolution is
lower than in site-by-site methods. Moreover, some regions cannot
be phased due to low density of markers; and recombination
events near mutations can yield incorrect genotype classifications
[22-25]. Other attempts that did not require parental haplotype
information have also been performed [20,24]. However, these
approaches were not applicable to positions in which both parents
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are heterozygous (biparental loci). Such loci pose a greater algo-
rithmic challenge, since the fetus can be homozygous to either
allele, or heterozygous. Algorithmic challenges have also precluded
the inclusion of indels in these attempts. Moreover, some unique
characteristics of the fetal cfDNA have not been utilized, although
they might improve the genotyping process.

We recently suggested a different approach for genome-wide
NIPT of monogenic disorders [26]. We defined this issue as a
unique case of variant calling, termed noninvasive prenatal variant
calling. We subsequently followed the well-established principles
of standard variant calling. Accordingly, a Bayesian genotyping
algorithm utilizes the information of each read covering each can-
didate variant, and a machine learning-based fine-tuning step sub-
sequently incorporates information from previously verified
results. By accounting for each read, we were able to utilize char-
acteristics that separate fetal and maternal DNA, such as fragment
length. Our algorithm was implemented as Hoobari, the first non-
invasive fetal variant caller, which was able to genotype all fetal
positions, including biparental loci and indels. These results were
achieved in first trimester pregnancies, for the first time. However,
performance in biparental loci and indels was lower than in posi-
tions in which only one parent is heterozygous.

Standard variant calling pipelines have been available for about
one decade, and they have undergone continuous improvement
during this time. Such pipelines have enabled us and other teams
to detect countless deleterious mutations [27-31]. A number of
studies have compared pipelines according to sequencing tech-
nologies, alignment software, post-alignment processing, and vari-
ant calling software [32-34]. Several teams of experts have
published best practice guidelines for variant calling pipelines.
The Global Alliance for Genomics and Health (GA4GH) Benchmark-
ing Team publishes and updates best practice guidelines for bench-
marking of variant calling pipelines [35]. The Genome Analysis
Toolkit team publishes its own best practices [36]. Other attempts
have been performed as well [37]. In noninvasive fetal variant call-
ing, however, guidelines have not been established for benchmark-
ing. New methods often suggest an end-to-end solution that relies
on various samples, sets of variants, and statistical methods; and a
pipeline that is based on a specific set of off-the-shelf software.
Thus, comparing methods and pipelines is effectively impossible,
and it is unclear whether achievements should be attributed to
the methods or to other factors.

Here we suggest initial guidelines for benchmarking of nonin-
vasive prenatal variant calling and demonstrate their use. We
tested Hoobari’s pipeline with various alignment software, post-
alignment processing methods, and variant callers. We also re-
implemented large parts of Hoobari’s code to enable its compatibil-
ity with more software tools. The results showed great improve-
ment in Hoobari’s performance, demonstrating that NIPD can
benefit from a standardized benchmarking process. Moreover,
the most prominent improvement was achieved in biparental loci
and in indels. When assessing only the coding regions, rather than
the whole genome, the results achieved in these loci demonstrated
the feasibility of performing a genome-wide NIPT of monogenic
diseases. Thus, our results bring this test closer to the clinic, while
promoting informed choices among physicians and families, and
potentially alleviating uncertainty and anxiety during pregnancy.

2. Results
2.1. Datasets and pipelines
In this analysis, twelve pipelines were assembled and compared

(Fig. 1). Sequence reads were aligned to the reference human gen-
ome (GRCh38/hg38), using either BWA-MEM [38] or Bowtie2 [39].

510

Computational and Structural Biotechnology Journal 19 (2021) 509-517

‘ Parental raw reads Lu‘ cfDNA raw reads U_H Fetal raw reads LU

\ |

|
Read aligners ¢ ¢
’ BWA-MEM ‘ ‘ Bowtie2 ‘

Mark duplicates, Remove non-exonic regions ¢

’ Samblaster + BEDTools pairToBed ‘

Realignment/reassembly ¢ ¢ ¢
ABRA ‘ ‘ GATK3 ‘ ’ None ‘
| | l
Parental and fetal variant calling, |
cfDNA preprocessing ¢ i
FreeBayes ‘ ‘ GATK4 ‘
| |
Noninvasive fetal variant calling |
v
FreeBayes-compatible GATK4-compatible
Hoobari Hoobari
! ! |
’ Predicted Variants ‘ ’ True Variants Consensus ‘
‘ Comparison ‘

Fig. 1. Experimental workflow for comparing fetal genotyping pipelines. This is the
workflow for comparing pipelines for noninvasive fetal variant callers. Twelve
pipelines were tested, based on possible combinations of two read aligners, three
post-alignment approaches, and two variant calling programs. Each pipeline begins
with raw sequence FASTQ files of the parents, the true fetal sample, and cfDNA.
Alignment is performed using either BWA-MEM or Bowtie2 (Blue). Duplicate reads
are removed using Samblaster. Non-exonic regions are sliced out using BEDTools
pairToBed, by keeping only read pairs that have at least one read covering an exonic
region. ABRA and GATK3 IndelRealign are compared against avoidance of any
realignment or reassembly (Green). FreeBayes and GATK4 are used for variant
calling of the parents and the true fetal samples, and for preprocessing of the cfDNA
sample (Red). Eventually, FreeBayes- or GATK4-comparitble Hoobari is run to call
fetal variants using the cfDNA reads and the parental genotypes. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

We examined only the coding regions of the genome, since outliers
and variants of unknown significance are found in the non-coding
areas, and since the coding regions contain most of the clinically
relevant variants. Next we marked duplicate reads; we performed
this step uniformly through Samblaster [40], in all pipelines. We
tested post-alignment processing, such as indel realignment and
reassembly, against avoiding such processing. One approach
included realignment using the former Genome Analysis Toolkit
version, i.e. GATK3 [41], through RealignerTargetCreator, IndelRea-
ligner, and BaseRecalibrator. The second approach included
reassembly-based realignment, using Assembly Based ReAligner
(ABRA) [42]. Variant calling of the parents and the fetal sample,
and pre-processing of the cfDNA reads, were performed using
either FreeBayes or GATK4. Eventually, Hoobari was run on the
pre-processed data.

Benchmarking requires an agreed and verified true-set to serve
as a reference. To this end, we used family G1, which was
sequenced in a previous study [24]. This family has preferable
technical and biological settings; its cfDNA sample contains 30%
fetal-derived DNA and was sequenced using PCR-free WGS to a
depth of 300x. This ensures that our results are attributed to com-
putational differences, rather than to the quality of the data, and
thus enables isolation of variables. Although we suggest family
G1 as the benchmark dataset for noninvasive fetal variant calling,
this dataset is not as verified as the benchmark dataset of standard
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variant calling (see Discussion). Hence, we demonstrated that the
same results were achieved for two additional families: family
G2, from the same study as family G1 [24]; and family G3, which
we sequenced in our previous study [26], where it was named fam-
ily G5 (see Materials and Methods). Information about the three
families is summarized in Table 1.

2.2. Comparing pipelines in exonic SNPs

When using the F1-score as the main metric, we noticed several
phenomena. First, no single pipeline was optimal across all families
(Table 2; Supplemental Tables S3 and S4). However, some gross-
scale phenomena were apparent. First, aligning using BWA-MEM
resulted in better F1-scores, both on average and when each
BWA-MEM-based pipeline was compared with its Bowtie2-based
analogue. This finding is very important, since alignment of deep
WGS data from the cfDNA is computationally intensive, and should
therefore not be performed by more than one tool (e.g. for different
types of mutations). Second, inconclusive results and only subtle
differences were found when the same aligner and variant caller
were used, i.e. the realignment or reassembly steps did not have
a major effect. Moreover, the post-alignment effect was inconsis-
tent across families; in each family, a different realignment tool
provided better results. Finally, FreeBayes provided slightly better
results than GATK4 for SNPs, but the differences were minute, and
the F1-scores were very high in all pipelines across all families, in
all forms of inheritance.

The results attained for coding regions demonstrated very high
precision, >0.996, and recall of >0.986 in family G1 (Table 2). Both
the recall and precision metrics, and the absolute number of false
positives (FPs) and false negatives (FNs), suggest that the algorithm
tends to overlook existing variants more than it calls non-existing
variants. In a clinical setting, FNs are more problematic than FPs,
since FNs can result in the birth of an offspring with a severe
genetic condition. FPs, on the other hand, are validated by an inva-
sive procedure, so in the worst-case scenario, an unnecessary pro-
cedure is performed.

2.3. Performance in different inheritance modes

As shown throughout this study, the performance of the nonin-
vasive fetal variant calling algorithm depends on the parental
genotypes. Paternal-only heterozygous loci are the easiest to pre-
dict, followed by maternal-only heterozygous loci. The most chal-
lenging positions are biparental-heterozygous loci, in which both
parents are heterozygous. We stratified the pipelines we compared
according to these three categories of positions. Here as well,

Table 1
A summary of the samples used in this study.
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paternal loci consistently received the highest F1-score, followed
by maternal and then biparental loci. These patterns were consis-
tent in all pipelines and families (Fig. 2, A; Supplemental Fig. S1,
A; Supplemental Fig. S2, A). No single pipeline was shown to have
the highest F1-score over all the categories. However, BWA-MEM
was always preferred, and the question as to whether to apply a
realignment/reassembly method or not is still inconclusive (Sup-
plemental Table S1). A key finding is that when testing over the
exome (as performed here), and by using BWA-MEM followed by
post-alignment steps, and by GATK4 for variant calling, genotyping
of biparental loci becomes highly accurate. The recall value was
>0.981 and the precision value was 0.989 in family G1. This result
was achieved even without using the ML-based variant recalibra-
tion process that was described in our previous study [26].

2.4. Comparing performance over indels

We compared the execution of twelve pipelines in indel posi-
tions (Table 3). Our initial analysis of Hoobari used BWA-MEM as
the aligner, with no realignment, and with FreeBayes as the variant
calling software. As such, genotyping of indels was found to be
more challenging and less accurate than SNP genotyping. Accord-
ingly, the bwa-none-freebayes pipeline showed the lowest perfor-
mance (Table 3; Fig. 2, B). Unlike the SNP results, the F1-score
achieved in indels was notably higher when GATK4 was used for
parental variant calling and cfDNA pre-processing. This is a key
finding in our study, which, for the first time, brought the accuracy
of noninvasive fetal indel detection to levels that are similar to
those of SNP detection.

Similar to the SNP results, the pipelines that included BWA-
MEM for alignment rather than Bowtie2 reached higher F1-
scores. Indel genotyping was also shown to improve following
additional steps of careful reassembly and realignment. First, the
three BWA-MEM- and GATK4-based pipelines had similar results
overall, but a slight improvement was achieved by using ABRA
for reassembly or GATK for realignment. Second, the use of ABRA
before FreeBayes increased the F1-scores substantially. Indel
results were consistent also in families G2 and G3 (Supplemental
Tables S3 and S4). Notably, recall for indels was lower than for
SNPs, thus indicating a higher relative number of FNs.

When indel results were stratified based on parental inheri-
tance, GATK4 still resulted in a notable effect on the F1-score
(Fig. 2, B; Supplemental Table S2). This was also consistent in fam-
ilies G2 and G3 (Supplemental Fig. S1, B; Supplemental Fig. S2, B).
Choosing different approaches for realignment and reassembly did
not achieve conclusive results. BWA-MEM usually showed better
results than Bowtie2, for all three categories.

Family Individual Sample Depth of coverage' Fetal fraction
G1 Mother White blood cells 40
Plasma (38 weeks?) 270 30.2%
Father White blood cells 45
Offspring Umbilical cord blood 50
G2 Mother White blood cells 40
Plasma (18 weeks) 195 23.2%
Father White blood cells 60
Offspring Placental tissues 60
G3 Mother White blood cells 38
Plasma (11 weeks) 310 18.5%
Father White blood cells 41
Offspring Chorionic villus sampling 38

! Median, on target; 2 Gestational age.
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Table 2
Comparison of noninvasive fetal variant calling pipelines in family G1 - SNPs.
Pipeline F1_Score Recall Precision TOTAL TP FN FP FP.gt FP.al
bwa-none-freebayes 0.991090 0.986208 0.996020 22,332 22,024 308 88 68 0
bwa-abra-freebayes 0.990910 0.986117 0.995749 22,330 22,020 310 94 75 0
bwa-gatk-freebayes 0.991157 0.986208 0.996155 22,332 22,024 308 85 67 0
bwa-none-gatk 0.988222 0.981314 0.995228 22,316 21,899 417 105 71 0
bwa-abra-gatk 0.988245 0.981447 0.995138 22,315 21,901 414 107 72 0
bwa-gatk-gatk 0.988063 0.981397 0.994820 22,308 21,893 415 114 72 0
bowtie-none-freebayes 0.943192 0.898413 0.992669 22,306 20,040 2266 148 105 0
bowtie-abra-freebayes 0.989173 0.985115 0.993265 22,305 21,973 332 149 106 0
bowtie-gatk-freebayes 0.942454 0.897206 0.992508 22,297 20,005 2292 151 101 0
bowtie-none-gatk 0.974657 0.956364 0.993663 22,298 21,325 973 136 88 0
bowtie-abra-gatk 0.974633 0.956319 0.993663 22,298 21,324 974 136 88 0
bowtie-gatk-gatk 0.974679 0.956407 0.993663 22,297 21,325 972 136 87 0
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Fig. 2. Comparison of fetal genotyping pipelines stratified by inheritance in family G1.
Table 3
Comparison of noninvasive fetal variant calling pipelines in family G1 - Indels.
Pipeline F1_Score Recall Precision TOTAL TP FN FP FP.gt FP.al
bwa-none-freebayes 0.722148 0.656098 0.802985 410 269 141 66 62 0
bwa-abra-freebayes 0.843710 0.805825 0.885333 412 332 80 43 41 0
bwa-gatk-freebayes 0.749669 0.695332 0.813218 407 283 124 65 58 0
bwa-none-gatk 0.961586 0.934940 0.989796 415 388 27 4 4 0
bwa-abra-gatk 0.964064 0.937349 0.992347 415 389 26 3 3 0
bwa-gatk-gatk 0.962779 0.934940 0.992327 415 388 27 3 3 0
bowtie-none-freebayes 0.736698 0.658537 0.835913 410 270 140 53 49 0
bowtie-abra-freebayes 0.864385 0.827670 0.904509 412 341 71 36 34 0
bowtie-gatk-freebayes 0.805851 0.737226 0.888563 411 303 108 38 35 0
bowtie-none-gatk 0.940881 0.901205 0.984211 415 374 41 6 6 0
bowtie-abra-gatk 0.940881 0.901205 0.984211 415 374 41 6 6 0
bowtie-gatk-gatk 0.944862 0.908434 0.984334 415 377 38 6 6 0

2.5. Advanced quality control measurements

Two additional quality control measurements that are often
used in genetic studies are the transition/transversion (Ti/Tv) ratio
and the heterozygous/nonreference-homozygous (het/hom) ratio
[43]. The Ti/Tv ratio is expected to be approximately 2 across the
genome, and 2.8-3 in exonic regions [43]. In the fetal samples of
family G1, Ti/Tv ratios initially reached values of 2.4, suggesting
contamination of non-exonic regions. After filtering out variants
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that occurred in the 100 bp padding regions of the exonic coordi-
nates, Ti/Tv ratios reached values of ~3 (Fig. 3, A). More interesting
are the differences between the examined pipelines in this ratio;
differences were smaller for FreeBayes- and BWA-MEM-based
pipelines, in accordance with their better F1-scores. The expected
het/hom ratio for family G1 is ~1.3, based on ethnicity. This is
not expected to vary within genomic regions [43]. Again, of greater
interest are the values in the fetal sample compared across pipeli-
nes (Fig. 3, B). Here, when using BWA-MEM, smaller differences
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were shown for FreeBayes-based pipelines; this suggests that the
GATK4-based pipelines tend to call heterozygosity and miss
nonreference-heterozygosity too often. This analysis was only
demonstrated using family G1.

3. Discussion

In our previous study, we developed and demonstrated a novel
method for genome-wide NIPD of monogenic diseases. When we
attempted to compare it to existing methods, we noticed that the
field of NIPD is limited by the lack of standardization, compared
to other common analyses in bioinformatics. We noted that novel
methods often suggest a fixed solution that relies on specific sam-
ples, sets of variants, statistical methods, etc. For these reasons, we
suggested that genome-wide NIPD of monogenic diseases should
be considered a special case of variant calling. This enabled our fol-
lowing the widely accepted and studied concepts of variant calling,
to make NIPD more accessible.

The goal of our current study was to demonstrate the great ben-
efits to NIPD achieved from the application of a standardized
benchmark of variant calling. To this end, we propose that family
G1, which was sequenced in a previous study, is the optimal can-
didate for a benchmark dataset. We showed how guidelines and
software tools that were originally designed for standard variant
calling can be used in the context of NIPD. Hopefully, this study
will enable researchers in the field of NIPD to speak the same lan-
guage, better demonstrate the capabilities of their methods, and
advance the field towards the clinic.

As demonstration of the benchmarking process, we aimed to
identify a preferred pipeline for noninvasive prenatal variant call-
ing. The issue is complex and depends on the specific analysis car-
ried out. Consistent results were achieved in several conditions,
such as choosing the preferred aligner and variant caller. Effects
of post-alignment steps such as reassembly, realignment, and base
quality recalibration were usually negligible. Other key results and

Computational and Structural Biotechnology Journal 19 (2021) 509-517

conclusions are the great improvement over biparental loci, and
over indels, when post-alignment steps and GATK4 are used. Such
overarching ideas and directions can help bioinformaticians in
future NIPT analyses.

The first key results of this study relate to the preferred aligner.
Alignment is the most computationally expensive step of the anal-
ysis, and thus entails the least flexibility. Other steps, such as vari-
ant calling, are known to be faster than the alignment step. Thus,
different tools can be run for different types of loci. In other words,
the consensus of several variant callers can be used. However, since
performing the same activity with different aligners might be too
complex, defining one preferable aligner is important. Two popular
aligners were compared in this study. As seen, BWA-MEM was
superior and is preferred over Bowtie2. Other aligners are available
that we did not test here, some were too slow for the extremely
deep cfDNA sample. However, when a stronger architecture will
be achieved, they may have an advantage in accuracy.

An important question that arises in the context of noninvasive
fetal variant calling is whether it can be improved using realign-
ment and reassembly. In both SNPs and indels, when realignment
and reassembly were not used, the F1-score was usually lower,
unless GATK4 was the variant caller. As explained, this happened
because reassembly of candidate variants was embedded within
the GATK4 algorithm. For this reason, the use of RealignerTar-
getCreator, IndelRealigner, and BaseRecalibrator before applying
GATK4 was usually redundant and not beneficial. The use of ABRA,
however, did improve the results in some cases in which GATK4
was applied, even though both methods implemented similar algo-
rithms. This should be further explored with more data. The most
prominent advantages of the realignment and reassembly methods
were apparent in indel calling, effectively bringing the F1-score
near the range of the F1-score achieved in SNP calling. Here as well,
GATK4 presented a central advantage.

When noninvasive fetal variant calling was first introduced,
cfDNA preprocessing was performed using FreeBayes, as read-
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Fig. 3. Comparison of fetal genotyping pipelines - transitions/transversions and heterozygous/alternate-homozygous ratios in family G1.

513



T. Rabinowitz, S. Deri-Rozov and N. Shomron

level information could not be obtained from GATK. Recent ver-
sions of GATK included accessibility to this information, and the
great advantage of such is evident. Although FreeBayes provided
slightly better results for SNPs, GATK4 was prominently better
for indels, as mentioned. Even for SNPs, the results were close to
those of the FreeBayes-based pipelines, indicating that the GATK4
pipeline can be used as a single solution. Eventually, since no single
pipeline presented superiority in both SNPs and indels, and in all
three inheritance categories, different pipelines could be used in
different settings. For example, FreeBayes can be used for SNPs
and GATK4 for indels, as these steps are not computationally inten-
sive. Other variant callers, e.g. Google’s DeepVariant, can be tested
here as well. However, since this variant caller shows similar
results to those of GATK4, we do not expect it would yield signifi-
cant improvement.

The last step in the pipeline is noninvasive fetal variant calling.
Although several algorithms are available for NIPT of monogenic
diseases, none of them is a variant calling algorithm, and none
was implemented as a variant calling software tool. Each algorithm
requires distinct implementation for each pipeline. Since Hoobari is
currently the only noninvasive fetal variant caller, it was the only
one that was included in this comparison. We welcome other
researchers to release new and improved noninvasive fetal variant
callers that can be used for comparison.

Our study has several limitations. First, although family G1 is
our benchmark dataset, it is not as verified as the benchmark data-
set of standard variant calling. Therefore, we wanted to demon-
strate our results on more families, but we could reach only a
total of three families that were similarly sequenced, i.e. the cfDNA
was sequenced using very deep WGS. Second, we compared only
the computational pipeline, though various biological methods
might also affect the results. For instance, families G1-2 were
sequenced by the same team, and family G3 was sequenced by
another. Moreover, the team that sequenced G1-2 is one of the
most experienced teams in the field, and their methods are pre-
sumably well calibrated. Read lengths differed between the fami-
lies, and were larger in family G3. Third, our focus on coding
regions could introduce bias to our comparison, for instance if a
certain pipeline can deal better with challenging positions in
non-coding regions. Finally, we demonstrated that different align-
ers lead to different results in the context of noninvasive fetal
genotyping. Small differences in the percent of aligned reads
become important in noninvasive fetal variant calling, which relies
heavily on subtle differences in the quantification of reads support-
ing each allele. Unfortunately, a wider comparison of aligners could
not be performed in the scope of this study. Thus, we compared the
most popular aligners for genomes. Even when only two aligners
were chosen, this was shown to be an important factor.

An important limitation of any comparison of pipelines in the
field of NIPT is the lack of a benchmark sample. When comparing
standard variant calling pipelines, the benchmark is typically the
NA12878 sample, a publicly available genome sequenced in the
1000 Genome Project of the Genome in a Bottle (GIAB) Consortium
[32,44]. The variant calls for this individual were previously vali-
dated by sequencing, mapping, and genotyping its genome using
various NGS technologies, read aligners, and variant callers [44].
This resulted in several variant datasets, which were manually
integrated to filter discordant variants. To add confidence to this
database, pedigree information was also used, together with calls
from other projects, such as previous versions of GIAB, and the Illu-
mina Platinum Project. Such a validated dataset does not exist for
noninvasive variant calling, thus limiting the ability to perform a
reliable benchmarking of NIPT methods. The use of methods simi-
lar to the aforementioned NA12878 sample to create a benchmark
dataset requires a distinct collaboration and was impractical
within the scope of this study. Notably, although a consensus
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VCF file was eventually used in our comparison, the total size of
the true-set still varied by several variants between the various
pipelines. This might be related to candidate variants that are
homozygous to the reference allele and that are therefore excluded
by hap.py. The possible effect of such could be mitigated in a com-
parison that would include more families, thus reducing the vari-
ance. Alternatively, this matter should be further explored.

In conclusion, our study presents an example of a suggested
benchmarking process of noninvasive fetal variant calling. It illu-
minates the advantages of such standardization, as well as various
considerations and limitations. Our comparison of pipelines for
noninvasive fetal variant calling identified BWA-MEM as the pre-
ferred aligner for this task. Realignment and reassembly can be
introduced using ABRA or GATK4; these steps might improve the
genotyping of both biparental and indel positions. GATK4 was
shown to enable highly accurate indel prediction, but to perform
similarly to FreeBayes with ABRA in SNPs. In choosing the best
pipelines, while focusing solely on the coding regions, we showed
a major improvement compared with the original noninvasive fetal
variant calling, which was FreeBayes-based and did not include
post-alignment steps.

This study highlighted the advantages of considering NIPT of
monogenic diseases as a unique case of standard variant calling.
This enables the use of protocols, standards, tools, and other
knowledge that were acquired over the course of 10-15 years of
standard variant calling in this exciting new field, as well as in
adjacent fields related to cfDNA.

4. Materials and methods

Our comparison of noninvasive fetal variant calling pipelines
was similar to systematic comparisons of standard variant calling
pipelines. However, some biological, technical, and computational
considerations required adjustments to the unique case of fetal
genotyping from the mixed fetal-maternal cfDNA samples.

4.1. Datasets

Families G1 and G2 were sequenced as part of a previous NIPT
study [45]. Family G3 corresponds to family G5 in our previous
study and was sequenced as described there [26]. Prior to the com-
parison, the VCF files were filtered such that the depth of the fetal
sample and each parent was > 10, and the QUAL was > 20; the
depth of the cfDNA positions was in the range of 100-1000.

4.2. Software used throughout each pipeline

Raw sequence FASTQ files of each sample were mapped to the
human genome using BWA-MEM v0.7.8-r455 [38] or Bowtie2
v2.3.43 [39], with default parameters. Aligned reads were
streamed directly from the alignment tool through the BEDTools
v2.18.1’s pairToBed [46] option, which maintains only reads that
overlap the given coordinates, or that their mates overlap them.
Keeping both mates of each pair enabled accurately marking dupli-
cate reads. Agilent SureSelect Exome V7 was used as the genomic
coordinates of the coding regions, extended by 100 bp padding
on either side. Coding region coordinates were downloaded as a
browser extensible data (BED) file from Agilent’s website. Sam-
blaster v0.1.24 [40] was used for marking duplicates. GATK v3.1-
1-g07a4bf8 was used for realignment and base recalibration
according to the recommendations of GATK Best Practices
[36,47]. ABRA v0.97 was used for reassembly. FreeBayes v1.1.0-3-
g961e5f3 and GATK v4.0.11.0 were used for variant calling of the
parents and the fetus, and for pre-processing of reads for Hoobari.
All VCF files were filtered again using BEDTools intersect tools, this
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time without the 100 bp padding, to reassure that only variants
within the exonic regions would be included in the downstream
analysis.

4.3. The gold standard genotyped data

To evaluate the performance of each pipeline, a gold standard set
of verified variant calls is required. Two strategies to assemble a
true set were explored. The first included comparing between each
noninvasive fetal pipeline and its invasive equivalent, which con-
sists of the same aligner, post-alignment methods, and variant
caller. In the second strategy, an attempt was made to create a val-
idated dataset of variants. Several approaches are possible for cre-
ating such a dataset. One option is to use a majority vote, which
can be executed in a naive manner, without accounting for similar-
ities between pipelines (which cause dependence); or alternatively,
in a more sophisticated manner. A more straightforward but strin-
gent option, which was used here, is to intersect the twelve
invasively-achieved variant sets. Intersecting VCF files requires
standardizing the representation of the variants they contain. Dif-
ferences can occur due to various reasons, such as relating to the
aligners, post-alignment methods, and variant callers. To standard-
ize the VCF files, hap.py was first run over each pipeline’s VCF file
and its corresponding true set VCF, i.e. the fetal sample. The output
VCF files of the hap.py run contained normalized position represen-
tations; these files were then intersected to create the consensus
true set. Eventually, when each pipeline’s VCF file was compared
again to the corresponding fetal sample’s VCF file, the comparison
was restricted to positions included in the consensus true set.

4.4. Performance measure of variant calling pipelines

Since genotyping results are not binary, defining positive and
negative results is important, as is subsequently defining FP, FN,
and true positive (TP) results; and the metrics to use. For genotyp-
ing, a FP can result from either a mismatch in the allele that was
found by the variant caller, or a mismatch in the genotype
(heterozygous or homozygous). These two challenges, as well as
many others, are well described in the literature in the context of
variant calling benchmarking. To address this issue, best practices
were published by the GA4GH Benchmarking Team [35], after they
convened representatives from sequencing technology developers,
government agencies, academic bioinformatics researchers, clini-
cal laboratories, and commercial technology and bioinformatics
developers for whom benchmarking variant calls is essential to
their work. The aforementioned comparison methods and conven-
tions were implemented by the GA4GH Benchmarking Team into
[llumina’s benchmarking tool, named hap.py, which was used in
this study to compare pipelines.

Formerly, we assessed Hoobari’s performance against other
noninvasive fetal genotyping algorithms, and also demonstrated
the advantage of accounting for the cfDNA fragment lengths, com-
pared with a version of Hoobari that ignores this information [26].
The metrics that were used are different from those used by hap.py.
The former includes metrics that are similar to those used in pre-
vious attempts to perform genome-wide genotyping of a fetus.
Accordingly, positive and negative results were defined by whether
the fetus was homozygous or heterozygous, with regard to the par-
ental genotypes at the tested position [20,21]. The GA4GH Bench-
marking Team stated that due to the inherent complexity of the
human genome, TP, FP, and FN can be defined in different ways.
In their best practices, which were implemented here, a genotype
match is defined as a position where the same allele and the same
genotype appear in both the placental (truth) and the cfDNA
(query) VCF files, regardless of the parental genotype (Table 4).
Positions are considered TP only if the genotype matches. If only
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Table 4
Definitions for TPs, FPs, and FNs by the GA4GH Benchmarking Team.

Truth (fetal sample)

Genotype homref’ het? homalt?
Query (cfDNA) homref n/a FN FN

het FP TP FP.GT

homalt FP FP.GT TP

! homozygous to the reference allele; 2 heterozygous; *homozygous to the
alternate allele TPs: true positives; FP: false positives; FN: false positives.

an allele match exists, but not a genotype match, the position is
considered as either FN or FP. FP is further classified as a genotype
mismatch (FP.gt), in which the alleles match but the genotypes do
not match, and an allele mismatch (FP.al), in which even the alleles
do not match. Finally, the metrics used for the comparison are pre-
cision (aka positive predictive value = TP/(TP + FP)) and recall (aka
sensitivity = TP/(TP + FN)), as well as F1-score, which is their har-
monic mean.

4.5. Data access

Hoobari is accessible via GitHub (https://github.com/nshomron/
hoobari). The sequencing data for family G3 was submitted to the
database of Genotype and Phenotype (dbGaP) under accession
number phs001659.v1.p1.
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