
Towards realizing the vision of precision
medicine: AI based prediction of clinical
drug response

Johann de Jong,1 Ioana Cutcutache,2 Matthew Page,2 Sami Elmoufti,3
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Accurate and individualized prediction of response to therapies is central to precision medicine. However, because
of the generally complex and multifaceted nature of clinical drug response, realizing this vision is highly challeng-
ing, requiring integrating different data types from the same individual into one prediction model.
We used the anti-epileptic drug brivaracetam as a case study and combine a hybrid data/knowledge-driven feature
extraction with machine learning to systematically integrate clinical and genetic data from a clinical discovery
dataset (n = 235 patients).
We constructed a model that successfully predicts clinical drug response [area under the curve (AUC) = 0.76] and show that
even with limited sample size, integrating high-dimensional genetics data with clinical data can inform drug response pre-
diction. After further validation on data collected from an independently conducted clinical study (AUC = 0.75), we exten-
sively explore our model to gain insights into the determinants of drug response, and identify various clinical and genetic
characteristics predisposing to poor response. Finally, we assess the potential impact of our model on clinical trial design
and demonstrate that, by enriching for probable responders, significant reductions in clinical study sizes may be achieved.
To our knowledge, our model represents the first retrospectively validated machine learning model linking drug mechan-
ism of action and the genetic, clinical and demographic background in epilepsy patients to clinical drug response. Hence, it
provides a blueprint for how machine learning-based multimodal data integration can act as a driver in achieving the goals
of precision medicine in fields such as neurology.
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Introduction
In recent years, precision medicine has emerged as a new para-
digm for improved and more individualized patient care. Its key
objective is to provide the right treatment, to the right patient at
the right time, by basing medical decisions on individual patient
characteristics (including biomarkers), rather than on averages of
those characteristics across a whole patient population. Precision
medicine has the potential to widely impact both patient care and
drug development, via1,2 (i) early disease diagnosis and prevention
using individual patient characteristics; (ii) better disease manage-
ment by more efficient and effective prescribing practices at the
level of the individual patient, including reducing the risk of side
effects and adverse events; and (iii) more efficient design of clinical
trials by enriching for likely responders at baseline.

Precision medicine is closely connected to and partially de-
pendent on pharmacogenetics, a field that has developed since the
1980s resulting from advances in genetics and molecular biology.
In pharmacogenetics, statistical associations between genetic var-
iants and drug response are studied within a defined target popu-
lation. According to the US Food and Drug Administration (FDA)
more than 400 pharmacogenetic biomarkers and biomarker signa-
tures have appeared on �160 drug labels,3 almost half of which are
within the field of oncology. However, in many cases, and specific-
ally outside oncology, these tests have had a limited impact on
prescribing practices. One of the reasons for this is that the nature
of drug response is highly complex, resulting from the interaction
of a multitude of factors including environmental, anthropometric
and genetic factors, as well as biological subsystems affected by
the disease.4 In this respect, it is unlikely that any single biomarker
or other single stratifying factor will fully capture this complexity,
and consequently, the field of precision medicine is still in its
infancy.5

Recent advances in the ability to generate molecular data, as
well as parallel advances in the fields of artificial intelligence, spe-
cifically machine learning (ML), and high-performance computing,
now allow for integrating different types of multivariate data from
the same individual into one multimodal prediction model.2 Such
ML models can be used to make predictions at the individual pa-
tient level, and their interpretation can drive the development of a
more holistic understanding of drug response. ML models can thus
be instrumental in translating precision medicine into practice,
and in optimizing clinical trial design by predictive enrichment for
drug responders and the testing of therapies in selected popula-
tions.6,7 However, before ML models can be moved into clinical
routine, a rigorous validation pipeline is required that consists of
(i) validation on an independent test set; (ii) further validation on

an independent study (owing to the fact that all clinical studies are
unavoidably biased by patient selection); (iii) a prospective valid-
ation via a clinical study to show a benefit compared to standard
of care; and (iv) following a regulatory pathway to get approval as a
diagnostic tool.2 Because of this complexity, currently there are
still only a few examples where ML models have reached clinical
routine, and all of them are from the oncology field.8,9 On the other
hand, neurology is widely seen as a field in which there is a high
potential for precision medicine, as well as high demand due to
the increasing prevalence of neurological disorders.10,11

Epilepsy is one such neurological disorder that has a pressing
need for the development of more individualized patient care paths
in the context of precision medicine. The treatment of epilepsy and
the development of new anti-epileptic drugs (AEDs) are hampered by
high rates of patient non-response.12 Despite almost 30 AEDs being
licensed for use in the USA,13 over 30% of patients remain inad-
equately controlled on their medication.14–16 The reasons for this re-
main largely unknown, and iterative prescribing practices remain
the norm.

Patients with drug-resistant epilepsy suffer more frequently
from comorbid illnesses, psychological dysfunction, social stigma-
tization and reduced quality of life. Moreover, they are at increased
risk of mortality and have an overall decreased life expectancy. As
such, these patients represent most of the disease burden in the
epilepsy patient population.17 Additionally, in relation to the need
to drive sustainable health care systems, patients with refractory/
uncontrolled epilepsy contribute disproportionately to the cost of
treatment. Studies of epilepsy subpopulations consistently found
substantially higher per-person costs for patients with poor seiz-
ure control, ranging from �2 to �10 times higher compared to
patients with unrefractory/controlled epilepsy.18 With a high pa-
tient and socio-economic burden, there is therefore a pressing
need to understand and predict the AED response better, to sup-
port the development of new AEDs and ensure that patients are
optimally treated earlier in their disease course.

While previous work has attempted to improve our under-
standing of the AED response,19–31 the focus has mostly been on
specific pharmacokinetics related drug metabolizing enzymes and
transporters, neglecting other genetic factors that could be import-
ant in determining response, such as a drug’s mechanism of action
or underlying disease mechanisms. However, as outlined above,
focusing on single stratifying factors or biomarkers has severe lim-
itations in its potential for achieving the goals of precision medi-
cine. As such, it has so far been difficult for the—sometimes even
conflicting—results to impact clinical practice.32 We are aware of
only one study that jointly analysed clinical and genetic data to
predict AED resistance in patients with mesial temporal lobe
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epilepsy.33 While showing promise, the analysis was, again, lim-
ited to pharmacokinetic-related genes. Moreover, the authors did
not validate their model in an independent patient dataset, so the
extent to which their results generalize outside their discovery
dataset is unclear. Finally, the study addressed the relatively gen-
eral question of resistance against any AED. However, to achieve
the objectives of precision medicine and support optimized pre-
scription in clinical practice, specific drug response prediction
models are needed, directly linking drug mechanism of action to
patient-specific response.

In further related work, no attempts were made to link drug
mechanism of action to patient response,34–38 response was not
predicted directly,36,38 only limited numbers of single nucleotide
polymorphisms (SNPs) were used,35 no genetics data were used at
all,34–38 and/or the results were not validated on external
data.34,37,38

For this purpose, we set out to use ML approaches to integrate
a broader set of genetic and clinical data, to predict response to
one specific AED. Specifically, we used the AED brivaracetam as a
case study. Brivaracetam (trade name: BriviactVR ) is an AED whose
mechanism of action is via blockade of the vesicle membrane pro-
tein SV2A and is licensed for the treatment of partial-onset (focal)
seizures in patients 4 years of age and older. During phase III clin-
ical studies, �30–40% of subjects reached the primary end point of
450% reduction in seizure frequency.39 By integrating clinical and
whole-genome sequencing (WGS) data from 235 participants in
these phase III clinical studies, we built and compared several ML
models predictive of the brivaracetam response. Our results show
how patient and clinical data, as well as genetic makeup (com-
prising epilepsy-specific and drug mechanism-specific genetic
features) each uniquely contribute to predicting drug response. In
addition, we demonstrate that our best ML model achieves a good
prediction performance in a retrospective validation using an
additional independent phase III clinical study. Finally, we quan-
tify the impact that our best model could have on clinical trial de-
sign by its ability to enrich for responders in future clinical
studies. We thus realize an important step towards precision
medicine in neurological disorders.

Materials and methods
Processing the clinical data

Efficacy data were pooled from two phase III clinical trials [N01252
(NCT00490035), N01358 (NCT01261325)] for a therapeutic dose of
450 mg/day, enrolling adults (= 16 years) with focal seizures. Both
initial clinical trials received approval by appropriate institutional
review committees and were conducted in accordance with all regu-
latory, ethical, and good clinical practice requirements. After an 8-
week prospective baseline period, patients were randomized to bri-
varacetam or placebo without titration and entered a 12-week treat-
ment period. Patients randomized to brivaracetam 450 mg/day (100
and 200 mg/day) or placebo were included in the analysis. Although
trial N01252 also included patients treated with 50 mg/day, these
were excluded from the analysis to maximize correspondence
between the validation dataset (N01252) and the training dataset
(N01358), which did not include any patients treated with
50 mg/day. Data were used for subjects who consented to give a
DNA sample and were treated with either 100 mg or 200 mg of bri-
varacetam per day, the approved brivaracetam doses.

Sample collection, WGS and processing

Total genomic DNA 4850 ng (410 ng/ml minimum concentration)
was extracted from blood of 235 patients (NCT01261325) and 47

patients (NCT00490035) treated with 100 mg or 200 mg of brivarace-
tam per day. DNA samples were sequenced to 30� mean coverage
on Illumina HiSeq X instruments with 150 bp, paired-end sequenc-
ing. Reads were aligned to the GRCh38/hg38 reference using BWA-
mem 7.15.r1140.40,41 Picard42 was used to mark duplicates and
GATK443 for base quality score recalibration, which was applied
using a 4-bin base quality scheme. Picard was used to aggregate all
data for each sample into individual CRAM files using lossless
compression. SNPs and indels were called, per sample, using
HaplotypeCaller (GATK 3.5)43 and individual gVCFs consolidated
into a single gVCF. Pre-computed CADD scores44 were used for sin-
gle nucleotide variants (SNVs) and CADD was run separately to
generate scores for indels. The scores were converted to GRCh38
coordinates using CrossMap.45 The gVCF was normalized and split
to generate per-sample VCFs using bcftools.46 We used snpEff47 to
annotate each sample VCF with CADD scores. MANTA v1.3.148 was
used on all samples for CNV/SV calling.

Constructing the gene sets

Gene sets (Supplementary Table 1) were identified by enrichment
of Gene Ontology Molecular Function terms; MetaBase canonical
pathways; or phenotype categories, with genes that have an aetio-
logical association to epilepsy or that are putatively linked to the
mechanism of action of brivaracetam. Epilepsy genes were com-
bined from different molecular evidence sources: rare genetic
epilepsies or rare disorders that display phenotype traits onto-
logically descendant from ‘seizure’ (excluding symptomatic seiz-
ures and focal sensory seizures) and ‘epileptic encephalopathy’ in
the Human Phenotype Ontology49; nearest mapped genes for sig-
nificant SNPs from epilepsy genome-wide association studies
(GWAS) in GWAS Catalog50; direct genetic associations from gene-
disease databases DisGeNET51 and OpenTargets52; experimentally
validated target genes for miRNAs dysregulated in epilepsy from
miRmap53 and EpimiRBase54; and epigenetic mechanisms linked
to epilepsy. In turn, drug mechanism of action genes were drawn
from: canonical pathways related to synaptic vesicle biology; dir-
ect neighbours of SV2A, SV2B and SV2C in a protein-protein inter-
action network contextualized with brain gene expression data
from GTEx55; genes encoding drug-metabolizing enzymes for bri-
varacetam; genes associated with comorbidities that influence
drug response; and the targets of co-administered AEDs (carba-
mazepine, phenytoin, phenobarbital, levetiracetam). Epilepsy
genes and drug mechanism of action genes were linked to gene
sets from Gene Ontology Molecular Function terms using (i)
TopGO56; (ii) Metabase57 neurological canonical signalling path-
ways using a hypergeometric test; and (iii) knowledge-based
epilepsy phenotype categories58 based on gene membership.

Variant filtering and gene mapping

After preprocessing as outlined above, the WGS data represented
�20 million variants. From these, only variants that satisfied at
least one of the following conditions were retained in subsequent
gene set-based analyses: (i) a significant association to the disease
phenotype in GWAS, as listed in the GWAS Catalog50; (ii) strong
linkage disequilibrium (LD) to any of the above GWAS SNPs (r2 4
0.8); (iii) proximity of at most 10 kb to SV2A and a CADD44 score 4
15; and (iv) expression quantitative trait loci (eQTL) evidence for
SV2A and a CADD44 score 4 15.

This resulted in �14 000 unique SNVs. These filtered variants
were mapped to genes based on proximity in the genome (in ±10
kb region), brain cis-eQTLs from GTEx and significant SNPs from
epilepsy related GWAS studies (Supplementary Table 2). Hg38 gen-
omic intervals for genes were extracted from the SnpEff database47
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using the ‘dump’ argument. Genomic coordinates for each gene
were extended ±10 kb and converted to BED format. Significant
brain cis-eQTLs were downloaded from https://gtexportal.org/
home/datasets (v7; accessed 1 October 2020) and CrossMap45

applied to convert to coordinates on the GRCh38 assembly before
converting to BED format. GWAS Catalog50 v1.0.1 was used to se-
lect all the SNPs significantly associated with specific epilepsy/
seizure traits. For each such SNP the position, risk allele and
mapped gene information were extracted from the catalogue. A
BED file containing these positions and their corresponding LD
blocks was prepared. Each BED formatted annotation file was
used to annotate sample VCF files and a custom Python script
used to extract a simplified annotation of each variant, which
collapses together multiple gene mapping sources keeping:
chromosome, position, reference allele, alternate allele, geno-
type, CADD scores, Entrez ids of mapped genes, and snpEff anno-
tation. Gene mapping based on GWAS and eQTL information was
done only if the expected risk allele was observed in the sample.

Gene set-wise mutational burden scores

Gene set-wise mutational burden scores were calculated by count-
ing the number of unique mutations in the genes corresponding to
each gene set.

Polygenic risk score

We retrieved log2 odds ratios for all SNPs with an epilepsy pheno-
type from the PheWAS Catalog,59 and for each subject computed the
dot product of the SNP log2 odds ratios with the patient-specific SNP
genotypes. More specifically, let N be the total number of epilepsy
related SNPs, i be a patient indicator, j be a SNP indicator, xj be the
log2 odds ratio for SNP j, gij be the genotype of patient i for SNP j.
Then the polygenic risk score yi for patient i is computed as follows:

yi ¼
XN

j¼1
xjgij (1)

Model training

All models were trained using nested cross-validation, with 10
inner folds for hyperparameter optimization, and 10 outer folds for
performance estimation. To assess the dependence of perform-
ance estimation on the chosen folds, 20 repeats were done using
different folds. For all models except the multimodal neural net-
work, hyperparameter settings were selected using a grid search.
Because of the large number of hyperparameters to be optimized
for the multimodal neural network, as well as the computationally
expensive model fitting procedure, hyperparameter settings were
selected using Bayesian optimization instead.60 Moreover, for the
multimodal neural network, each hyperparameter optimization in
the inner loop of the nested cross-validation was repeated three
times for stability purposes. The models were implemented using
the following software packages:

(i) Sparse multi-block PLS-DA: mixOmics.61

(ii) Multimodal neural network: Tensorflow 2.62 A multimodal
architecture was set up by limiting connections in the first
layer(s) of the neural network to connections only between
features from the same data modality. Given the limited
number of samples, this model is highly complex, and needs
to be strongly regularized to avoid overfitting. For this pur-
pose, we implemented (a) a group lasso penalty63 on the input
layers for the different data modalities; (b) overall l164 and l265

penalties on the subsequent layers; (c) dropout66 and batch
normalization.67 The neural networks were trained using an

Adam optimizer,68 with beta1 = 0.9 and beta2 = 0.999. The
learning rate, together with the regularization penalties, drop-
out rate, batch size and architecture, was optimized using
Bayesian optimization.69

(iii) Elastic net: glmnet.70

(iv) Gradient-boosted decision trees classifier: xgboost.71

(v) Stacked gradient-boosted decision trees classifier: xgboost.71

Individual xgboost classifiers were trained for each data modal-
ity. Predictions of these individual classifiers were then
stacked72 using logistic linear regression.

Power calculations

For a given classifier threshold h, the positive predictive value for
drug-treated subjects (ppvtrt) was determined using the classifier
trained on both clinical and genetics data, as described above
and in the main text. Since no WGS data were available for pla-
cebo-treated patients, we constructed an additional model using
clinical data alone, and applied this model (with the same
threshold h) to the placebo-treated patients to determine the
positive predictive value ppvpcb. These two proportions were
interpreted as responder rates in a hypothetical confirmatory
trial, and power calculations were performed for a one-sided
two-sample test for proportions (using the R stats package; at sig-
nificance level 0.01 and power 90%), to determine the minimum
sample size for which ppvtrt is significantly larger than ppvpcb.
Note that because WGS data are not available for placebo-treated
patients, ppvpcb is necessarily based on clinical data only, where-
as ppvtrt is based on clinical and genetics data, and hence the cal-
culations are dependent on the assumption that the inclusion of
epilepsy- and brivaracetam-specific genetics variants do not in-
flate placebo response too strongly.

Learning curve

We retrained our classifier, as described above, but with increasing
sample sizes in the inner cross-validation loop (ranging from
n = 45 to n = 211), while recording the area under the ROC curve
(AUC) on a left-out set of fixed size (n = 24) in the outer cross-valid-
ation loop. This was repeated 20 times.

Data availability

Clinical studies (NCT01261325, NCT00490035) can be accessed via
ClinicalTrials.gov.

Results
Defining discovery and validation datasets

To develop a predictive model for drug response, we used two
datasets: (i) a discovery dataset; and (ii) a retrospective validation
dataset.2 We constructed a discovery dataset from phase III clinical
trial data (NCT01261325) on drug response in 235 adult epilepsy
patients, who consented to provide a DNA sample and were
treated with either 100 mg or 200 mg of brivaracetam per day, the
approved brivaracetam doses (Table 1).73 The overall response rate
in this dataset was 37%, with an average age of 40.7 years, 48% fe-
male, and focus localization mostly confirmed to be frontal or tem-
poral. This discovery dataset was used for constructing, optimizing
and internally validating the model. Additionally, we constructed a
validation dataset by collecting data on 47 adult epilepsy patients
from an independently conducted clinical trial (NCT00490035). These
47 patients consented to provide a DNA sample and were treated
with 100 mg of brivaracetam per day (Table 1).74 The overall response
rate in this dataset was 36%, with an average age of 41.5 years, 43%
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female, and focus localization mostly confirmed to be frontal or tem-
poral. We used this dataset to determine the extent to which the in-
ternally validated model generalized to unseen patient data, with
potentially different patient characteristics.

In addition to drug response (defined as 450% seizure
frequency reduction 12 weeks after study baseline), available data
modalities in both datasets included a comprehensive range of
demographic and clinical characteristics, as well as WGS data for
each patient. More details about the demographic and clinical data
available for each patient can be found in 75,76(p15),77 and
Supplementary Fig. 1 and Supplementary Table 3). The data were
preprocessed as described in the ‘Materials and methods’ section.

Taking a knowledge-based approach to feature
extraction from WGS data

WGS data contains potentially millions of variants. This is orders of
magnitude larger than the typical number of patients enrolled in a
clinical study, and therefore poses a high risk of overfitting, i.e. bad
generalization performance of the ML model.78 The sparsity, par-
ticularly of rare variants, further complicates this problem. Hence,
we took a knowledge-based approach by extracting 40 disease-
mechanism and drug mechanism of action associated features
from the original �20 million variants, to be used as input into our
ML model (Fig. 1A). More specifically, we first defined literature-
derived sets of genes that related to (i) epilepsy disease mecha-
nisms; and (ii) brivaracetam’s mechanism of action (Fig. 1B and
‘Materials and methods’ section). With respect to (i), we only con-
sidered SNVs that showed a significant association to the disease
phenotype in GWAS, as listed in the GWAS Catalog,50 or showed
strong linkage disequilibrium (LD) to any of those SNVs (r24 0.8).
With respect to (ii), we only considered SNVs proximal to SV2A (±10
kb) and/or with eQTL evidence for SV2A, as documented by the
Genotype-Tissue Expression (GTEx) project.55 These SNVs were
then mapped to genes by proximity of at most 10 kb upstream or
downstream of transcription start site, or by significant influence
on gene expression in brain tissues, as documented by GTEx.

To arrive at a single mutational load score per gene set, we
counted the number of SNVs mapped to the genes in each gene
set. This resulted in 38 features to be used as input into our ML
models. In addition, we defined a polygenic epilepsy risk score
using the PheWAS catalogue59 (see ‘Materials and methods’ sec-
tion), and a feature indicating the presence of at least one struc-
tural variant overlapping brivaracetam’s receptor gene SV2A (±10
kb). This resulted in a total of 40 features derived from the genetics
data, which by the approach taken above, we treated as three dis-
tinct genetic data modalities: (i) the gene set-wise mutational load

scores; (ii) the polygenic risk score; and (iii) the SV2A structural
variance feature. Together with the clinical data, this resulted in
four data modalities. For more details, see the ‘Materials and
methods’ section.

Machine learning-based data integration
successfully predicts anti-epileptic drug response

We applied and evaluated several ML approaches to systematically
integrate our four data modalities for predicting response to
brivaracetam:

(i) Sparse multi-block partial least squares discriminant analysis
(PLS-DA),61,79 with blocks defined by the data modalities.

(ii) A multimodal neural network. Here, each data modality is
represented by its own subnetwork at the input of the neural
network, with initially no connections allowed between the
subnetworks. Only at deeper network levels, the different
subnetworks are connected to jointly compute a response
probability. For more details regarding the architecture and
hyperparameters, see the ‘Materials and methods’ section.

(iii) An elastic net classifier,70,80 trained on all data modalities
jointly.

(iv) A gradient-boosted decision trees classifier,71 trained on all
data modalities jointly.

(v) Logistic regression-based stacking72 of gradient-boosted trees
classifiers.

These ML approaches spanned the whole range of data integra-
tion strategies,81–83 from early (e.g. sparse multi-block PLS-DA) to
intermediate (the multimodal neural network) to late (the stacked
classifier). Our best model, a single gradient-boosted trees classifier
trained jointly on all data modalities, significantly outperformed all
other models and achieved an AUC of 0.76 (P = 3.8 � 10–6; Fig. 2A
and B). Interestingly, the two linear methods (elastic net and sparse
multi-block PLS-DA) showed substantially poorer performance than
the two tree-based classifiers. This suggests that our problem of bri-
varacetam response prediction is, to an important extent, non-lin-
ear in nature. The multimodal neural network also performed
relatively poorly. This is likely due to the large number of parame-
ters specified by such a network, relative to the limited number of
samples available for training the network.

Our model generalizes to independent clinical trial
data

Each clinical study has unavoidable biases due to the selection and
sampling process of patients from the overall population. To make
sure that the internally cross-validated performance of our model

Table 1 Discovery, validation and placebo datasets

Discovery dataset Validation dataset Placebo dataset

Number of patients 235 47 235
Brivaracetam dose, mg/day 100–200 100 0
Clinical trial NCT01261325 NCT00490035 NCT01261325
Whole genome sequencing? Yes Yes No
Responder rate 37% 36% 22%
Age, mean (SD) 40.7 (13.1) 41.5 (13.8) 39.6 (12.9)
Gender, % female 48 43 50
Focus localization

Frontal 32% 17% 38%
Occipital 5% 6% 6%
Parietal 9% 4% 9%
Temporal 64% 60% 59%
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was not driven by certain characteristics unique to the discovery
dataset, we collected data from an additional independently con-
ducted clinical trial (NCT00490035, n = 47; Table 1), and used these
data to externally validate our model. Despite significant overall
differences in clinical and patient characteristics between the two
datasets (Supplementary Fig. 1), our classifier generalized well: It
achieved an AUC of 0.75 (Fig. 2C), very close to the cross-validated
AUC of 0.76 on the discovery dataset, although due to the limited size
of the validation dataset, the asymptotic 95% confidence interval (CI)
was wide (0.6–0.9).

Both clinical and genetic features uniquely impact
drug response

A better understanding of the mechanisms driving drug (non-)re-
sponse is instrumental in precision medicine. Hence, we next ana-
lysed the predictive strength of our model from the level of entire
data modalities down to the level of individual clinical and genetic
patient features. To this end, we trained gradient-boosted trees
classifiers on each of the four individual data modalities alone and
compared their performance with our best model. Our best model
significantly outperformed all models trained on individual data
modalities (P = 1.9 � 10–6; Fig. 3A), demonstrating the unique

contribution of both clinical and genetic factors to predicting drug
response.

To investigate in more detail which individual patient features
were most important in determining drug response, we computed
feature-wise absolute SHAP values (SHapley Additive
exPlanations)84 (Fig. 3B), averaged across samples. SHAP value es-
timation decomposes each prediction into a sum of feature im-
portance scores and a bias term, where each feature importance
score represents the change in the expected prediction when con-
ditioning on that feature.84 Consistent with the results in Fig. 3A,
the main determinants of drug response prediction represented a
mix of clinical and genetic patient features. Strongly predictive
clinical features included prior use of levetiracetam and epileptic
focus localization. In the model, prior use of levetiracetam, an
AED having the same primary receptor as brivaracetam, negative-
ly impacted the probability of response to brivaracetam (Fig. 3C).
Likewise, extra-temporal epileptic focus localization negatively
impacted the probability of response (Fig. 3C). These two observa-
tions were also reflected in the patient population, where non-
responders more often had used levetiracetam prior to study
entry (Fig. 3D). This was consistent with a previous study suggest-
ing that brivaracetam non-responders are more likely to suffer
from drug-refractory epilepsy, and thus have generally used

Figure 1 Analysis pipeline and gene set definition. (A) Combining hybrid data/knowledge-driven feature extraction with advanced ML to systematic-
ally integrate clinical and genetic data for predicting brivaracetam response. (B) Defining literature-derived gene sets that relate to (1) epilepsy disease
aetiology and (2) brivaracetam’s mechanism of action.
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relatively more AEDs prior to study entry.85 It should be noted
that the brivaracetam responder rate in the levetiracetam-naı̈ve
group is roughly twice as high as the responder rate in the leve-
tiracetam-exposed group (Supplementary Fig. 2A). This associ-
ation is highly significant, even when correcting for prior
exposure to any of the other AEDs in our data, or when correcting
for confounders not restricted to AEDs (Supplementary Fig. 2B).
This indicates that prior levetiracetam use is uniquely inform-
ative in predicting brivaracetam response, relative to the other
AEDs and all other variables in the model, which is likely due to
levetiracetam having the same primary receptor gene as
brivaracetam.

Strongly predictive genetic features included the presence of
structural variants overlapping brivaracetam’s receptor gene
SV2A, and the mutational load in the GO:0051011 gene set, a GO
term representing microtubule minus end binding (Fig. 3C). Note
that epilepsy can be caused by disorders of neurodevelopmental
processes, and microtubule associated proteins are known to play
a role in the regulation of such processes.86,87 In the model, having
more mutations in the GO:0051011 gene set positively impacted
the probability of response to brivaracetam (Fig. 3D). On the other
hand, having structural variants overlapping brivaracetam’s

receptor gene SV2A (±10 kb) negatively impacted the probability of
response (Fig. 3D). These two observations were also reflected in
the patient population. Patients with a structural variant overlap-
ping SV2A (±10 kb) were more likely not to respond to brivaracetam
(Fig. 3D). Moreover, responders had more mutations in the
GO:0051011 gene set (Fig. 3D).

SHAP dependence plots and brivaracetam response associa-
tions for all features can be found in Supplementary Figs 3 and 4.

Placebo response is not related to model
determinants

Some of the features identified in Fig. 3B could potentially also be
associated with placebo response. Therefore, we wanted to assess
to what extent our model was also partly capturing placebo re-
sponse. As WGS data were not available for placebo-treated
patients, we focused on the model trained on only clinical data
from brivaracetam-treated patients to address this question. We
applied this model to 235 additional, placebo treated, patients col-
lected from the same clinical study as our discovery dataset
(Table 1, clinical study NCT01261325).73 Placebo response could not
be predicted significantly better than random (AUC = 0.56 ±0.088),

Figure 2 Model performance and external validation. (A) Performance of several ML approaches to systematically integrate the genetic and clinical
data modalities for predicting response to brivaracetam, as estimated using repeated cross-validation with 20 repeats (each dot represents a repeat).
The performance is shown in terms of area under ROC (AUC). An AUC of 0.5 corresponds to chance level, and an AUC of 1 is the best achievable per-
formance. Statistical significance was assessed by a paired Wilcoxon-test between the best and the second-best model. (B) ROC of our best model, a
gradient-boosted decision trees classifier trained jointly on all data modalities. In light grey, the individual ROCs for the 20 repeats, in red the average
ROC across the 20 repeats and the associated empirical 95% CI based on the 20 repeats. The ROC depicts the trade-off between specificity and sensi-
tivity of a classifier, while varying the diagnostic cut-off for the probability of response: Choosing to treat only patients with high predicted probability
of response results in a high specificity (most treated patients will benefit from the treatment), but a low sensitivity (many patients that could poten-
tially have benefited from treatment are not treated). Conversely, treating even patients with low predicted response probability results in a high sen-
sitivity (most patients who could potentially benefit are treated) but low specificity (many treated patients do not benefit from the treatment). The
AUC is a measure of overall prediction performance. An AUC of 0.5 corresponds to chance level, and an AUC of 1 is the best achievable performance.
(C) ROC of validating of our best model on the independent validation dataset.
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indicating that our models indeed did not capture placebo re-
sponse to any significant degree (Supplementary Fig. 5A). In add-
ition, we trained a new classifier on all clinical data available for
the placebo-treated patients, for predicting placebo response dir-
ectly. Supporting the analysis above, the model did not perform
better than random (AUC = 0.5 ±0.019; Supplementary Fig. 5C).

Finally, to determine whether placebo response was related to
any of the individual main clinical determinants of the integrated
model (Fig. 2A and B), we univariately tested the association of pla-
cebo response with the main clinical determinants of that model
(Fig. 3B). No single significant feature could be identified at a false
discovery rate of 10% (Supplementary Fig. 6).

Reducing sample size of confirmatory studies by
enriching for drug responders

Clinical trials in epilepsy, but also in other disease areas, generally
suffer from high non-responder rates.12,88 A higher non-responder

rate means that more patients will need to be enrolled to establish
a statistically significant difference in responder rates between
drug- and placebo-treated subjects. However, models trained to
predict drug response on data from an initial exploratory study,
could be used to enrich for responders in subsequent confirmatory
studies (so-called enrichment trial according to FDA terminology;
https://www.fda.gov/media/121320/download; accessed 1 October
1 2020). As such, minimum required sample sizes for these con-
firmatory studies could be reduced.

More specifically, note that the output of our ML model is a
probability for each individual patient to respond positively to bri-
varacetam after 12 weeks. In screening patients for a confirmatory
study, a specific threshold could be applied to this probability to
decide which patients would be accepted and which would not.
Choosing to accept only patients with a very high probability of re-
sponse results in a high specificity (many accepted patients are
responders), but low sensitivity (many responders are not
accepted). Conversely, accepting patients even at low predicted

Figure 3 Determinants of drug response probability. (A) Performance of gradient-boosted trees classifiers on the individual data modalities, com-
pared with the integrated model. Statistical significance was assessed by a paired Wilcoxon-test between the clinical-only model and the integrated
model. (B) All patient features with non-zero average absolute SHAP values. Error bars represent the empirical 95% CIs based on 20 cross-validation
repeats. (C) SHAP dependence plots for four selected variables. Top to bottom, left to right: Prior use of levetiracetam, extra-temporal focus localization,
mutational load in gene set GO:0051011 and structural variants overlapping SV2A. Each circle represents a single patient (note that circles are often
superimposed). (D) Univariate associations of selected variables with brivaracetam response. Top to bottom, left to right: Prior use of levetiracetam,
extra-temporal focus localization, mutational load in gene set GO:0051011 and structural variants overlapping SV2A. Statistical significance was
assessed by a Wilcoxon test (for GO:0051011) or a Fisher’s exact test (for the other three features).
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response probabilities results in a higher sensitivity (many res-
ponders are accepted) but lower specificity (many accepted
patients are non-responders). This trade-off between sensitivity
and specificity is visualized by the receiver operating characteristic
(ROC) in Fig. 2B.

As a concrete example, setting the classifier threshold at 0
would result in a specificity of 0% and a sensitivity of 100%
(Fig. 2B), which would imply accepting all patients at screening,
and lead to the original responder rate in our discovery dataset
(38%; Fig. 4A). On the other hand, setting the classifier threshold at
0.45 would result in a specificity of 66% and a sensitivity of 74%
(Fig. 2B), which could result in a 1.5 times higher responder rate
(�57%; Fig. 4A). This higher responder rate could subsequently re-
duce the minimum sample size required for a confirmatory study
(at 90% statistical power and 0.01 significance threshold) from
�230 subjects in each study treatment arm, to �50 subjects (classi-
fier thresholds at 0 and 0.45, respectively; Fig. 4B), a reduction of
�65%. This reduction would come at the expense of stricter con-
firmatory study inclusion and exclusion criteria, as determined by
the classifier threshold: In the current example, setting the classi-
fier threshold at 0.45 would imply that �50% of patients would not
meet the criteria for study entry (Fig. 4A). A classifier with even
better performance than the current model should be able to

increase this acceptance rate, by showing a relative decrease in
false negative calls at the same responder rate.

Note that the response rates for drug-treated subjects were
estimated using both clinical and genetics data, whereas the re-
sponse rates for placebo-treated subjects were necessarily esti-
mated using clinical data alone, as no WGS data were available for
placebo-treated subjects (for more details, see the ‘Materials and
methods’ section).

Note also that, even when estimating both placebo and treat-
ment response rates using only clinical data, substantial reduc-
tions in required sample size can still be observed (Supplementary
Fig. 7).

We then wanted to determine whether, given the current model-
ling approach, better models could likely be constructed. As outlined
above, such models would be able to achieve higher study accept-
ance rates at similar responder rates, or higher responder rates at
similar acceptance rates. For this purpose, we retrained our classi-
fier with increasing sample sizes in the inner cross-validation loop
(ranging from n = 45 to n = 211), while recording the AUC on a left-
out set of fixed size (n = 24) in the outer cross-validation loop. The
roughly linearly increasing AUC showed no signs of reaching a plat-
eau for larger n, which indeed suggested that with more patients,
even better performing models can be built (Fig. 4C).

Figure 4 Application to clinical trial design. (A) The trade-off between positive rate (number of patients included in a trial) and positive predictive
value (fraction of responders in a trial), as a function of the classifier threshold. 95% CIs were determined using the 20 cross-validation repeats. (B)
Using the classifier to enrich for responders in confirmatory studies: Minimum required sample size in a confirmatory trial (at 90% statistical power
and 0.05 significance level) as a function of classifier threshold. CIs were determined by computing sample sizes for the CIs in A. (C) Training the
model on increasing sample sizes in the inner cross-validation loop, while recording the performance on a set of left-out samples of fixed size (n = 24)
in the outer cross-validation loop. Each dot represents the performance of a model trained on a different randomly subsampled number of patients
(n). To determine the 20 cross-validation repeats, 95% CIs were used. (D) Extrapolation of performance for larger n, using robust linear regression in
blue, with a 95% prediction interval.
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To get an indication of how many patients would be needed to
achieve even better performance, we fitted a robust linear regres-
sion model to the data in Fig. 4C. Extrapolating the linear trend
using this regression model suggested that it may be reasonable to
expect that at least 350 patients would be needed to achieve a per-
formance of AUC �0.9 (Fig. 4D).

Discussion
In this work, we presented a retrospectively validated ML model
for predicting clinical drug response to the AED brivaracetam. We
demonstrated that integrating WGS data with clinical data signifi-
cantly improves predictive performance compared to a model
based on clinical data or genetic data alone, i.e. that both clinical
and genetic patient features uniquely contribute to model per-
formance. Importantly, we also showed that it is unlikely that our
model captured placebo response to any significant degree. This
analysis was restricted to clinical determinants since, because of
the cost considerations of generating WGS data and our focus on
the determinants of clinical drug (non-)response, only genomes of
brivaracetam-treated patients were sequenced.

In principle, WGS allows for a hypothesis-free way of analysing
the influence of genomic variation on an outcome of interest.
However, the dimensionality of WGS data is huge relative to the
small number of patients available in our study, posing serious
risks of overfitting. Hence, it is clear that prior knowledge needs to
be used to maximally reduce the WGS feature space in the most
informative way possible. For this reason, we initially analysed all
variants in the WGS data at the level of sets of genes known to be
related to epilepsy and/or brivaracetam’s mechanism of action.
Genes were organized into functional categories based on prior
biological knowledge in the form of biological pathways, molecular
functions, and human phenotypes. Such an approach allows us to
simultaneously reduce the feature space based on those genes and
linked genetic variants most likely to exert an effect on drug re-
sponse, accommodate sparse rare variants, and generate features
with a functional interpretation. In the end, gene set-wise muta-
tional load scores were computed by simply counting the number
of mutations mapped to the genes in a gene set. This can be
thought of as a linear model that maps input variants, each with a
coefficient equal to 1, to gene set-wise scores. One could think of
more involved approaches, for example to estimate the coeffi-
cients of such a (possibly regularized) linear model using the class
labels, as an integral part of the nested-cross validation. However,
in our case this led to substantial overfitting.

Our results confirm that the mutational burden in our epilepsy-
and mechanism of action-related gene sets are important factors
in explaining and predicting response. Two of the most inform-
ative genetic features in the model were the presence of structural
variants overlapping the SV2A gene, and the mutational load in a
gene set representing microtubule minus end binding.
Brivaracetam is a high affinity SV2A ligand whose purported
mechanism of action involves blocking the SV2A membrane glyco-
protein and inhibiting neurotransmitter release.89 We showed that
brivaracetam non-responders were significantly more likely to
carry SV2A structural variants than responders (P = 0.0055; Fig. 3D).
However, previous published work failed to find any impact of sin-
gle SV2A variants on response to levetiracetam, an AED in the
same drug class as brivaracetam, but with a less specific SV2A
binding profile.90 This again highlights the necessity for summa-
rizing genetic variation into polygenic risk scores, gene-level and
even gene set-level scores, to effectively address the challenges
that are posed by the analysis of individual variants, which are
often rare events.

It is worth noting that, except for prior use of levetiracetam, the
clinical data alone contain no information that is specific to the ac-
tion of, or response to brivaracetam. In this respect, a model built
on clinical data alone would likely have some utility in predicting
response to other drugs, i.e. would mostly have prognostic value.
Including genetic features that are specific to the mechanism of
action and disposition of brivaracetam means that the model is
likely to have diagnostic value, i.e. be specific to predicting re-
sponse to brivaracetam. This is supported by our observation that
genetic features contributed significantly to the performance of
the integrated model (Fig. 3A) and suggests that genetic variation
is at least to some extent, complementary to clinical information
in our setting. In other words, both genetic variation and clinical
information each describe different aspects of brivaracetam re-
sponse. Future work will entail pursuing this hypothesis by testing
the model in equivalent datasets derived from other AEDs.

The above discussion demonstrates that our results can pro-
vide guidance as to the type of genetic features that are important
in determining drug response and which should be considered
when translating these approaches into practice, with a focus on
genes related to the disease understudy and the drugs’ mechan-
ism of action, and pharmacokinetics.

Among the clinical features in the present study, we found that
prior levetiracetam use was the most important predictor of bri-
varacetam response. Previous work has indeed shown that levetir-
acetam-naı̈ve patients exhibited stronger response to
brivaracetam.76,85 This demonstrates that using ML, we are able to
objectively identify variables for which clinical relevance has pre-
viously been established in the literature. In the context of this
finding, it is important to note that despite showing a weaker re-
sponse to brivaracetam, levetiracetam-exposed patients showed a
better-than-placebo response.76,85 Moreover, levetiracetam-
exposed patients generally showed an attenuated response to a
wide range of AEDs, leading to the suggestion that the observed
brivaracetam non-response was due to a more general AED-refrac-
toriness.85 In our data however, we observed that prior use of leve-
tiracetam was uniquely informative for predicting brivaracetam
response relative to all other AEDs in the model, likely due to leve-
tiracetam having the same receptor gene as brivaracetam.

In applying our model to responder enrichment for clinical trial
design, we observed that it is likely that better models could be
built when using more patients than available in our current dis-
covery dataset. However, below about 100 patients, performance
was little better than random, suggesting limited utility in re-
sponder enrichment for numbers lower than 100. Thus, there is a
balance that needs to be considered when applying these
approaches to inform clinical study design: Exploratory studies
would need to be large enough to support the building of models
that would allow for sufficiently strong predictive enrichment in,
and reduction in size of, confirmatory studies.

The above considerations represent the first step in the trans-
lational pipeline towards clinical practice, supporting the develop-
ment of companion diagnostics. The actual translation of our
present method into routine clinical practice would require sev-
eral additional steps. First, further validation of our model is
required; after internal and retrospective validation as performed
here, the next step would be a prospective clinical validation
study, in which the benefit compared to standard routes for pa-
tient selection has to be demonstrated.2 After this prospective
clinical validation, the test itself, genotyping and algorithm, would
need to be made available in a format, and on a platform that
could be employed in a routine clinical care environment, such as
a hospital. In the current format our model uses 106 clinical and
40 diverse genetic features, comprising 4695 genetic variants,
hence being technically challenging and relatively labour and cost
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intensive. In this context, it should also be noted that clinical fea-
tures captured in clinical trials are not necessarily in line with
what is measured in routine clinical practice. Future work should
thus focus on streamlining the model towards translation into
clinical practice, including development of a cost-effective assay
for the most informative genetic variants, routes required to make
algorithms available and accessible and inclusion of clinical fea-
tures that might be more routinely collected. A systematic way of
assessing feature importance in ML models, such as the SHAP val-
ues used in our work, can support this translation by helping to
deconvolute the model and identify the features that are most
informative.

In case of success, the regulatory implications for an impact
on the drug label and companion diagnostic co-approval need to
be considered. Regulatory authorities are interested in the ability
to target treatments to patients who would most benefit, needing
to ensure that the label accurately reflects the enrichment strat-
egies used to select the patients, and that there is an approved
method available to identify these patients once any drug is
approved. In general, the potential effect of enrichment strategies
on labelling and the route of approval of any test as a companion
diagnostic should be part of an ongoing dialogue with regulatory
bodies during drug development (https://www.fda.gov/media/
121320/download; accessed 1 October 2020).

Our work represents the first retrospectively validated ML
model linking drug mechanism of action and the genetic, clinical
and demographic background of epilepsy patients to clinical drug
response. As such, it provides a blueprint for applying ML
approaches to achieve the key ambition of precision medicine
across a variety of disease areas, including neurological disorders.
In particular, extracting informative features from very high di-
mensional and sparse genomic data is challenging but relevant to
many disease areas. Our work demonstrates that even with lim-
ited sample size, integrating genetics data with clinical data for
informing drug response prediction is possible, when using
advanced ML methods combined with literature knowledge to man-
age the huge dimensionality of the genetics data. Furthermore, such
models have substantial potential utility for clinical practice and in
future clinical trial design by their ability to enrich for responders.
Integration of additional data modalities, such as EEG or imaging,
may further improve model performance. Additionally, this ability to
identify and characterize subpopulations more likely to respond,
shows that within the domain of neurological disorders and specific-
ally epilepsy, we can begin to think more systematically about ration-
al and personalized clinical decision making and reducing the
disease burden for patients on an individual level.
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