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Abstract

Understanding how differentiation programs originate from within the gene expression landscape 

of hematopoietic stem cells (HSC) is crucial to develop new clinical therapies. We mapped the 

transcriptional dynamics underlying the first steps of commitment by tracking transcriptome 

changes in human HSC and eight early progenitor populations. Transcriptional programs are 

extensively shared, extend across lineage-potential boundaries, and are not strictly lineage-

affiliated. Elements of stem, lymphoid and myeloid programs are retained in multi-lymphoid 

progenitors (MLP), reflecting a hybrid transcriptional state. Based on functional single cell 

analysis, BCL11A, SOX4 and TEAD1 governed transcriptional networks within MLPs, leading to 

B cell specification. Overall, we show that integrated transcriptome approaches can identify novel 

regulators of multipotency and uncover additional complexity in lymphoid commitment.

In homeostasis, blood production depends on a highly coordinated hierarchy of 

hematopoietic cells. At the apex of the hierarchy are hematopoietic stem cells (HSC), which 

are capable of self-renewal, have multi-lineage potential and are responsible for generating 

all of the lineages of hematopoietic cells in the blood. HSC self-renewal capacity and 

multipotentiality are gradually lost as cells progress through various multi-, oligo- and uni-

lineage intermediates, eventually acquiring either erythroid, myeloid or lymphoid identity. 
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Understanding how the genomic information present in HSC translates into such complex 

differentiation programs is crucial to develop new approaches in regenerative medicine and 

better cancer therapeutics.

At the molecular level, targeted functional studies of single or paired transcription factors 

have identified a relatively small number of key transcription factors that drive 

differentiation of progenitor cells, by directing the sequential establishment of 

transcriptional programs essential for terminal differentiation 1. Complex transcriptional 

networks integrated around the GATA1-PU.1 bimodal switch represent a paradigm for 

myeloid vs erythroid lineage specification 2. By contrast, differentiation into lymphoid 

lineages follows a more linear network architecture. Establishment of lymphoid identity 

requires successive and obligatory activation of E2A, Ebf1 and finally Pax5 in distinct 

progenitor populations 3,4. However, a clear genome-wide picture of how these master 

transcription factors interact with the transcriptional and epigenetic landscape in which they 

operate is still lacking 5,6.

To date, most mechanistic studies used murine models, but with robust sorting and 

functional assays, global transcriptional analyses of human hematopoietic cell types is now 

feasible. Initial gene expression analysis on 38 human hematopoietic cell subtypes, 

identified gene modules and transcription factors circuits active in stem and progenitor cell-

enriched fractions and reused in terminally differentiated cells 7. One limitation of this study 

was the lack of highly purified immature progenitor and stem cell populations, which 

precluded dissection of the very first transcriptional events linked to commitment. In mouse, 

several studies have described the expression of lineage-affiliated transcriptional programs 

within multilineage progenitors 8–10. These studies support the lineage priming hypothesis, 

which argues that multipotent progenitors express, before lineage restriction, low levels of 

genes a priori known to be key determinants of distinct fates 11. However none of these 

studies functionally investigated whether there are additional layers of regulation upstream 

of the master transcription factors that affect lineage specification, or alternative molecular 

routes to specify any particular fate.

At the cellular level, earlier models of hematopoietic commitment described a unique binary 

split between myeloid and lymphoid fates, immediately downstream of a multipotent cell 12. 

Several recent reports challenged this view by demonstrating that lymphoid and myeloid 

fates remain entangled over several early cell populations. The earliest thymic progenitors 

(ETP) and granulocyte-monocyte progenitors (GMP), long thought to be unilineage, retained 

residual myeloid or lymphoid potential respectively 10,13,14. Importantly, recent studies in 

human cord blood and bone marrow demonstrated the existence of early lymphoid-biased 

progenitors that retain myeloid, but not erythroid, potential. These progenitors, termed 

multi-lymphoid progenitors (MLP, 13), or lymphoid-primed multipotent progenitors (LMPP, 
15) by analogy with the mouse system 16, are identified as CD34+CD38−Thy1−CD45RA
+ 13,15 or by high expression of L-selectin on CD34+ cells 17. In view of this flexibility in 

lymphoid commitment, it is likely that a large number of yet unidentified regulators 

orchestrate specification of lymphoid fates. The identification of MLP provides a unique 

opportunity to investigate the molecular mechanisms underlying lymphoid vs myeloid 

lineage choice in primary human hematopoietic cells.
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To understand how stem, lymphoid and myeloid programs are coordinated during 

hematopoietic differentiation, we systematically profiled the transcriptome of MLP in the 

context of nine other human hematopoietic stem and progenitor cell populations, for which 

self-renewal and differentiation capacities are known at the single cell level 13,18. At this 

level of cellular resolution, we uncovered a landscape of transcriptional programs that cross 

population and lineage boundaries. Computational and functional mapping of transcription 

factors activity in the very first stages of hematopoietic differentiation revealed the 

molecular complexity underlying lymphoid commitment, identified new transcription factors 

that contribute to B cell commitment, and established that molecular regulation of B cell 

specification occurs at the level of MLP.

RESULTS

Transcriptional dynamics of the early stages of human hematopoiesis

To monitor global transcriptional changes during the first steps of human hematopoietic 

differentiation, we prospectively isolated 10 populations of cord blood (CB) HSC and early 

progenitors (Fig. 1a and Supplementary Table 1). This included populations of highly 

enriched repopulating HSC (HSC1, 1 in 10; HSC2, >1 in 100), transiently engrafting 

multipotent progenitors (MPP) 18 and a spectrum of early committed progenitors: common 

myeloid progenitors (CMP), megakaryocytic-erythroid progenitors (MEP), granulocytic-

monocytic progenitors (GMP), and multi-lymphoid progenitors (MLP). MLP represents the 

earliest lymphoid progenitor giving rise to all lymphoid lineages (B, T and NK cells) as well 

as monocytes and dendritic cells 13,15. Finally, we included 3 lymphoid-restricted precursor 

populations: B-NK precursors 13, proB cells and the most primitive progenitors found in the 

thymus, ETP 19. Gene expression profiling was performed on Illumina arrays with a 

protocol optimized for maximal sensitivity with low cell number.

To understand the general transcriptional architecture of these 10 populations, we focused on 

the 9898 genes (13385 probes) that change expression by at least 2-fold between any 

populations (hereafter termed “dynamically regulated hematopoietic”, DREGH, genes, one-

way ANOVA, FDR<0.05). Principal Component Analysis (PCA, Fig. 1b and Supplementary 

Figure 1a) showed that the major lineage outcomes (stem, lymphoid, myelo-erythroid) are 

recapitulated in clusters of global transcriptional similarity, with the exception of ETP, 

whose transcriptome closely resembled that of myeloid progenitors. Unsupervised 

hierarchical clustering identified similar relationships between populations (Supplementary 

Figure 1b). Despite differences in repopulating HSC frequency, the two stem cell 

populations profiled here (HSC1 and HSC2) clustered extremely close, and differed by less 

than 10 genes (data not shown). We thus restricted further analyses to the HSC1 population. 

Finally, MLP gene expression clustered much more closely with HSC and MPP than with 

more differentiated lymphoid fractions.

To capture dynamic changes in transcription upon lineage commitment, we generated 

precursor-product transition gene-sets, which estimate differentially expressed genes 

between 2 developmentally related populations (moderated t-tests, FDR < 0.05, 

Supplementary Table 2). We then overlaid the numbers of differentially expressed genes 

onto the established model of developmental relationships within the hematopoietic 
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hierarchy 13,18 (Fig. 1a, Supplementary Table 3). Only 29 genes were differentially 

expressed between HSC and MPP, indicating a very high degree of transcriptional similarity 

between these two cell types. Eight times more genes changed upon transition from MPP to 

CMP (7991 genes) than from MPP to MLP (999 genes), showing a clear demarcation 

between the multipotent (HSC and MPP) and myeloid committed progenitors. Changes 

along the lymphoid branch of the hierarchy were more gradual, consistent with the idea that 

lymphoid specification is not a rapid binary decision point but rather an extended process 

characterized by progressively more committed states 20,21. Establishment of a differentiated 

cellular identity involves activation of lineage-specific transcriptional programs, defined as 

groups of genes which expression is modulated similarly during the commitment process. To 

identify the dominant transcriptional programs present in the early hematopoietic hierarchy, 

we integrated two distinct unsupervised pattern recognition methods, K-means and Short 

Time Series Expression Miner (STEM) 22, that we applied to the populations most relevant 

for studying lineage commitment: HSC1, MLP, proB, CMP, GMP, MEP. Clustering was 

performed independently with each algorithm on the DREGH genes to generate expression 

profiles (Fig. 2a, b and Supplementary Table 4). Profiles with similar kinetic and biological 

behavior were then grouped into clusters, which we defined as transcriptional programs. 

Each cluster was named based on the cell types in which the expression of the genes in that 

cluster is the highest, therefore relating these clusters of expression profiles to meaningful 

biological programs and lineage commitment routes. Both methods identified similar 

transcriptional programs, independently of the parameters used, and assigned similar 

proportions of genes to each program (Fig. 2c and Supplementary Figure 2a). The 

transcriptional program with the highest number of genes contained genes with high 

expression in HSC that were downregulated in all other populations, thereby termed stem 

cell program. A reciprocal progenitor program, containing genes low in HSC but 

upregulated, independently of lineage choice, in all other populations was the second most 

represented program and was enriched for cell cycle associated genes, consistent with the 

higher proliferative rate of progenitors. Lineage-specific programs were less abundant; 

among these, lymphoid-specific clusters contained more genes than myeloid or erythroid. 

The STEM algorithm uniquely identified a group of genes shared by MLP and GMP, termed 

myelo-lymphoid, which was enriched in NF-κB signaling, apoptotic and immune response 

genes (data not shown). K-means clustering revealed a very close association between gene-

expression in CMP and MEP, which was not otherwise detected by the STEM method.

MLP participated in 4 of the 6 main transcriptional programs (Supplementary Figure 2b) and 

exhibited the proliferative signature of progenitors as well as elements of both myeloid and 

lymphoid programs, consistent with their poised developmental state. Approximately 56% 

of the HSC cluster genes (as measured by the STEM algorithm, Supplementary Table 5) 

were expressed at similar levels in MLP, despite profound differences in self-renewal 

capacity. Of all the DREGH genes, 38% were transcribed similarly by HSC and MLP, 

whereas only 16–19% showed co-expression in HSC and either MEP, GMP or ProB 

(Supplementary Table 5), again highlighting the transcriptional resemblance between HSC 

and MLP. Collectively, whereas the stem, lymphoid and myeloid transcriptional programs 

were interwoven, the erythroid program was more separated (Supplementary Figure 2b). 

Consistent with previous observations in mice 10, we observed more gradual expression 
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changes along the lymphoid lineage, and a persistent association of lymphoid- and myeloid-

associated genes over several steps of hematopoietic differentiation. Furthermore, the HSC 

program remained largely active in MLP, which also displayed lymphoid and myeloid 

elements, suggesting that these cells most likely represent a critical stage at which lineage 

commitment occurs.

Transcription factor architecture of early human lymphoid commitment

Transcription factors are master regulators of lineage commitment decisions. To capture the 

global complexity of transcription factors expression during commitment, we compiled a 

comprehensive list of differentially expressed transcription factors in hematopoiesis (see 

Methods), that can be mined for regulators of self-renewal and differentiation. Of 1581 

putative transcriptional regulators, 477 (30%) were differentially expressed across the 

hierarchy (FDR<0.01, fold-change >2, Supplementary Table 6). Transcription factors 

expression clustered into the 6 main transcriptional programs described above (Fig. 3a), 

reflecting the internal structure of transcriptional changes during lineage commitment. Each 

transcriptional program contained transcription factors shown to be important in maintaining 

their respective states (EVI1, ERG and ID1 in the stem cluster; GATA1 in MEP; the 

myeloid-affiliated factors CEBPA and SPI1 in the GMP cluster). MLP expressed high levels 

of both myeloid (CEBPA) and lymphoid (IKFZ1, EBF1) determining transcription factors, 

again indicating that these cells are not fully committed to either lymphoid or myeloid fate.

To better understand transcription factor activity in MLP and eventually identify novel 

regulators of lymphoid restriction, we integrated three computational approaches. First we 

assembled a list of transcription factors with an early lymphoid-specific pattern of 

expression (see Methods). This yielded 60 transcription factors whose expression is 

upregulated in MLP relative to HSC-MPP or non-lymphoid progenitors (Fig. 3b). While 

known regulators of B cell (EBF1, ID2, FOX and HOX family factors) and T cell 

(NOTCH1, HEY1, HES4) lineages were in this group, most transcription factors had no 

known association with lymphoid development, providing a rich resource of potential 

candidates whose role in lineage choices will require functional validation. Second, to 

identify critical transcription factors that may not exhibit differential expression, we 

examined overrepresentation of known binding motifs within those genes expressed across 

the hierarchy. We generated population-specific gene sets for all populations (genes that are 

most differentially upregulated in one population relative to all others, Supplementary Table 

7) and looked for over-representation of 385 experimentally verified or in silico predicted 

cis-binding sequences of transcription factors in each gene set (see Methods). Less 

transcription factors family motifs were enriched in the myelo-erythroid gene sets (17 motifs 

in CMP, GMP, MEP), than in the MLP and proB gene sets (33 motifs, including BCL6, 

CEBPG, CREB, STAT and SOX family motifs, Fig. 3c). The majority of transcription factor 

families (11/17) controlling genes highly expressed in MLP also controlled proB specific 

genes, again underscoring the complexity and gradualness of establishing a differentiated 

lymphoid transcriptional program.

Last, we sought to predict in silico how changes in particular transcription factors expression 

might account for the dynamics of gene expression that lead to the establishment of B cell 
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identity. To this end, we integrated our gene expression data with available transcription 

factors binding information from the Dynamic Regulatory Events Miner algorithm (DREM) 
23 to deduce a global developmental map, annotated with transcription factors that are most 

likely to control the expression changes associated with a particular transition of early B cell 

commitment (Fig. 3d and Supplementary Figure 3). Of interest, SOX and MAF were 

predicted to first activate genes at the MLP to B-NK progenitor transition and then two 

distinct sets of genes in the transition to proB. A known set of B cell genes with binding 

sites to BCL6, AIRE and FOX were predicted to be upregulated between MLP and B-NK 

progenitors; similar binding sites were also in a series of apoptosis-related genes repressed 

in proB cells. Collectively, this integrative bioinformatics approach uncovered novel 

transcription factors anticipated to control B cell specification, and predicted that these 

factors may have complex roles by controlling distinct sets of genes at different stages of 

lineage specification.

Identification of early regulators of commitment in primary human MLPs

Our bioinformatic analysis predicted that lineage-specific transcriptional networks are not 

yet stabilized in MLP. To test this idea and identify key determinants of lymphoid vs 

myeloid commitment, we perturbed lineage outcomes by silencing key transcription factors 

in MLP. Based on the computational analysis of MLP-specific transcription factors, we 

studied the function of factors with DNA-binding motifs that were over-represented in the 

MLP-specific gene-set (Fig. 3c), or that were predicted in silico to act recurrently during B 

cell development (Fig. 3d), as these most likely represent key nodes in the MLP regulatory 

circuit (highlighted in bold in Fig. 3b). The expression of these candidates was verified 

across the hematopoietic hierarchy by qRT-PCR (Supplementary Figure 4a). To examine the 

role of these transcription factors in lymphoid development, we developed lentiviral vectors 

expressing shRNAs that efficiently silenced the expression for 8 of 12 candidate 

transcription factors (Supplementary Figure 4 b, and c) and assessed the clonal potential of 

sorted single MLP to differentiate into monocytic, B and NK cells in vitro. Lineage-depleted 

CB cells were transduced with shRNA-expressing lentiviral vectors and single MLP were 

sorted into plates seeded with murine stromal MS-5 cells 24 in the presence of appropriate 

cytokines (Supplementary Figure 4d). After 3 weeks, the number of transduced (GFP+) 

myeloid, B and NK cell colonies was monitored by detection of lineage-specific cell surface 

markers (Supplementary Figure 4e). The capacity of the MS5-MBN assay to accurately 

identify changes in lineage commitment was validated extensively (Supplementary Note 1, 

Supplementary Fig. 4f–h). In particular, shRNA-silencing of EBF1, a key master regulator 

of B cell specification significantly reduced the number of B cell colonies formed in our 

assay (p=0.049, 4 independent CB). shRNA-silencing of GATA2, not expressed in MLP, did 

not affect any of its developmental outcomes (Fig. 4a).

We next tested whether silencing of 8 candidate transcription factors altered the lineage 

outcomes of MLP, by screening over 8500 single-cell derived colonies. Our screen identified 

4 transcription factors (BCL11A, SOX4, BCL6 and TEAD1) that had significant effects on 

lymphoid colony formation across multiple independent experiments (Fig. 4b). Of note, the 

results described below were recapitulated with independent shRNAs (Fig. 4b), with the 

exception of BCL6 for which we could not generate a second shRNA construct that 
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significantly reduced BCL6 mRNA levels. As such, we cannot exclude potential off-target 

effects in the BCL6 sliencing phenotypes described below. Silencing of two genes, SOX4 
and BCL6, led to significantly fewer B and NK colonies. Also, cultures of BCL6-shRNA-

silenced and SOX4-shRNA-silenced cells contained proportionally more fully differentiated 

monocytic colonies compared to controls, as scored by the number of CD14+ colonies (Fig. 

4c). These observations suggest that BCL6 and SOX4 act in MLP or their immediate 

progeny to promote lymphoid differentiation while repressing myeloid fates. Silencing of 

two other genes, BCL11A and TEAD1, generated fewer B cell colonies (Fig. 4b), but MLP 

differentiated normally into NK and myeloid cells. These data suggest that BCL11A and 

TEAD1 act in B cell development at or downstream of B cell specification. No significant 

differences in the proportion of cycling (Fig. 4d) or apoptotic (data not shown) cells were 

observed in MLP following a week of culture on MS5 stroma, suggesting that the skewed 

colony distributions derived from alteration of commitment decisions. In addition, these 

transcription factors govern specifically the lympho-myeloid lineage choice, as we observed 

no skewing of myelo-erythroid output in conventional colony-forming assays upon shRNA-

silencing of BCL11A, SOX4, BCL6 or TEAD1 in CD34+ cells (Fig. 4e). In summary, our 

functional validation of transcription factors, predicted to be important regulators based on a 

global computational analysis of human CB progenitors, has uncovered unique and distinct 

roles for BCL11A, SOX4, BCL6, and TEAD1 in human lymphoid development.

BCL11A, SOX4 and TEAD1 regulate MLP entry to B cell commitment

During B lymphopoiesis, B cell precursors transit through a continuum where alternate fates 

are being progressively repressed and B cell identity is gradually acquired 21. To precisely 

establish at which developmental stage the four transcription factors identified in the screen 

influence B cell differentiation, we reconstituted human hematopoiesis in xenografts, in 

which all steps of human B cell commitment are recapitulated 25. Equal numbers of HSC-

enriched CB cells (CD34+) transduced with lentiviral vectors expressing shRNAs against 

BCL11A, BCL6, SOX4 or TEAD1 were injected into immune-deficient NSG mice. 

Efficient silencing was observed in vivo for all lentiviral vectors used (Supplementary Figure 

5a). Normal percentages of total B cells (CD19+) were produced upon BCL6 silencing. By 

contrast, the percentage of total B cells was significantly reduced in animals transplanted 

with BCL11A, SOX4 and TEAD1 silenced cells (Fig. 5a, Supplementary Figures 5b–c), 

confirming our in vitro results.

We then analyzed the production of the various developmental intermediates of B cell 

differentiation (Supplementary Figure 5d). Mice transplanted with BCL6-silenced cells had 

fewer MLP than controls (Fig. 5b), which were nonetheless directed along the B cell 

differentiation path as they gave rise to almost normal numbers of early B cells 

(Supplementary Figure 5e). By contrast, BCL11A and SOX4 silencing resulted in a 

significant increase in the proportion of MLP; a similar trend was observed upon TEAD1 

silencing (Fig. 5b), suggesting a differentiation block at this stage. Quantification of 

population doublings at each step downstream of MLP (Fig. 5c) showed that progression 

from MLP to early B cells was significantly compromised upon silencing of all 3 genes, 

BCL11A, SOX4 and TEAD1. No changes in proliferation or apoptosis were observed in 

BCL11A or SOX4 silenced earlyB (Fig. 6a–b), indicating that the observed reduction in B 
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cells is due to an early differentiation defect. Of note, upon silencing of TEAD1 transition 

from early B to proB was also significantly compromised (Fig. 5c), leading to a more than 4-

fold decrease in proB (Supplementary Figure 5e–f), which could be explained by a trend 

towards increased apoptosis in the early B compartment (Fig. 6a). The few TEAD1-silenced 

proB cells produced, cycled significantly more than their control counterparts 

(Supplementary Figure 6a) generating preB cells at levels close to normal (Supplementary 

Figure 5e). No such changes in proliferation were observed for BCL11A shRNA-silenced or 

SOX4 shRNA-silenced proB and preB cells (Supplementary Figure 6a–b). These findings 

raised the possibility that BCL11A, SOX4 and TEAD1 might act upstream of some of the 

master regulators of B cell commitment. We therefore examined by qRT-PCR whether 

decreased levels of BCL11A, SOX4 or TEAD1 affected the expression of IKZF1, E2A, 

EBF1 and PAX5 in early B cells, and found that all three genes altered the expression at 

least one of these key lymphoid transcription factors (Fig. 6c), with SOX4 silencing having 

the broadest effect, decreasing expression levels of E2A, EBF1 and PAX5. Taken together, 

our data show that BCL11A, SOX4 and TEAD1 independently contribute to B cell 

commitment decisions by controlling the MLP to early B cell transition (Supplementary 

Figure 6c).

DISCUSSION

Here, we detail the gene expression profiling of highly purified and functionally defined 

human HSC and progenitors, providing a resource for investigation of the earliest steps of 

human hematopoietic differentiation. Our bioinformatic analysis revealed a landscape of 

tightly interconnected transcriptional programs that contrasted with many commonly 

accepted predictions of a rigid demarcation of stem cell and lineage commitment circuits. 

Through a combined computational and functional approach, our data uncovered high 

molecular complexity in lymphoid commitment and identified BCL11A, SOX4 and TEAD1 

as new lymphoid transcription factors acting upstream of known master regulators of B cell 

commitment.

Several principles underlying loss of stemness and lineage commitment emerge from our 

analysis of global patterns of gene expression. First, transcriptional programs are shared 

among cell types with similar lineage potential (MLP and proB; CMP and MEP; MLP and 

GMP, both monocyte precursors). Second, transcriptional programs can cross physiological 

lineage boundaries. For example, GMP, which give rise to myeloid cells, and ETP, which 

generate T cells in the thymus, also display very similar transcription profiles. This 

similarity is not surprising in view of the myeloid potential of ETP 14 and the capacity of 

GMP to produce T cells when appropriately stimulated 10,13. A third important principle is 

that HSC programs do not terminate abruptly but persist for many stages. HSC and 

transiently repopulating MPP differ only by a handful of genes raising the possibility that the 

predominant regulation of self-renewal does not occur at the transcriptional level. This 

conclusion remains cautious as limitations in microarray technology may not capture subtle, 

but important transcriptional differences. The stem cell program is also partially carried over 

into MLP, which continue to express many but not all HSC genes. This phenomenon can be 

interpreted in view of the lineage priming hypothesis, which postulates that genes important 

for differentiation into a particular fate are already expressed at low levels in HSC. However, 
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the expression of many genes, including some with established stem cell functions (i.e. 

EVI1, ERG, ID1), is maintained at similar or slightly lower levels in MLP, indicating that 

MLP retain components of the stem cell circuitry. A fourth conclusion is that MLP do not 

possess a unique transcriptional program but rather exhibit partially established stem, 

myeloid and lymphoid transcriptional programs. Thus, we propose that the molecular 

regulation of myeloid or lymphoid fate acquisition occurs physiologically at the level of 

MLP.

The computational description of the transcriptional programs and transcription factors 

architecture presented here suggests a model in which lymphoid specification proceeds more 

gradually and involves more molecular players than does commitment to myeloid fate. 

Taking into account potential functions of epigenetic regulators and miRNAs not analyzed 

here, our results, together with those of other groups 7,26 indicate that the molecular circuitry 

underlying entry into B cell specification is very likely more complex than previously 

assumed. Based on the current view of hematopoiesis 20, in which there is no early 

obligatory separation between myeloid and lymphoid fates, it seems likely that myeloid 

differentiation is a default commitment program that needs to be shut down for other 

lineages to be specified 27. Accordingly, in the thymus, T cell specification requires down-

regulation of pan-progenitor genes, which is achieved through multiple distinct repressor 

functions 28. Likewise we propose the existence, in B cell commitment, of an additional 

layer of transcription factors regulation, composed of molecules such as BCL11A, SOX4, 

TEAD1 and IKZF1 10 that sets the stage for activation of the self-sustaining EBF1-PAX5 

axis 29, itself required and sufficient for the establishment of the full B cell differentiation 

program. We speculate that this molecular organization makes entry into B cell specification 

more adaptable to shifting demands.

Three of the transcription factors for which we describe a role in the very early stages of 

lymphoid commitment have previously been implicated in later steps of lymphopoiesis. 

BCL6 plays key roles in germinal center B cells 30 and is required for formation of a diverse 

B cell repertoire 31. Our results obtained with a single shRNA for BCL6 should be 

interpreted with caution, but they suggest that this transcription factor is also active during 

much earlier stages of hematopoiesis by regulating MLP formation or differentiation. Our 

data on BCL11A and SOX4 KD are consistent with the phenotype of BCL11A and SOX4-

deficient mouse models, in which there is no B cell development 32–34, but we further show 

that they direct MLP commitment to the B cell lineage rather than limiting later 

differentiation steps. The fourth transcription factor identified, TEAD1, has not been 

previously associated with hematopoiesis. TEAD1 functions with the transcriptional 

coactivator YAP downstream of the Hippo tumor suppressor pathway 35. YAP 

overexpression in the mouse does not alter HSC self-renewal or differentiation 36. Thus, by 

showing that TEAD1 first activates the MLP to early B progression, and also favors 

transition to the proB cell stage, we provide evidence that the Hippo pathway fucntions in 

lymphopoiesis.

The dataset presented here represents a resource to identify cell type-specific gene 

regulatory networks, which when integrated with future RNA-seq, genome-wide chromatin 

occupancy and epigenetic modification analyses will shed further light on how 
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hematopoietic cells are driven to commitment. We make available stem and progenitor 

specific gene expression sets as well as transcriptional program signatures that will, among 

other uses, facilitate classification of tumor subtypes based on their transcriptional homology 

to normal progenitors 37,38 and inform on their cell of origin. In addition, our data will 

contribute to improved methods for hematopoietic differentiation of pluripotent stem cells, 

by serving as a molecular roadmap with which to compare engineered cell types to their 

normal counterparts. Finally, the principle of obligatory sharing of transcriptional programs 

in the first steps of differentiation uncovered here could be a general design principle 

conserved in other stem cell driven tissues.

ONLINE METHODS

Primary samples

All CB samples were obtained with informed consent according to the procedures approved 

by the institutional review boards of the University Health Network and Trillium Hospital. 

Lineage depletion of CB samples was achieved by negative selection with the StemSep 

Human Progenitor Cell Enrichment Kit (Stem Cell Technologies) according to the 

manufacturer’s protocol.

Isolation of cell populations for gene expression profiling

Lin- cells were thawed and stained at 1×106 cells per 100uL with the following antibodies 

(all from BD, 1:100, unless otherwise stated): CD45RA FITC (1:25), CD90 PE (1:50), 

CD135 PE (1:10), CD49f PECy5, CD7 PECy5 (Beckman Coulter), CD38 PECy7, CD10 

APC (1:25), CD34 APCCy7. Cells were sorted into low-binding 1.5mL tubes (Axygen) with 

a FACSAria (BD) instrument. Purity was >95%. Freshly sorted populations of progenitor 

cells were pelleted and resuspended in TRIzol (Invitrogen).

Microarray mRNA profiling and data pre-processing

RNA extraction, cDNA synthesis, Pre-Amplification were carried out as described in 39. 

Whole-genome gene expression analysis was performed using the Human HT-12 WG DASL 

v4.0 R2 assay, which interrogates ≈ 29K targets corresponding to ≈ 21K genes 40.

Bioinformatic analyses

If not specified, all bioinformatics analyses were performed with R (version 2.12.1) and 

Bioconductor (version 2.10). Pearson’s correlations and hierarchical clustering were 

performed by using the “cor” and “hclust” R functions. For PCA, we first compared 

eigenvalues from real data PCA to randomized data PCA to evaluate which components are 

the most relevant (Supplementary Figure 1a), and then used the “dudi.pca” function of the 

Ade4 package (version 1.4–16). Pearson correlation coefficient based hierarchical clustering 

and PCA of all samples, as well as the percentage of presence calls (p-detection values 

<0.05) for each sample, were used to assess quality control. Data were quantile normalized 

(“normalizeQuantiles” command from the limma package; version 3.6.9), then log2-

transformed. All subsequent analyses were carried out with this dataset. The DREGH list 

was generated using GeneSpringGX software (Agilent), running one-way analysis of 

variation (ANOVA) analysis on all 10 populations profiled in this study, with Tukey HSD 
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post-hoc test and Benjamini-Hochberg multiple testing correction. We considered genes 

with a multiple test adjusted p-value <0.05 and an absolute fold-change >2. This analysis 

resulted in 13385 probes, corresponding to 9898 genes. All other differential expression tests 

were performed with the limma package (version 3.6.9), which calculates the moderated t-

test statistic for a particular contrast. All t-tests scores were controlled for multiple 

hypothesis testing using the Benjamini-Hochberg method. Unless otherwise stated, genes 

were considered differentially expressed for adjusted p-values <0.05. Three main group of 

contrasts were generated: (1) population-specific gene sets in which the mean expression of 

a gene in a particular population (e.g MLP) is compared to the mean expression in all other 

populations; (2) transcriptional programs gene sets, in which the samples contrasts were 

chosen to best reflect the transcriptional programs identified by undirected pattern discovery; 

(3) precursor-product transitions gene sets, where the expression of each gene in a particular 

population (eg: B-NKprec) is compared to its expression in its closest known progenitor 

population (eg: MLP) independently of all other samples. A summary of all differential 

expression lists generated is presented in Supplementary Table 2.

Transcriptional programs derivation

The STEM (Short Time Series Expression Miner) algorithm 22 was downloaded from http://

gene.ml.cmu.edu/stem/. This clustering method first defines a set of representative model 

profiles, which correspond to possible patterns of gene expression across the conditions 

analyzed in the experiment. Based on correlation coefficients each gene is assigned to the 

closest profile in terms of expression. The number of genes expected randomly for each 

profile is also computed (random permutation of original values for each gene, 

renormalization then assignment to profiles, repeated over 500 permutations) and serves as a 

basis to calculate statistical significance of each profile. Statistical significant profiles 

represent the dominant expression profiles present in the dataset. By the STEM method, the 

number of profiles is thus unbiased as determined by the algorithm and not by the user. The 

parameters used for STEM clustering were set at a maximum of 50 model profiles, a 

maximum unit change between time points of 1, and a minimum correlation for clustering 

similar profiles >0.5. For GO enrichment within this program, the p-values were corrected 

with 500 randomizations and were considered significant for FDR<0.05. As the STEM 

algorithm was first implemented to analyze temporal expression profiles, the analysis was 

performed with 3 different population orders which all yielded similar results. K-means 

clustering was performed in R with the function “kmeans” setting number of clusters k to 8, 

10 or 14. To determine these values of k, objectives values, we used the Figures of Merit 

method (FOM 41, implemented in MeV software).

Both algorithms output a number of “profiles” (predefined for K-means, but automatically 

(unbiased) calculated by STEM based on the dataset). As pattern recognition methods will 

find profiles that, even though distinct in intensity of expression, represent the same kinetic 

or biological behavior, similar “profiles” (based on correlation coefficient) were then 

grouped into clusters, which are effectively our “transcriptional programs”. This was 

performed independently for STEM or k-means run with different parameters. Each cluster 

was named based on the cell types in which the expression of the genes in that cluster is the 
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highest, therefore relating these clusters of expression profiles to meaningful biological 

programs.

To quantify the degree of similarity between HSC and progenitors populations of distinct 

lineages, we first calculated the median standard deviation of all DREGH genes among HSC 

biological replicates. We then considered that a particular gene was similarly expressed in 

HSC and a more differentiated population (MLP, GMP, MEP or ProB) if its expression in 

the latter was within a standard deviation from its value in HSC.

Pathway enrichment analyses

The likelihood of over-representation of Gene Ontology categories in particular gene-lists 

was estimated using the Explain software suite from Biobase, which is derived from a 

hypergeometric distribution.

Transcription factor architecture analyses

The list of annotated transcription factor or regulators of transcription was annotated by 

aggregating GO and KEGG categories containing “transcription factor” or “transcription 

regulator activity”, which yielded 1581 genes. 477 of them were differentially expressed at 

FDR<0.01 at fold-change >2 by one-way ANOVA analysis with Tukey HSD post-hoc test 

and Benjamini-Hochberg multiple testing correction (GeneSpringGX software; Agilent).

Assembly of a list of transcription factor with an early lymphoid-specific pattern of 
expression

Five differential expression lists from Supplementary Table 2 were selected to generate a 

scoring method for transcription factors with an early lymphoid pattern of expression: the 

MLP-specific gene set (#2), HSC_MLP co-expressed genes (#8), the HSC to MLP transition 

gene set (#14), the MLP to Pro-B transition gene set (#19) and the MLP and GMP 

comparison (#24). Each differential expression list was restricted to transcription factors 

which had FDR<0.05 and absolute fold-change >2, and was then ranked by fold-change. 

Rank positions scores (RPS) were assigned with the most upregulated transcription factor as 

+1 and the most downregulated as −1. For every list the number of significantly upregulated 

and downregulated transcription factors were respectively designated nUP and nDOWN. There 

were 452 unique transcription factors across these 5 lists. For each of these, an overall 

lymphoid score (λ) was calculated as the harmonic sum of renormalized ranks, as follows:

This strategy gives more weight to the most differentially expressed genes in any list. 

Transcription factors with negative overall lymphoid scores as well as transcription factors 

with higher expression in HSC relative to MLP were eliminated. As our initial transcription 

factor list contained many transcriptional regulators that are not transcription factor per se, 
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we manually discarded the latter ones, which resulted in the 60 transcription factor listed in 

Fig. 3b. In this list, we found known regulators of B cell (EBF1, ID2, FOX and HOX family 

factors), T cell (NOTCH1, HEY1, HES4) and myeloid development (RUNX1). Factors 

highlighted in bold in Fig. 3b were selected for further functional validation, based on the 

fact that they were also predicted to bind to the promoters of genes either highly expressed 

in MLP (Fig. 3c) or dynamically regulated during B cell development (Fig. 3d).

Transcription factor binding motifs enrichment

Transcription factor binding motifs enrichment analysis was run independently on each of 

the 8 population-specific gene sets (Supplementary Table 2). Each of these was restricted to 

the differentially upregulated genes in a certain population (e.g. MLP) with FDR<0.05, log2 

average expression >7 and a fold-change cut-off resulting sin gene lists ranging from 300 to 

1000 genes (Supplementary Table 7). Explain3.0 software from Biobase was used to 

determine which transcription factors most likely control the genes in each dataset. The 

software makes use of 2 databases: TRANSFAC (experimentally-validated transcription 

factor binding sites and their target genes) and TRANSPRO (vertebrate promoter sequences 

annotated with their characteristics). Two independent algorithms, F-MATCH 42 and P-

MATCH 43 were used to find transcription factor binding sites (TFBS) and compare the 

number of sites found in these query sequences against a background gene set. We chose a 

restricted version of the DREGH list (5658 genes) as a background set, as using an 

annotated list of housekeeping genes which promoters are GC rich leads to false positive 

over-representation of AT-rich matrices in all our population specific gene sets. Furthermore, 

we hypothesized that using a set of pan-hematopoietic genes as background would enhance 

detection of population-specific transcription factor families. Promoters were scanned for 

the presence of motifs in a window spanning 500 bp upstream and 100bp downstream of the 

transcription-start site (TSS). After search, matrices cut-offs and window positions were 

optimized. Only best supported promoters of the TRANSPro database were used. p-value 

cut-offs of 0.01 and 0.05 were used respectively for the F-MATCH and P-MATCH 

algorithms. Only transcription factor families found significantly enriched by both 

algorithms were retained. An enrichment score (ES) was calculated for each of these based 

on the geometric mean of the negative logarithms of the F-MATCH and P-MATCH values as 

follows:

Transcription factor-annotated regulatory event map along B cell commitment

An annotated pan-hematopoietic transcription factor-target interaction database was 

generated by searching for all known predicted and known transcription factor binding sites 

in the promoters of the DREGH gene list. Explain3.0 software was used to run the F-

MATCH algorithm without any background set, using the whole collection (13957) of 

experimentally verified and predicted TFBS and positional weight matrices (PWM) present 

in the TRANSPRO database. Of the 9898 genes present in the DREGH list, 9523 had 

annotated promoters in the TRANSPRO database. We also incorporated transcription factor-

target interactions derived from ChIP-on-chip datasets 44,45. This information was collapsed 
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into a matrix containing 466453 transcription factor-target interactions. To simplify model 

building with DREM software (see below), the transcription factor-target interactions 

database was restricted to 255843 entries corresponding to the transcription factor families 

that were found to be enriched in the promoters of at least one of our population-specific 

gene sets.

Dynamic Regulatory Events Miner (DREM) software 23 was downloaded from http://

gene.ml.cmu.edu/drem/ and was used to build a regulatory event map. The expression data 

input contained log2 transformed signal data from the DREGH list, restricted to HSC, MLP, 

Early B, ProB datasets in this order, which reflects progression along B cell commitment. 

All signals were normalized to the first time point, HSC. Genes were kept in the analysis 

even in the absence of transcription factor input data. The minimum absolute expression 

change between time points was set to 0.5. The model was built using the transcription 

factor-gene interaction data jointly with the expression data to produce a more biologically 

coherent model. A maximum of three paths out of a split event was enforced and no path 

merging was allowed. Transcription factors associated to nodes or splits with a score <0.01 

based on the hypergeometric distribution were considered in the analysis. Of note, as the 

transcription factor data was used to learn the model, the score does not represent a true p-

value but the lower the score the more significant the association. Gene Ontology annotation 

was run within DREM software with FDR<0.01 (with Bonferroni correction).

Lentiviral vector constructs and transduction

All shRNA sequences used in this study were derived from the TRC library (http://

www.broadinstitute.org/rnai/public/), synthesized as 5′-P oligonucleotides and cloned into 

pLKO vectors 46 in which the puromycin resistance cassette was replaced by GFP. Hairpins 

were placed under control of the H1 or U6 promoter. Viral particles were produced as 

described 47 and titrated on 293T cells. For transduction Lin- CB cells were thawed, 

incubated for 3–5 hours in X-VIVO 10 medium (BioWhittaker, Waldersville, MD) 

supplemented with 1% BSA and the following cytokines (all from R&D Systems): SCF 

(100 ng/ml), FLT3L (100 ng/ml), TPO (50 ng/ml) and IL-7 (10 ng/ml). Cells were then 

incubated in the same medium supplemented with virus at a multiplicity of infection of 50–

130 Transforming Units/mL for 16 (MS5-MBN assay) to 24 hours (in vivo assays).

MS5-MBN assay

4–5×105 MS5 stromal cells 24 were seeded in 96-well plates (Nunc) coated with 0.2% 

gelatin (SIGMA), in H5100 medium (Stem Cell Technologies) supplemented with Pen/

Strep, L-Glutamine, and cytokines (all from R&D Systems): SCF (100 ng/ml), FLT3L (10 

ng/ml), TPO (50 ng/ml), IL-2 (10 ng/ml), IL-7 (20 ng/ml), IL-6 (20 ng/ml), G-CSF (20 

ng/ml) and GM-CSF(20 ng/ml). 48 hours later, and 12 hours after transduction, transduced 

Lin- cells were washed and 1 or 2 MLP cells were sorted onto stroma. Half of the medium 

was changed weekly and 3 weeks after seeding, colonies were harvested, resuspended by 

physical dissociation, filtered through 96-well filter plates (Pall life sciences, Ann Harbor, 

IL) and the whole content of each well was screened by flow cytometry. Myeloid cell 

colonies were defined as CD56− CD11b+ whether CD14+ (monocytic) or CD14− (non-

monocytic). B cell colonies were identified as CD11b− CD19+, while NK cell colonies were 
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CD11b− CD56+. As MLP were sorted at single cell level prior to GFP appearance, each 

plate contained both GFP+ and GFP− colonies, which can serve as an internal negative 

control. Colonies were retained for analysis if containing > 10 GFP+ (GFPpos colony) or 

>10 GFP− (GFPneg colony, untransduced) cells. For plates seeded with MLP incubated with 

control lentiviral vectors, the number of colonies containing >5 Myeloid, B and/or NK cells 

were counted independently for GFPpos and GFPneg colonies. For plates derived from MLP 

exposed to candidate lentiviral vectors, only GFPpos colonies were considered and the 

proportion of Myeloid, B or NK colonies formed in these plates was compared to that of 

control plates seeded with MLP derived from the same pool of CB (paired two-tailed t-test). 

A minimum of 20 GFPpos colonies per CB pool, and a minimum of 3 independent 

transductions and CB pools were screened.

In vivo experiments

All animal experiments were done in accordance to institutional guidelines approved by 

University Health Network Animal care committee. NSG mice (NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ; Jackson Laboratory) were sublethally irradiated (250rad) 24 

hours prior to intra-femoral injection. Lin- CB transduced with control or KD lentiviral 

constructs were harvested 72 hours post-transduction and stained for CD34 (CD34-APC, 

BD, 1:100). Live (SytoxBlue-, 1:104, Life Technologies) GFP+ CD34+ cells were sorted on 

a FACSAria flow-cytometer and 3×104–5×104 cells/mouse were injected intrafemorally. 

Mice were sacrificed 8–10 weeks post-transplantation, the injected femur and other bones 

were flushed separately in Iscove’s modified Dulbecco’s medium (IMDM) and cells were 

stained with the following antibodies (all from BD and dilution 1:100 unless otherwise 

specified): CD19 PE, GlyA PE(Beckman Coulter), CD45 PECy5 (Beckman Coulter), CD14 

PECy7 (1:200, Beckman Coulter), CD33 APC, CD15 V450; or for assessment of all the 

steps of B cell differentiation with: CD19 PE, CD33 PECy5 (Beckman Coulter), CD34 

PerCPE710 (eBiosciences), CD38 PECy7, CD10 APC, CD20 APCCy7, CD45RA BV (1:50, 

Biolegend).

Cell cycle and apoptosis assays

For the assessment of proliferation and survival in the MS5-MBN assay, 100 CD34+ CD38− 

or 50–100 CD34+ CD38− CD45RA+ cells were sorted into 96 well plates, coated with MS5 

cells as described above, 12 hours after lentiviral vector transduction. After 7 days of 

culture, the cells were harvested and stained for the following cell surface markers (all 

antibodies from BD at 1:100 unless otherwise specified): CD45 PECy5 (Beckman Coulter), 

CD34 PECy7, CD133 APC (1:50), CD11b APCCy7. Cells were then fixed in Cytofix-

Cytoperm (BD) for 15mn on ice, and stained with Ki67 PE (1:30, BD) and cPARP 

Alexa700(BD, 1:50), washed and then incubated with Hoechst 33342 (1:104, Life 

Technologies). For ex-vivo cell cycle analyses, cells were stained with CD10 PECy5 (1:50), 

CD19 PECy7, CD34 APC, CD33 Al700 (1:50), CD20 APCCy7 (all from BD and 1:100 

unless otherwise specified). Cells were fixed as above and stained for Ki67 PE and Hoechst. 

For apoptosis detection ex vivo, Annexin V Apoptosis Detection Kit (BD PharMingen) and 

SYTOX Blue Dead Cell Stain (Life Technologies) were used according to manufacturer’s 

protocols, after cell surface staining with: CD33 PECy5 (Beckman Coulter), CD34 PECy5.5 

(eBiosciences), CD19PECy7 (BD), CD10 APC (BD), CD20APCCy7 (BD) (all 1:100).
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Quantitative RT-PCR

RNA was extracted from 2×104–5×105 cells in TRIzol (Life Technologies) supplemented 

with 25 ug linear polyacrilamyde (LPA, Life Technologies) according to the manufacturer’s 

protocol. cDNA was reverse-transcribed with the SuperScript VILO cDNA synthesis kit 

(Life Technologies) and purified with QIAquick PCR purification Kit (QIAGEN). Real-time 

PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems) and 200 

nM primers (Qiagen) on an Applied Biosystems 7900HT instrument. All primers used were 

Quantitect Primer Assays (QIAGEN) with the exception of ACTB (For: 

CCTGGCACCCAGCACAAT, Rev: GGGCCGGACTCGTCATAC). SDS software (Applied 

Biosystems) was used for absolute gene expression quantification using the standard curve 

method. Two house-keeping genes were used (ACTB and GAPDH) and data presented is 

relative to the geometric mean of expression of these 2 genes.

shRNAs used in this study

shBCL11A-a:CCGGTCGCACAGAACACTCATGGATTCTCGAGAATCCATGAGT 

GTTCTGTGCGTTTTTG, TRCN0000033449; shBCL6-a: CCGGTCCACAGTGACA 

AACCCTACAACTCGAGTTGTAGGGTTTGTCACTGTGGTTTTTG, TRCN0000013606; 

shEBF1-b: CCGGTCCCTCAGATCCAGTGATAATTCTCGAGAA 

TTATCACTGGATCTGAGGGTTTTTG, TRCN0000013829; shGATA2-b: CCGGTGT 

GCAAATTGTCAGACGACAACTCGAGTTGTCGTCTGACAATTTGCACTTTTTG, 

TRCN0000019264; shIRF8-a: CCGGTGCCTCACACCAGAGATCATTTCTCGAGAA 

ATGATCTCTGGTGTGAGGCTTTTTG, TRCN0000020988; shMAF-b: CCGGTATT 

TGCAGTCATGGAGAACCACTCGAGTGGTTCTCCATGACTGCAAATTTTTTG, 

TRCN000000254; shRUNX2-a: CCGGTCAGCACTCCATATCTCTACTACTCGAGT 

AGTAGAGATATGGAGTGCTGTTTTTG, TRCN0000013655; shSOX4-a: CCGGTC 

CTTTCTACTTGTCGCTAAATCTCGAGATTTAGCGACAAGTAGAAAGGTTTTTG, 

TRCN0000018213; shTEAD1-b: CCGGTCCAGAAGGAAATCTCGTGATTCTCG 

AGAATCACGAGATTTCCTTCTGGTTTTTGG, TRCN0000277979; shTSC22D1-a: 

CCGGTGCCTCTTTCTTCTCAAACAATCTCGAGATTGTTTGAGAAGAAAGAGGC 

TTTTTG, TRCN0000013288; shBCL11A-c: CCGGTGCTCAAGATGTGTGGC 

AGTTTCTCGAGAAACTGCCACACATCTTGAGCTTTTTG, TRCN0000033450; 

shTEAD1-a: CCGGTCCAGAAGGAAATCTCGTGATTCTCGAGAATCACGAGATT 

TCCTTCTGGTTTTTG, TRCN0000015799.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Transcriptional architecture of the first steps of the human hematopoietic hierarchy
(a) Differential expression distances overlaid on the current hierarchical model of human 

hematopoietic differentiation. Solid arrows represent accepted progenitor-product 

relationships while dashed arrows represent assumed ones. The number of genes upregulated 

in the precursor population is shown in bold and red and those upregulated in the product 

population in brown. Populations shown in orange were used for undirected pattern 

discovery detailed in Fig. 2. Differential expression was calculated using limma (fold change 

>2 and FDR<0.05) comparing the downstream population to its progenitor. (b) Principal 

Component Analysis of the 10 human hematopoietic stem and early progenitor cells. Only 

the first 2 principal components are shown here as they explain the vast majority of the 

variation in our dataset (Supplementary Figure 1a). All populations were purified from 3 to 5 

independent pools of cord blood (CB) with the exception of ETP, which were isolated from 

3 independent neonatal thymi. All analyses were performed on the DREGH genes.
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Fig. 2. Six predominant transcriptional programs are associated with commitment of human 
HSC
(a, b) Heat-maps of the 14 significant gene expression profiles as derived by the STEM 

algorithm (a) and K-means clustering method (b) (performed specifying 14 clusters, for 

other values of k, see (c). Each box in the heat-map represents the mean of the expression of 

all the genes assigned to that profile in the indicated populations. Log transformed 

expression data is mean centered and hierarchically clustered by profiles. Color-coded boxes 

on the right of each heat-map represent the classification of each profile into a 

transcriptional program based on the populations in which the expression of the genes in that 

transcriptional program is highest. (c) Quantitative comparison of the two pattern 

recognition methods. The percentage of DREGH genes assigned to each transcriptional 

program according to the two algorithms is shown. The k-means algorithm was run 

independently with 3 different values of k (8, 14 and 18) chosen after applying the adjusted 

Figures of Merit method (FOM, Supplementary Figure 2a) to determine at which k the 

algorithm reaches its maximum predictive value. p = 0.89 by a two-sample Kolmogorov-

Smirnov test between STEM method and k-means with k=14. An overlay of the 
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transcriptional programs on the current model of hematopoietic differentiation is presented 

in Supplementary Figure 2b.
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Fig. 3. Transcription factor expression complexity during commitment
(a) Heat-map of the expression of the 477 transcription factors differentially expressed 

between any 2 hematopoietic populations. Boxes highlight the transcription factors 

belonging to the 6 main transcriptional programs defined in Fig. 2 and Supplementary 

Figure 2b. (b) Heat-map of the expression of the 60 transcription factors with an early 

lymphoid pattern. Blue box: transcription factors expression in MLP and proB. Bold: 

transcription factors highlighted selected for functional validation. In both a and b, log 

transformed expression data is mean centered and hierarchically clustered by gene. (c) 
Transcription factor families whose DNA-binding motifs were found over-represented in the 
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promoters of at least one population-specific gene set (peach to red boxes). Bold: 

transcription factor families of which at least one member was found among the 60 early-

lymphoid specific transcription factors as defined by their expression. The gene lists used for 

this analysis are listed in Supplementary Table 7. (d) Dynamic regulatory map of 

transcription factors controlling specification to B cells generated with the DREM algorithm. 

y axis: log transformed expression relative to first developmental stage, HSC ; x-axis: 

stepwise progression along B cell commitment. Indicated here are the transcription factor 

families predicted to be stage-specific regulators of expression that were also found in b and 

c (complete output in Supplementary Figure 2). The lines represent the average expression 

of a group of genes and the size of the circles its standard deviation.
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Fig. 4. Single cell shRNA silencing screen for transcription factors that determine MLP 
commitment to the lymphoid fate
(a) and (b) Proportion of myeloid (CD11b+, top), lymphoid (CD19+, middle) and NK 

(CD56+, bottom) colonies generated from single MLP in which the indicated transcription 

factors were silenced. The proportions for each shRNA are normalized to single MLP from 

the same pool of CB transduced with control hairpins lentiviral vectors (shLacZ and-or 

shLUC). shBCL11A, shIRF8, shMAF, shRUNX2, shTSC22D1 and shLacZ expression are 

driven from the H1 promoter, while shBCL6, shEBF1, shGATA2, shSOX4, shTEAD1 and 

shLUC are downstream of the U6 promoter. n=3 distinct pools of CB for shBCL11A-1, 

shBCL6, shEBF1, n=4 for others. Non-normalized data is available in Supplementary Table 

8. (c) Percentage of myeloid colonies (CD11b+) that are fully differentiated to monocytes 

(>95% CD14+). Dashed lines connect measurements from the same CB pool. (d) Percentage 

of GFP+ CD34+ CD133+ in S-G2-M after 100 MLP per well were cultured 7 days on MS5 

stroma in the same conditions as for the screen described above. n≥3. (e) Methylcellulose 

assays from 800 GFP+ CD34+ cell sorted 3 days after transduction of Lin- CB with the 

indicated shRNA-expressing lentiviral vectors. Shown is the number of erythroid (top) and 

myeloid (bottom) colonies relative to control 12 days after plating. n≥3. For all panels: mean 

and SEM is shown; *: p<0.1; **:p<0.05 by paired two-tailed t-test.
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Fig. 5. Effects of BCL11A, BCL6, SOX4 or TEAD1 silencing on B cell commitment in vivo
Mice were transplanted with Lin− cells transduced with lentiviral vectors expressing either 

control shRNA or shRNAs against the candidate transcription factors that led to significant 

silencing in vivo. Silencing levels are shown in Supplementary Figure 5a. The composition 

of the human graft was analyzed 8 to 10 weeks post-transplantation. (a) Percentage of total 

B cells (CD19+) among human cells (CD45+ GFP+) in the injected bone. Circles represent 

individual animals; shLacZ, n=21; shBCL11A, n=19 (p < 0.0001); shLUC, n=23; shBCL6, 

n=5; shSOX4, n=12 (p < 0.0001); shTEAD1, n=14 (p = 0.0002). Raw data pertaining to this 

figure is available in Supplementary Table 9; results in the other bones are shown in 

Supplementary Figure 5b–c. (b) and (c): the quantification of each intermediate of B cell 

differentiation in xenografts was performed according to the flow cytometry gating strategy 

presented in Supplementary Figure 5d. (b) Percentage of MLP among human (GFP+) cells. 

shLacZ, n=4; shBCL11A, n=4; shLUC, n=18; shBCL6, n=5; shSOX4, n=12; shTEAD1, 

n=12. (c) Number of population doublings between the populations indicated. Population 

doublings were calculated as: log2 (product population/precursor population). Full 

quantification of each B cell progenitor population is available in Supplementary Figure 5f. 

Mean ± SEM is shown. *: p<0.1; **:p<0.05 by unpaired two-tailed t-test.
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Fig. 6. BCL11A, SOX4 or TEAD1 KD do not affect proliferation or apoptosis of B cell 
progenitors but decrease expression of master regulators of B cell commitment
(a) Percentage of AnnexinV+ cells in early B cells. (b) Percentage of cells in each phase of 

the cell cycle in early B cells. G0: Ki67− Hoechst−, G1: Ki67+ Hoechst−, S-G2-M: Ki67+ 

Hoechst+. For a and b: n=4 for shLacZ, n=11 for shLUC, n=3 for H1shBCL11A, n=6 for 

U6shSOX4 and n=4 for shTEAD1. Similar measurements for proB and preB populations are 

in Supplementary Figure 6a–b. (c) mRNA expression levels of IKZF1, E2A, EBF1 and 

PAX5 in Early B cells. All values were normalized to 2 housekeeping genes (GAPDH and 

ACTB) and are shown here relative to control. Ctrl, n=12; shBCL11A, n=2; shSOX4, n=3, 

shTEAD1, n=4. All measurements are from the injected femur of NSG mice 8 to 10 weeks 

after transplantation. Mean and SEM is shown. *: p<0.1; **:p<0.05 by unpaired two-tailed t-

test.
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