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In the past few years, machine-learning
(ML) techniques have been extensively
applied in material discovery. Such tech-
niques are applied to minimize the com-
putationally or experimentally expensive
costs of the research process, greatly re-
ducing overall design time [1]. Typically,
ML algorithms are combined with tra-
ditional methods like first-principle cal-
culations to accelerate the optimization
of compositions on the known crystal
structures (elemental substitution) in the
database or literature, or to search for
new configurations of a fixed chemical
composition. The basic idea of this for-
ward method is to predict the properties
or new configurations of materials based
on both domain knowledge and exist-
ing material data. Despite great progress,
there remain several fundamental chal-
lenges. One is how to explore infinite
chemical space towards the target region
through the optimal path; another is how
to rapidly and accurately develop materi-
als with both stability and optimal prop-
erties [2,3]. Many advanced ML algo-
rithms are widely used, including active
learning and transfer learning, which en-
able the exploration of chemical space
more efficiently. However, these meth-
ods have not yet been able to screen and
evaluate all possible compounds in space,
no matter how much computing power
is available or how efficient the method
is. More critically, it may be impossible
to findmaterials with better performance
based on knownmaterials.

Inverse design, which refers to
property-to-structure, is an emerging

and different approach to finding com-
pounds with desired properties [4].
Traditional ML-aided materials design
involves directly predicting the proper-
ties of candidates in the entire chemical
space. Then large-scale material screen-
ing is performed to search for promising
materials with target properties. How-
ever, inverse design is different from the
ML-aided global searching of known
chemical space. It continues to generate
qualified compounds along the optimal
path, which brings new compounds
with desired properties. Currently, two
main techniques are being developed to
achieve the goal of inverse design. One
way to expedite the brute-force search
for an optimal material is to perform
global optimization in the chemical space
[5]. In this case, methods like gradient
descent are widely used and work well
for energy. It is challenging to find new
crystal structures with optimized proper-
ties as the physical properties might be
discrete.
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Figure 1. Schematic diagram of the inverse design process.

The data-driven generative model
is another promising inverse design
strategy (Fig. 1). In detail, the desired
properties are firstly defined, and then
materials with these properties are
generated in an inverse way using gen-
erative models. In theory, a generative
model attempts to build a map between
chemical space—which is obtained by
learning a large amount of known data
via a deep neural network—and real
space. This map can be further enhanced
with additional information (physical
properties) to condition or bias the gen-
erative process. In practice, in addition to
the required physical properties, the ma-
terials generated also have good stability
or synthetic possibilities. Therefore,
inverse design needs to consider both
the physical properties and formability
or stability of potential materials in the
same model, which can be done by
building an appropriate loss function.

Currently, generative models, such
as vibrational autoencoders (VAEs),

C©TheAuthor(s) 2022. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

https://doi.org/10.1093/nsr/nwac111
https://creativecommons.org/licenses/by/4.0/


Natl Sci Rev, 2022, Vol. 9, nwac111

generative adversarial networks (GANs),
reinforcement learning and recurrent
neural networks, are regarded as ideal
inverse design methods to address the
above computational difficulty with
regard to searching [3].These algorithms
have been widely applied in many fields,
such as molecular synthesis and drug
discovery [6]. For example, Baekjun
Kim et al. proposed a GAN to generate
121 novel crystalline porous materials
based on over 30 000 known zeolites [7].
Niklas W.A. Gebauer et al. proposed a
conditional generative model for gener-
ating 3D organic molecules with specific
chemical properties and structures [8].
Beyond theory, advances of inverse
design in experiments are even more rev-
olutionary. Connor W. Coley et al. built
an automated synthesis platform that
combines artificial-intelligence-planning
synthesis routes and robotic execution
[9]. The platform trains ML algorithms
based on reactions in American patents
and the Reaxys database.

Nevertheless, the application of in-
verse design to solid-statematerials is just
getting started and facesmanychallenges.
First, differently from organic molecule
databases, inorganic material databases
only have, roughly, hundreds of thou-
sands of compounds available, with lim-
ited structural diversity. Even worse, ma-
terials with specific properties, such as
ferromagnetism, are rather scarce. This
often leads to the incomplete training of
ML models, and it may not be possible
to generate meaningful new compounds
from existing materials. Second, invert-
ible and invariance representations for
periodic crystal structures are lacking. If
materials can be reversibly represented,
the generative model can transform the
mathematical output of a neural network
into a crystal structure automatically.

Several attempts have been made to
address the aforementioned challenges
using generative models. In the early
stages of inverse design, Noh et al. de-
veloped a generative framework using
hierarchical two-step VAE models to
discover new vanadium oxide materials
[10]. The scheme is achieved by uti-
lizing three-dimensional image-based in-
vertible input representation for crystal
structures for both cell and basis informa-

tion. But the process of decoding images
back to atom types and coordinates of-
ten results in low validity, and themodels
are not rotationally invariant. Kim et al.
adopted a different strategy to make the
generative model reversible and invari-
ant [11]. Crystal structures are converted
to a representation that is inversion-free
based on a set of atomic coordinates and
cell parameters, and data augmentation
is applied to initial data sets. Then, a
Wasserstein GAN is applied to gener-
ate newMg-Mn-O ternary compounds to
find potential semiconductors with rea-
sonable stability in an aqueous environ-
ment.These results represent a significant
step toward inverse design using gener-
ative models. However, the generative
models are limited to a specific compo-
sition or crystal structure. Realizing the
general aspect of inverse design has a
more practical significance. For this rea-
son, Yao et al. proposed an automated
nanoporous material discovery platform
powered by a supramolecular VAE for
the generative design of reticular materi-
als. The automated design process con-
tains a class of metal-organic framework
structures [12]. Ren et al. presented a
framework capable of general inverse de-
sign where the designed materials are of
various chemistries and structures. The
model utilizes a generalized invertible
representation that encodes crystals in
both real and reciprocal space, and gen-
erates a property-structured latent space
from a VAE [13].

To sum up, inverse design has shown
great potential in physics, chemistry and
materials science. Nevertheless, many
challenges still restrict its further devel-
opment. In detail, in order to be used
in more practical applications, inverse
design requires further technological in-
novations in data accumulation, material
representations and generation models.
Firstly, in terms of data, the published
scientific literature is another potential
source of material data in addition to
the existing material database and high-
throughput calculations/experiments.
So much data in the literature can be
extracted using methods such as natural
language processing. Secondly, crystal-
graph-based techniques have shown
great potential inML direct prediction of

material properties [14].Thus, an invert-
ible and invariant crystal-graph-based
representation would be beneficial to the
development of more robust generative
models for inorganic materials. Thirdly,
in addition to basic generative models
like GANs, developing new generative
models for small data sets is critical.
For example, active learning can prior-
itize the data that need to be labelled
in order to have the highest impact
on ML model training. And transfer
learning can store knowledge gained
while solving one problem and apply it
to a different but related problem. These
algorithms, as powerful tools, have been
applied to solve the problem of material
data scarcity [15]. In combination
with generative models, they may be a
potential way to further promote the
application of inverse design. In addition
to the above three technical challenges,
current inverse design frameworks are
still inadequate, and developing more
advanced and general frameworks, which
are applicable to an unlimited number of
compositions and complex properties,
remains a grand challenge. Beyond the-
ory, closed-loop approaches for material
discovery using generative-model-based
inverse design will be capable of navigat-
ing and searching chemical space quickly,
efficiently and, importantly, without bias.
In any case, the extensive application of
inverse design in materials science will
further change the research paradigm
of materials science, and bring material
design into the age of automation.
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