
pharmaceuticals

Review

Pharmacological and Toxicological Effects of
Phytocannabinoids and Recreational Synthetic Cannabinoids:
Increasing Risk of Public Health

Vidyasagar Naik Bukke †, Moola Archana †, Rosanna Villani , Gaetano Serviddio and Tommaso Cassano *

����������
�������

Citation: Bukke, V.N.; Archana, M.;

Villani, R.; Serviddio, G.; Cassano, T.

Pharmacological and Toxicological

Effects of Phytocannabinoids and

Recreational Synthetic Cannabinoids:

Increasing Risk of Public Health.

Pharmaceuticals 2021, 14, 965.

https://doi.org/10.3390/ph14100965

Academic Editor: Francesco

P. Busardó

Received: 8 August 2021

Accepted: 20 September 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
vidyasagar.bukke@unifg.it (V.N.B.); archana.moola@unifg.it (M.A.); rosanna.villani@unifg.it (R.V.);
gaetano.serviddio@unifg.it (G.S.)
* Correspondence: tommaso.cassano@unifg.it
† These authors contributed equally to this work.

Abstract: Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly
evolved around the world with the addition of diverse structural modifications to existing molecules
which produce new structural analogues that can be associated with serious adverse health effects.
Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for
Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October
2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural
harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different
brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as
full agonists at the CB receptors, they are much more potent than natural Cannabis and have been
increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity
and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The
present review aims to provide a focused overview of the literature concerning the development
of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory
depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.

Keywords: synthetic cannabinoids; phytocannabinoids; Cannabis sativa; schedule 1 drugs; spice; K2;
electronic cigarettes; herbal incense; bath salts; cloud 9; Mojo; John William Huffman (JWH); Hebrew
University (HU); MDMB-4en-PINACA; 4F-MDMB-BICA

1. Introduction

The medicinal properties of the Cannabis sativa plant were included for the first time
in the textbook of pharmacology Materia Medica by the Greek and Roman physicians in
the first century AD. However, a more accurate description of the physiological effects
of this plant was given by the ancient Indian and Chinese writers [1]. Cannabis sativa
was originally cultivated in central Asia but subsequently spread to most areas of the
world. It grows naturally but, due to its pleasurable psychological effects, is frequently
cultivated indoors under artificial light [1]. Delta-9-tetrahydrocannabinol (THC) is its most
recognised phytocannabinoid and major psychoactive compound [2]. Cannabidiol (CBD)
and Cannabinol (CBN) are the other main ingredients and 85 other CBs with different
pharmacological effects have been identified and isolated from Cannabis sativa [3–5].

Following the discovery of the structure and stereochemistry of THC, synthetic CBs
were synthesized in the early 1960s to study the pharmacology of CB receptors and to
investigate their therapeutic effects [6]. In Europe and the USA, synthetic CBs started
to appear in the 2000s and 2008, respectively [7]. In July 2012, synthetic CBs have been
classified as Schedule I based on their chemical structures by the Drug Enforcement Ad-
ministration, which passed the Drug Abuse Prevention Act to decrease the sales and usage
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of the synthetic CBs [8]. To circumvent this restriction, new synthetic CB compounds were
developed, some of which had an inadvertent range of adverse and potentially lethal
effects [9]. In the last 20 years, the USA has experimented with legalised access to Cannabis
and Cannabis-derived products for medical and recreational purposes, which has increased
their availability in the market and led to increased heavy usage in the adult population [10].
The expanded legal access of Cannabis-derived products like chocolate squares, gummy
bears, and candies are attracting younger age profile and has increased the incidence of
adverse reactions in children [11]. Therefore, synthetic CBs spread easily due to their easy
access and intelligent marketing, but they often display variable potency and unpredictable
effects. Moreover, their consumption is often undetectable with available standard drug
screening tests [12]. Synthetic CBs are manufactured in unregulated laboratories, pur-
chased by local distributors who sell them to the customers by diluting in a solvent [13].
Some synthetic CBs are more toxic than THC with numerous adverse effects, including
hypertension, tachycardia, hallucination, emesis, agitation, and seizures [14,15]. Cannabis
is the world’s most abused drug, and its illicit usage is growing in schools. In the USA,
nearly 2.6 million new users under 19 years of age are exposed to Cannabis annually [16].
In 2016, the United Nations Office on Drugs and Crime (UNODC) estimated that around
28 million adults (aged 15 to 64) have used Cannabis [17].

The World Health Organization (WHO) reported that Cannabis use has deleterious
effects on the cardiovascular system and progressively it has been registered an increase of
THC content in the Cannabis from 2–3% to 20% [18]. Since 1998, Cannabis has been legalised
in 29 states of the USA for medical purposes. In 2017, as per estimations of the Cannabis
Industry Annual Report, there is a legal market of US$7.97 billion, which is projected to
increase by $24 billion by 2025 [19]. There are growing numbers of psychoactive synthetic
CBs, which are 10 to 200 times more potent than THC. They are sprayed on harmless herbs,
and they are distributed with different market names including Black mamba, K2, spice,
Bombay Blue, and fake weed [20]. This explosive increase in the availability of CB variants
is, unfortunately, increasing the incidence of deaths and fatalities [21].

In the context of the increasing popularity of synthetic CBs around the world, there is
a rise in toxicity cases due to the usage of recreational Cannabis and its synthetic analogues.
The main aim of this review is to discuss the adverse effects of synthetic CBs including
kidney injury, hyperemesis syndrome, cardiovascular effects, respiratory depression, and
brain damage.

2. Methodology

A literature search was conducted on multidisciplinary research databases such as
PubMed, Scopus, and Web of Science and international agencies or institutional websites
including the WHO, UNODC, Centers for Disease Control (CDC), U.S. Department of
Justice, US FDA, US Drug Enforcement Administration (DEA), US National Institute of
Health (NIH), EMCDDA, and European Medicines Agency (EMA) to identify the most
relevant literature. The search terms used alone or in combination were: “synthetic
cannabinoids”, “Cannabis sativa”, “Schedule 1 drugs”, “phytocannabinoids”, “spice”, “K2”
“cannabinoids”, “electronic cigarettes”, “adverse effects”, “cloud 9”, “Bath salts”, “mojo”,
“John William Huffman (JWH)”, “Hebrew University (HU)”, “EMCDDA”, “MDMB-4en-
PINACA”, “4F-MDMB-BICA”, “toxic effects” and “herbal incense”. Only the articles
written in English were selected. All the articles were reviewed independently by the
authors to determine their relevance in the framework of the current study. Details of the
literature search are listed in Figure 1.
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Figure 1. Flow diagram of study identification, screening, and selection.

3. Endogenous Cannabinoids and Receptors

N-arachidonoyl-ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the
two most studied endocannabinoids (eCBs), although other eCBs also exist, including
2-arachidonyl glycerol ether (Noladin ether), O-arachidonoyl ethanolamine (virodhamine),
N-arachidonoyl glycine, and N-arachidonoyl dopamine (NADA) [22–25] (Figure 2).

Figure 2. Chemical structures of the endocannabinoids.

AEA and 2-AG are lipophilic molecules and are synthesized de novo by cleavage
of their membrane lipid precursors N-arachidonoyl-phosphatidylethanolamine (N-ArPE)
and sn-1-acyl-2-arachidonoylglycerols (DAGs) respectively [26]. The enzymes N-acyl-
phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and diacylglycerol
lipase (DAGL) biosynthesise AEA and 2-AG, respectively; the enzymes fatty acid amide
hydrolase (FAAH) and the monoacylglycerol lipases (MAGL) are involved in the degrada-
tion of AEA and 2-AG, respectively [27]. These enzymes, together with CB receptors and
eCBs, are key components in the eCB system. AEA, named anadamide after the Sanskrit
word ananda or “bliss”, was discovered in 1992 and functions as a partial agonist at CB
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type 1 (CB1) receptors but is inactive at CB type 2 (CB2) receptors [22]. AEA also interacts
with other targets including the GPCR112, GPCR55, transient receptor potential vanilloid-1
(TRPV1) channels, alpha7-nicotinic acetylcholine receptors, T-type Ca2+ channels, Na2+

channels and voltage-gated K+ channels [28,29].
2-AG was identified in 1995 and acts as a full agonist at both CB1 and CB2 recep-

tors [26,27]. The CB1 receptor was discovered on the basis of its responsiveness to THC
and was first cloned in 1990 [22,30]. It is widely distributed in the body and the brain,
CB1 is expressed at higher densities in basal ganglia, hippocampus, cortex, and cerebel-
lum [31] the motor function, cognition, memory, and analgesia [32]. Significant levels
of CB1 receptors are expressed in peripheral tissues including the adrenal gland, heart,
lungs, prostate, bone marrow, thymus, tonsils, ovary, and testes [33]. The CB2 receptors
were isolated in differentiated myeloid cells and cloned in 1993 [34]. CB2 receptor shares
44% amino acid homology with CB1 [35], is mainly expressed in macrophages, spleen,
tonsils, thymus, leukocytes, lungs, and testes, and its stimulation is attributable to the
anti-inflammatory and immunomodulatory actions of CB [36]. Both CB receptors are
members of the G protein-coupled receptor (GPCR) family and are coupled to pertussis
toxin (PTX)-sensitive Gi/o protein, suppress adenylyl cyclase (AC) and the formation of
cyclic adenosine monophosphate levels (cAMP) upon receptor activation. CB1 receptor
was found in both glutaminergic and GABAergic terminals and its activation at presynaptic
levels can suppress the excitatory and inhibitory neurotransmission, respectively [37–40].
Synthetic CB receptor agonist is linked to the mitogen-activated protein kinase (MAPK)
pathway, which results in phosphorylation of nuclear transcription factors influencing
cellular transcription, translation, motility, shape, proliferation, and differentiation. Pro-
longed phosphorylation of CB1 receptors may lead to desensitisation and internalization
that could impact respiratory depression indirectly [41,42].

Like the CB1, the CB2 receptors inhibit the activity of AC through their Gi/Goα

subunits. Through their Gβγ subunits, CB2 receptors are also known to be coupled
to the protein kinase C (PKC) leading to the activation of the MAPK and extracellular
signal-regulated kinase (ERK) phosphorylation [43]. Therefore, CB2 receptors through the
MAPK-ERK pathway can modulate a complex and highly conserved signal transduction
pathway, which regulates several cellular processes in mature and developing tissues [43].
Moreover, CB2 receptor activation induces intracellular Ca2+ release from the endoplasmic
reticulum, as well as an increase in mitochondrial Ca2+, via the phospholipase C (PLC)
activation and inositol 1,4,5-triphosphate (IP3) production [44].

4. Cannabis sativa

Cannabis sativa, an important plant containing more than 600 pharmacologically ac-
tive constituents, has been used medicinally for several hundred years and has a range
of other applications due to its cellulose and woody properties. Cannabis is rich in phy-
tocannabinoids, which are C21 or C22 groups of terpenophenolic compounds predomi-
nantly rich in THC, ∆9-Tetrahydrocannabivarin (THCV), CBD, CBN, cannabigerol (CBG),
cannabichromene (CBC), and Cannabidivarin (CBV) [45]. The chemical structures of these
above-written compounds and their properties are included in Table 1. Herbal preparations
of cannabis for medical use are commercially available in the form of vaporizers, buccal
sprays, oral capsules, decoctions, and oils [46].

THC is the major cannabinoid in Cannabis sativa and is most significant due to its
pharmacological and toxicological properties. This plant is also rich in phenolic compounds
such as flavonoids belonging to flavone and flavanol subclasses [47]. Cannabis contains
about 120 phytocannabinoids and until recently eleven chemical classes of phytocannabi-
noids have been identified. Among them, THC class is the largest portion comprising
17.3% of the total phytocannabinoid content [48]. Phytocannabinoids can be classified into
tricyclic (THC, THCV, and CBN), bicyclic (CBD, CBC, and CBV), and others (CBG).
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Table 1. List of phytocannabinoids with their structures, Ki, and key findings.

Name Structure Ki/µM Key Findings

∆9-trans-Tetrahydrocannabinol

CB1—0.005 a

0.008 b

0.013 c

CB2—0.003 a

0.0017 b

0.0068 c [45]

THC inhibits Alzheimer’s disease (AD) pathology (by competitively
inhibiting acetylcholinesterase enzyme and beta-amyloid (Aβ) peptide

aggregation) [49]
As analgesic for neuropathic pain [50,51]

Bronchodialator effect on asthma patients [52]
Effective to treat intractable cholestatic pruritus [53]

Potent against methicillin-resistant Staphylococcus aureus (MRSA) strains
(MIC- 2 µg/mL) * [54]

Inhibit the proliferation of a hyper-proliferating human keratinocyte cell
line in the treatment of psoriasis [55]

∆9-Tetrahydrocannabivarin

CB1—0.075 d

0.0047 e

CB2—0.225 a

0.145 a [45]

Exerts antiepileptiform and anticonvulsant properties in adult rats [56]
Ameliorates insulin sensitivity and can be used to treat obesity-associated

glucose intolerance [57]
∆8-Tetrahydrocannabivarin has potent anti-nicotine effects [58]

Potent against MRSA strains (MIC—4 µg/mL) * [54]
As a potential therapeutic benefit for the management of obesity and

diabetes [59]

Cannabinol

CB1—0.069 f

0.012 g

CB2—0.016 g

0.07 f [45]

Potent against MRSA strains (MIC—2 µg/mL) * [54]
Inhibit the proliferation of a hyper-proliferating human keratinocyte cell

line in the treatment of psoriasis [55]

Cannabidiol

CB1—4.3 e

1.45 g

CB2—2.86 f

0.37 g [45]

Potent against MRSA strains (MIC—2 µg/mL) * [54]
Inhibit the proliferation of a hyper-proliferating human keratinocyte cell

line in the treatment of psoriasis [55]
Potent inhibitor of transporter ABCC1 or MRP1 that helps in

accumulation of anticancer drugs in cells [60]
Protect against Aβ neurotoxicity in AD [61]

Inhibits tau hyperphosphorylation in AD [62]
Anti-arthritic by targeting synovial fibroblasts [63,64]

Fluorinated derivatives of cannabidiol shows therapeutic activity as
anxiolytic, antidepressant, antipsychotic, and anticompulsive [65]

Prevents post-ischemic injury via HMGB1-inhibiting mechanism [66]
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Table 1. Cont.

Name Structure Ki/µM Key Findings

Cannabidivarin CB1—14.7 g

CB2—0.57 g [45]

Ameliorates autism-like behaviours, restores endocannabinoid signaling
and neuroinflammation [67]

Anti-convulsant [68]
Potent against MRSA strains (MIC—8 µg/mL) * [54]

Cannabigerol CB1—0.896 g

CB2—0.153 g [45]

Anti-oxidant properties in macrophages [69]
Can be used to treat inflammatory bowel disease [70]

Potent anti-inflammatory agent in a model of multiple sclerosis (MS) [71]
Cannabigerol derivative VCE-003.2 protects against mutant

huntingtin-induced neurodegeneration [72]
Cannabigerol derivative VCE-003 can be used in the treatment of human

immune diseases [73]
Potent against MRSA strains (MIC—2 µg/mL) * [54]

Plays a neuroprotective role in the treatment of Huntington’s disease (HD)
[74]

Cannabichromene
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5. Therapeutic Effects of Phytocannabinoids and Synthetic Cannabinoids

Despite the addictive potential of marijuana, Cannabis sativa has a very long history of
medicinal usage. THC was isolated from hashish in 1964 by Raphel Mechoulam at Hebrew
University, which led to the discovery of CB receptors. The functions of eCB, and the use of
CB1 and CB2 receptors as targets for medical and other recreational purposes [76]. Synthetic
CB agonists are increasingly used for the treatment of human pathological conditions and
several CB antagonists are under clinical evaluation. Marijuana contains THC at different
concentrations in the range of 40 to 80% and appears like honey or butter (brown or gold
colour) and is usually consumed orally in the form of food or drink products, smoking
by use of oil or water pipes. E-cigarettes/vaporizers are often preferred due to their
smokelessness, odourless, and ability to hide from consuming marijuana concentrate [77].
Besides, the marijuana plant contains 60 cannabinoid-like structures out of its total 600
chemicals [78].

In both the brain and periphery, the eCB system modulates many physiological
processes, which have some beneficial therapeutic effects in the treatment of pain, inflam-
mation, epilepsy, cancer, eating disorders, and spasticity. CBs are effective in treating
postoperative pain, cancer, and spinal cord injury [79]. Dronabinol, which is an appetite-
increasing drug used in HIV patients, is a commercially available form of THC [80].

Some evidence also showed that in animal models, Cannabis smoke alleviated the
tremors and spasticity associated with MS [81], and some clinical studies have shown that
CBs could be used in combination therapy for treating cancer [82]. CBs exert inhibitory
effects on glutamate, reactive oxygen species (ROS), and tumour necrosis factor indicating
that they play a crucial role as neuroprotective agents [83–86]. Moreover, CBs may offer
a potential treatment for Parkinson’s disease (PD) as they inhibit the excitatory effects of
glutamate [87–90].

It has been demonstrated that CBs exert anti-cancer properties in a range of can-
cers [91]. CBs were preclinically determined to be potential antineoplastic agents against
pancreatic cancers [92], breast cancers [93], gastric cancers [94], prostate cancers [95],
leukaemia [96], skin carcinomas [97], cervical cancers [98], colon cancers [99], non-small
cell lung cancers [100], hepatocarcinomas [101], bladder carcinomas [102] and multiple
myeloma [103]. CBs, as anticancer treatments, can induce apoptosis [104], autophagy [105],
and antiproliferative effects [106].

THC with its synthetic analogues nabilone (Cesamet®; Valeant Pharmaceuticals, Irvine,
CA, USA) and dronabinol (Marinol®; Solvay Pharmaceuticals, Marietta, GA, USA) have
been used to suppress nausea and vomiting associated with chemotherapy [107]. In this
context, THC is thought to exert its pharmacological effects by decreasing 5-HT3 receptor
activity [108]. In animal models, THC has demonstrated considerable neuroprotective
effects and is capable of ameliorating the symptoms of neurodegenerative diseases, includ-
ing PD, AD, HD, MS, and Amyotrophic Lateral Sclerosis (ALS) [108–114]. It has also been
demonstrated that THC and cyclooxygenase-2 (COX-2) inhibitors can reduce Aβ plaques
in degenerated neurons of AD animal model [115]. Following THC treatment, some mouse
models of MS showed improved spasticity and tremors [116]. In clinical trials of MS
patients, THC exerted both decreased urinary incontinence and antispasticity effects [117].
Although THC has its therapeutical effects, it also has psychoactive properties; alternately,
CBD is less toxic than THC to humans and has been recognised as a nonpsychoactive
compound [115].

The psychoactive properties of THC suggest that it may have considerable potential
in the treatment of a range of psychological/psychiatric conditions; CBD exerts a wide
range of positive therapeutic effects in psychosis, anxiety, and depression-like behaviours
by neuroprotection and inhibiting neuroinflammatory responses. CBD can also act inde-
pendent of cannabinoid receptors by modulating antioxidant mechanisms in PD animal
models and attenuates dystonia [88–90]. In MS, CBD treatment can exert a neuroprotective
role by diminishing inflammation through adenosine A2 receptors [115]. CBD reduces
neuroinflammation and axonal damage of oligodendrocyte progenitor cells (OPC), which
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increases differentiation into new myelinating oligodendrocytes. Synthetic CBs protect
the OPCs by controlling the stress response of the endoplasmic reticulum which modu-
lates inflammatory stimuli [118]. Sativex®, an oromucosal spray (GW Pharmaceuticals,
Cambridge, UK), showed positive results in clinical trials for MS and it is marketed in 16
countries outside of the USA. It has antispasmodic and analgesic properties containing a
1:1 ratio of plant extracted THC and CBD [119]. In 2007, a meta-analysis study conducted
in MS treatment using Sativex®, CBD, and Marinol® showed that Sativex® has the highest
efficacy in reducing the neuropathic pain with dizziness as the adverse effect [120]. USFDA
approved synthetic drugs such as Marinol® (synthetic THC), is used to treat anorexia asso-
ciated with weight loss in patients with AIDS (Acquired Immunodeficiency Syndrome),
Cesamet® (nabilone), and Syndros® (synthetic THC) used for the treatment of nausea and
vomiting due to chemotherapy [121].

6. Synthetic Cannabinoids as Drugs of Abuse

Cannabis has been used as a drug for centuries but in the nineteenth century, CBN
was isolated, and its structure was partially described in 1932 [122]. In 1964, Raphael
Mechoulam characterised the structure of THC, which lead to the development of THC
analogues with small modifications in their structure which produce new moieties with
similar activity, resulting in the production of synthetic CBs as potential drugs of abuse [123].
Since 2004 synthetic CBs have been sold in European countries such as Germany, Austria,
Switzerland over the internet, which enabled very easy access to synthetic CBs without
any age restriction [124].

Synthetic CBs are a novel range of psychoactive substances, which have similar effects
like THC, and their potency depends on their structure and volume of consumption. It
is believed that synthetic CBs are 800 times more potent than Cannabis [125]. The most
commonly used name for synthetic CBs is spice, which is marketed as a relaxing herbal
blend hiding its true composition. It is sold in black markets at a higher price than
marijuana and gained its popularity due to its legality and negative drug test results. In
mid-2008, spice’s popularity reached peak levels in Germany, leading to an epidemic of
accidents and mental disorders in spice users [126]. Spice is known as K2 in the USA [127],
which rapidly became a drug of abuse and as a consequence got banned in 2010 [128].

Initial attempts failed to explain the narcotic effects of spice products because the
manufacturers claimed that it has a herbal composition. However, it was gradually un-
derstood that the herbal ingredients do not induce significant psychoactive effects [129].
Suspicion arose that spice products had been mixed with synthetic CBs, but there was
insufficient analytical data to reach this conclusion. These blends contain the JWH series
of drugs developed by John W. Huffman while working at Clemson University and the
HU series of drugs developed at HU [130]. In 2008, the German pharmaceutical company
THC Pharm has isolated a synthetic CB JWH-018 from 3 spice varieties of the synthetic
CBs [13], and two other research teams at Freiburg University (Germany) [124]. The Na-
tional Scientific Institute of Health (Japan) [131] identified the presence of C8 homolog
of synthetic CBs including JWH-018, CP 47497 which were subsequently made illegal by
the German regulatory bodies and other European countries [129]. To stay ahead of the
enforcement measures, illegal drug teams synthesized new kinds of synthetic CBs which
were similar to the prohibited and banned chemical structures including JWH-073, which is
a butyl homolog of JWH-018. New synthetic CBs are structurally related to the prohibited
molecules with slight changes. To overcome this issue, the Russian Government released
Resolutions of No.882 and No.1178 defining the term “drug derivative”. Nevertheless,
the drug traffickers then synthesized new molecules with a range of innovative structural
modifications [132].

In contemporary society, large-scale synthetic CBs were manufactured illegally for
recreational purposes due to their high potency and undetectability by conventional drug
screening tests. Alterations and substitutions of the chemical moieties in THC produced
more than 700 synthetic CBs and some of them have active metabolites [133]. JWH-018 is a
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synthetic CB, which is a full agonist to CB1 and CB2 receptors and can cause hallucinations,
vertigo, paresthesias, shaking, shivering, hypertension, dry mouth, vomiting, mydriasis,
hypokalemia, extrasystoles, tachycardia and conjunctival hyperemia [134]. Recent data
shows that K2, the synthetic CB, can cause ischemic stroke [135] and further data is needed
to understand the toxic effects of synthetic THC on brain mitochondria [136]. Liquid
chromatography-tandem mass spectroscopy (LC-MS) helps in analysing the synthetic
CBs in serum samples derived from people suspected to use spice. The spice varies
in its chemical constituents as per the supplier and it can include toxic chemicals like
oleamide, linoleic acid, palmitic acid, palmitoylethanolamide, eugenol, thymol, acetyl
vanillin, benzyl benzoate, α-tocopherol, vitamin E, and β2-adrenergic agonist [137]. JWH-
018 and CP 47497 were the first CBs to be identified in spice using Gas chromatography-
mass spectrometry (GC-MS) chromatography [138]. It has been demonstrated in mice
that co-administration of JWH-018 and JWH-073 can produce addictive, synergistic, and
antagonistic interactions [139].

Synthetic CBs were sold as a legal replacement for Cannabis and attracted a lot of
attention for having the same powerful intoxicating effects. Moreover, there was also
an increase in availability of e-liquid products containing a mixture of cannabinoids in a
solvent that is vaped using an electronic cigarette. Smuggling of cannabinoids into prison
in some countries is facilitated by impregnating paper (such as letters, greeting cards,
photographs, children’s drawings) with cannabinoids and then vaped using electronic
cigarettes, this can pose a high risk of poisoning due to high degrees of cannabinoid
variability in different parts of the paper [140]. Many adverse health issues have been
reported in USA, Russia, Canada, and Europe due to the misspelling or adulteration of the
product. For instance, synthetic CBs in Europe are sold as ecstasy, while in the USA and
Canada, opioids like heroine are adulterated with synthetic CBs [141].

As previously mentioned, the limited availability of selective and sensitive rapid
analytical methods for screening the synthetic CBs is representing a challenge in elucidating
the heterogenous structures. Colorimetric and immunochemical assays were found to be
inappropriate for rapid and specific detection due to frequent cross-reactivity and can take
more time for the production of antibodies. While chromatographic assays proved to be
more suitable due to high flexibility, sensitivity, and selectivity even at low doses. The
hyphenated techniques like GC-MS and/or LC-MS are the best promising tools but are
expensive [142].

In New Zealand and Australia, a potent cannabinoid known as Kronic came into
the market after spice and Dream in 2011, and unfortunately caused the death of a huge
number of young people [143]. New synthetic CBs, such as JWH-250, JWH-398 [129,144],
AM-694 [145], RCS-4 [146], AM2233 [147] are constantly emerging in the market with new
chemical moieties to prevent their identification and regulation as illicit substances [132].
Due to their potential toxicity and abuse, the USA government has listed some synthetic
CBs under schedule 1, which contain drugs, substances, or chemicals defined by the federal
government with no currently accepted medical use and high potential of abuse. Some
schedule 1 synthetic cannabimimetic agents are listed in Table 2 with their structures and
other relative information [148].
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Table 2. List of schedule 1 synthetic cannabinoids with their structures and adverse effects.

Name Structure Receptors Adverse Effects

CP47,497
(5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-

hydroxycyclohexyl]-phenol)
CB1 and CB2 agonist [149] Increased heart rate, high/low blood pressure,

coughing, and, vomiting [150]

JWH-018
(1-pentyl-3-(1-naphthoyl)indole) CB1 and CB2 agonist [149]

Psychosis [151], hallucinations, vertigo,
paresthesias, shaking, shivering, hypertension,
dry mouth, vomiting, mydriasis, hypokalemia,

extrasystoles, tachycardia, conjunctival
hyperemia [134], and ischemic stroke [135]

JWH-073
(1-butyl-3-(1-naphthoyl)indole) CB1 and CB2 agonist [149,152]

Altered mood and perception, red or
bloodshot eyes, nausea, vomiting, listlessness,

fever, sweating, and dryness of the mouth
[150]

JWH-019
(1-hexyl-3-(1-naphthoyl)indole) CB1 and CB2 agonist [152] Confused speech, unstable appearance [150]
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Table 2. Cont.

Name Structure Receptors Adverse Effects

JWH-250
(1-pentyl-3-(2-methoxyphenylacetyl)indole) CB1 and CB2 agonist [149] Dilated unresponsive pupils and bloodshot

eyes [153]

JWH-081
(1-pentyl-3-[1-(4-methoxynaphthoyl)]indole) CB1 and CB2 agonist [152] Slurred speech [153]

JWH-122
(1-pentyl-3-(4-methyl-1-naphthoyl)indole) Agonist at CB1 and CB2 [154]

Hallucinations, disorientation, sedation,
anxiety, agitation, tachycardia, hypertension,
dyspnea, nausea, vomiting, hyperglycemia,

and hypokalemia [155]



Pharmaceuticals 2021, 14, 965 12 of 27

Table 2. Cont.

Name Structure Receptors Adverse Effects

AM2201
(1-(5-fluoropentyl)-3-(1-naphthoyl)indole) Agonist at CB1 and CB2 [156]

Convulsions [157],
Excitatory behavior, xerostomia, chest pain,

severe dyspnea, tachycardia (150 beats/min),
and mild hypertension [158]

AM694
(1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole) Agonist at CB1 [159] Agitation, hallucination, anxiety, and paranoia

[159]

JWH-203
(1-pentyl-3-(2-chlorophenylacetyl)indole) Agonist at CB1 and CB2 [156]

Head twitching, slurred speech, hallucination,
dilated unresponsive pupils and bloodshot

eyes [153]
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According to the recent report released in December 2020 by EMCDDA, 207 emergent
synthetic CBs were monitored in the drug market since 2008 which include nine compounds
reported for the first time up until the end of October 2020. Besides, from 2011 to 2015,
27 compounds appeared on average every year in Europe but, from 2016 this number
dropped to around 10 [160]. Seizures related to synthetic CBs reported by the European
Union (EU) Early Warning System were 19,705 in 2019 representing 46% of the total seizures
during the year and in which, synthetic CBs were mainly detected in herbal plant material
(5977 cases-138 kgs) in the form of powder (728 cases-84 kgs). However, in recent years,
a sharp decrease has been observed in seizing the powder quantity and herbal materials
containing synthetic CBs in the EU. But two synthetic CBs MDMB-4en-PINACA [161] and
4F-MDMB-BICA (or 4F-MDMB-BUTICA) [162] were observed during 2020, increasing the
potential threat to public health in EU and their details are reported in Table 3.

Table 3. Two synthetic CBs MDMB-4en-PINACA and 4F-MDMB-BICA concerning EU. Reprinted from ref [160].

MDMB-4en-PINACA 4F-MDMB-BICA

Structure

Molecular Formula C20H27N3O3 C20H27FN2O3

Form Yellow powder White powder [163]

Availability Since 2017 Since 2020

Cases reported

768 seizures as of October 2020.
11 acute non-fatal poisonings in the United

Kingdom (UK)
4 confirmed deaths were reported in total by

Sweden and UK

108 seizures as of October 2020
21 deaths reported by Hungary between May

and August 2020

The aim of developing the synthetic CBs was for research purposes but the published
scientific literature on the synthesis of synthetic CBs has been misused by criminally
inclined chemists to produce huge amounts of synthetic CB products for illicit commercial
use [164] and was sold under the brand names Spice, K2, Black Mamba, Scooby snax [165],
herbal incense, Cloud 9, and Mojo [6].

Synthetic CB intoxication leads to different physiological and psychological effects
including psychosis [166], respiratory depression [42], renal toxicity [167], hyperemesis
syndrome [168], cardiovascular effects [169], gastrointestinal problems [170], seizures [171],
and acute cerebral ischemia [171]. Therefore, synthetic CB usage is associated with toxic
effects on the body and multiple organ failure. Figure 3 describes the adverse effects of
synthetic CBs, which are further discussed in this review.
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Figure 3. Toxicity of synthetic cannabinoids and their adverse effects.

7. Toxicological Effects of Synthetic Cannabinoids
7.1. Renal Injury

Kidneys are the vital organs in maintaining the fluid homeostasis of the body, regulat-
ing and filtering the minerals from the blood, producing hormones, that are important in
producing the red blood cells (RBC), promoting bone health, and regulating blood pressure.
Kidney damage is associated with a higher rate of morbidity and mortality due to its
involvement in significant functions of the body. Synthetic CBs, which are often used as
recreational drugs, are emerging in the market due to their greater availability at cheaper
prices with comparable psychoactive effects as Cannabis with adverse renal effects [172].
Renal biopsy studies revealed that people addicted to synthetic CBs are suffering from
tubular necrosis and proximal tubular dilatation [167]. Long-term use of synthetic CBs
damages the kidney with abnormal urinalysis and increased levels of creatinine levels in
blood [157].

Evidence suggests that both CB1 and CB2 receptors are involved in the pathogenesis of
acute kidney injury (AKI) in mice. CB1 expression has been found in different regions of the
nephron in rodents, including afferent arterioles, efferent arterioles [173], glomerulus [174],
thick ascending loop of Henle [175], tubular epithelial cells [176], and cultured mesangial
cells [177]. CB1 receptors have been detected in proximal convoluted tubules, distal tubules,
and intercalated cells of the collecting duct in human kidneys [178]. CB2 receptors are
expressed in podocytes [179], proximal tubule cells [180], mesangial cells of human and rat
renal cortex samples [181].

The eCB system in kidneys plays an important role through its increased CB1 receptor
activity contributing to hemodynamic abnormalities and dysfunction. A series of stud-
ies in nephrotoxic models of cisplatin-induced renal injury demonstrated that there are
detrimental effects due to CB1 activation and protective effects by CB2 activation. CB1
activation results in increased expression of oxidative/nitrosative stress marker, which
activates pathways such as MAPK, P38, c-Jun N-terminal kinase pathways leading to
apoptotic cell death and inflammation [182]. On the contrary, CB2 activation leads to
reduced proapoptotic signalling, involved in anti-inflammatory effects by decreasing the
release of cytokines [183].

Buser and colleagues reported two clinical cases regarding the effect of synthetic CBs
on kidney function. In one of the cases, a 17-year-old patient smoked a synthetic CB called
Clown Loyal and presented with symptoms of flank pain, emesis, and oliguria. Later,
the patient was treated with furosemide for oliguria and intravenous methylprednisolone
(500 mg for 3 days) for suspected acute interstitial nephritis, followed by oral prednisone
(30 mg twice daily). Renal biopsy conducted on the third day exposed the real condition of
the kidney that the patient is having an acute tubular injury with mild interstitial nephritis.
In another case, 15-year-old reported to have discomfort and renal ultrasound revealed
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bilateral hyperechoic kidneys with poor corticomedullary differentiation [184]. Illicit use
of synthetic CBs increased the number of illness cases. In addition, 16 cases were reported
of AKI in six states of the USA in March 2012 [185], and four cases of oliguric AKI in
2013 [167]. Acute tubular necrosis seems to be the aetiology of AKI in patients [186].

7.2. Cannabinoid Hyperemesis Syndrome

Cannabinoid hyperemesis syndrome (CHS) is a condition with cyclic vomiting due to
high doses of Cannabis. Cannabis has been used for many years, but CHS was first reported
in 2004 [187]. The patients suffering from this condition had to undergo a lot of expensive
medical tests for symptom management. The pathophysiology of CHS is less known, which
hinders proper treatment of this condition [188]. CHS has been given less importance and
underestimated but now, many cases have been identified in recent years showing the
widespread use of Cannabis throughout the world. There are some sceptical and unclear
circumstances under which Cannabis suppresses emesis in some people, and induces in
others. This needs to be clarified. It is difficult to understand the exact pathophysiology of
CHS, as some data suggest that it is due to dysregulation of the eCB receptors CB1 and
CB2 in the brain and gastric system [189], while other data suggest that interaction of CBs
with CB1 in gastrointestinal tract changes the gastric motility. Widespread use of synthetic
CBs increases CHS cases day by day as they are potent against CB1 receptors [190].

A case report of a 37-year-old African American male who is suffering from intermit-
tent symptoms like nausea, vomiting and epigastric pain for the last 14 years has a history
of long-term use of Cannabis and to relieve the symptoms the patient applies heat to the
abdomen [191]. It remains a puzzle how CBs induce hyperemesis despite its antiemetic
property demonstrated in clinical and animal models, by stimulating CB1 receptors [192].
Hundreds of metabolites formed from the active components of Cannabis and the non-
active components could trigger the cyclic hyperemesis following chronic abuse [193].
Abdominal heat application with hot showers helps in the redistribution of heat around
the gastrointestinal tract and relieves the symptoms of CHS [194]. One case report suggests
that chronic use of CBs may turn CHS into Cyclic Vomiting Syndrome (CVS) [191]. A study
conducted by Simonetto and colleagues on 98 patients concluded that CHS symptoms
occur in patients who use Cannabis frequently for many years and start to decline after the
cessation of the Cannabis use [195].

Nausea and vomiting associated with cancer chemotherapy can be treated with THC
(Dronabinol) and the synthetic cannabinoid nabilone which were approved for medical use
in the USA. The difference between anti-emetic doses and adverse (psychic) effects of these
drugs is too narrow, which limits its usage as anti-emetic in a clinical context. However, the
introduction of 5-HT3 receptor antagonists as new anti-emetics emerged as a better option
to replace cannabinoids [196].

7.3. Cardiovascular Effects

Smoking Cannabis causes an immediate increase in heart rate lasting more than an hour,
and in half an hour there is an increase in serum norepinephrine levels [197]. Increased
supine systolic blood pressure is noticed on acute exposure to Cannabis [198] that may
induce atrial fibrillation [199]. Cannabis smokers have reduced levels of oxygen in their
blood due to increased levels of carboxyhemoglobin [200]. Moreover, Cannabis is found to
be a source of ROS, which increases cellular oxidative stress [201].

Cardiovascular cases increased from 1.1% in 2006 to 3.6% in 2010. The commonly
reported cardiovascular cases of Cannabis users are acute coronary syndrome (ACS), stroke,
stress cardiomyopathy, cardiac arrhythmias, and death [202]. Nearly a five-fold increase in
the risk of acute myocardial infarction (AMI) after Cannabis exposure was described [203].
CBs can reduce myocardial contractility by acting on CB1 receptors [204] and many cases
have been reported regarding the rhythm abnormalities in Cannabis users [205]. It has been
reported that young users (14 years old age) were found to have atrial fibrillation after
Cannabis smoke [206].
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Acute myocardial infarction in marijuana smokers was increased, 4.8-fold higher
during the first hour of exposure, and declined rapidly [203]. An investigation revealed
that recreational marijuana usage by young adults (age 25–34 years) led to a 17% increased
hospitalisation due to ischaemic stroke and 18% due to aneurysmal subarachnoid haemor-
rhage [207]. Other cases presented with acute myocardial infarction after smoking spice or
k2 with chest pain in 16-year-old boys [169].

7.4. Respiratory Depression

Synthetic CBs act on peripheral receptors, such as chemoreceptors and baroreceptors,
increasing the resistance on bronchial air passage. Activation of CB1 receptors could be
a possible reason for respiratory depression by stimulating signalling pathways linked
to G-protein coupled receptor, MAPK which leads to the suppression of excitatory and
inhibitory neuronal activity [41].

The effect of synthetic CBs in respiration has not been studied extensively on humans
and research on rats had shown that they affect the respiratory rate and can cause hypoxia,
hypercapnia, and arterial blood gas acidosis [208]. Inhalation of synthetic CBs causes the
release of harmful chemical gases which damage the bronchial epithelial lining and dam-
ages the protective surfactant layer in alveoli leading to changes in the gaseous exchange
causing hypoxia and acute respiratory distress [209]. The chronic use of synthetic CBs
leads to dependence syndrome, withdrawal symptoms, and psychiatric symptoms [145].
Severe respiratory depression, pneumothorax, and acute respiratory distress syndrome
(ARDS) can be developed after synthetic CBs use. In a 25-year-old boy in Turkey, it was
found that after consumption of synthetic CBs, the pulmonary parenchymal tissue was
damaged, causing vasoconstriction and endothelial dysfunction [210].

Synthetic CBs can act as full agonists, partial agonists, and inverse agonists at CB1
and CB2 receptors, and have different levels of potency, efficacy, affinity, selectivity, and
molecular activity [211]. Contrarily, natural THC shows only partial agonistic activity [212].

Marijuana smoke is comparatively more harmful than tobacco smoke to the lungs
and induces bronchial hyperresponsiveness, pulmonary inflammation, emphysema, and
tissue destruction independent of CB1 activation. A single marijuana cigarette per day is
equivalent to one package of tobacco cigarettes in inducing the risk of malignancy tumours
every year. Twice the concentrations of harmful chemicals including phenol, naphthalene
benzanthracene, acetaldehyde, hydrogen cyanide, and ammonia are present in marijuana
compared to tobacco smoke. These toxic irritants activate peptidergic sensory nerves
which induces inflammation. In blood carboxyhemoglobin levels are five times higher in
marijuana smokers compared to tobacco smokers [213]. A 29-year-old male patient who
smoked bonzai, a synthetic CB derivative, for 2 years suffered from pulmonary embolism,
a clinical condition that is associated with a higher rate of morbidity and mortality [214].
Similarly, another 32-year-old female patient also suffered pulmonary embolism due to the
use of synthetic CBs [215].

7.5. Effects on Brain

In the brain, CB1 receptors are extensively distributed in regions like the hippocam-
pus, basal ganglia, cortex, amygdala, and cerebellum. Cannabis induces dose-dependent
toxicological changes in these brain regions [216]. There are changes in grey or white matter
density in different regions of the brain including the frontal and parietal lobes [217] and
degenerative changes in the hippocampus and amygdala are reported more often [218].
These findings suggest that Cannabis use leads to changes in the morphology and function
of brain structures involved in learning and memory [219,220]. Battistella and colleagues
showed that there was a decrease in grey matter volume in regions, including the temporal
cortex, temporal pole, parahippocampal gyrus, left insula, and orbitofrontal cortex in
regular Cannabis users as compared with occasional users [221]. The same results have
been found in animal studies, which further corroborate that Cannabis exposure results in
volume reduction of CB1 rich regions [216].
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Functional magnetic resonance imaging (FMRI) studies also demonstrate that there
are alterations in core regions of the brain including the ventromedial prefrontal cortex
(vmPFC), insula, and orbitofrontal cortices, which are linked to motivation and decision
making [222]. However, in addition to changes in the polar region of the brain, changes
have also been noted in the medial temporal cortex. The hypothesis of the reduction in grey
matter volume suggests that it is due to abnormal pruning of the synaptic connections [223],
which damages the brain maturation process. The exogenous CBs interfere with the normal
functioning process of the eCBs and alter the pruning activity of the synapses in brain
regions including the cerebellum [224] and prefrontal cortex [37,38,40,85,225].

In a 50-year-old male, fluid attenuation inversion recovery (FLAIR) imaging studies
have shown that synthetic CB usage led to abnormally intense signals in the hippocampus,
basal ganglia, bifrontal cortex, cerebral peduncles, posteroinferior cerebellar hemispheres,
and cerebellar vermis [226]. Other designer drugs like “Bath salts”, which have simi-
lar effects to cocaine, induce acute intraparenchymal and subarachnoid haemorrhage as
well as ischemic infarction [227]. Bath salt intoxication in a 36-year-old man led to de-
layed encephalopathy, dysautonomia, fulminant hepatic failure, and renal failure from
severe rhabdomyolysis [228], and in a 14-year-old girl, this was accompanied by hypona-
tremia [229].

Synthetic drugs that selectively act as antagonists of CB1 or CB2 receptors [230], and
rimonabant (SR141716A), a selective CB1 receptor blocker [231], has been used widely in
CNS (Figure 4). In mice, it has been observed that direct microinjection of synthetic CB
CP55940 into the cerebellum did not impair motor coordination [232]. Administration of
THC, synthetic CBs, and anandamide in animals caused deficits in short-term memory in a
spatial learning task [37,220,233].

Figure 4. Rimonabant (SR141716A)-Chemical structure of CB1 selective antagonist drug.

To evaluate the effect of synthetic THC, research was performed on isolated rat
brain mitochondria, and it induced negative effects on mitochondrial respiratory chain
complexes I, II, III and increased the leakage of free radicals on exposure to THC. Moreover,
mitochondria also participate in the overproduction of ROS in the presence of THC. Thus,
the brain is vulnerable to oxidative stress and mitochondrial dysfunction, which increases
neuronal damage and leads to the chance of stroke [140]. In other research, it has been
reported that HU210, a synthetic analogue of THC, induces a spatial deficit in the Morris
water maze test in learning reference memory [234].

8. Conclusions

Phytocannabinoids from the herb Cannabis sativa have been used for thousands of
years for both medicinal and recreational purposes. Characterisation of the endocannabi-
noid system in the past two decades has developed an enhanced understanding concerning
the roles of CB1 and CB2 receptors, which made it possible to use plant-derived cannabi-
noids in therapeutic implications. USFDA approved synthetic drugs such as Cesamet®

used in severe nausea and vomiting, Marinol® and Syndros® used in AIDS-related anorexia,
and antiemetic. Sativex®, an oromucosal spray used for the treatment of MS is marketed in
16 countries outside of the USA.
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Elucidating the structure of THC in 1964 led to the development of THC analogues
with similar activity and increased the production of synthetic CBs. Though the aim of
developing the synthetic CBs was for research purposes, it was misused by clandestine
chemists for criminal activities and currently, they are manufactured illegally on a large
scale for illegal commercial use. Synthetic CBs have evolved and become popular rapidly
in the world of recreational drugs of abuse due to their psychoactive properties. In recent
times, many SCs have been banned and placed under the schedule 1 category in the USA
because of their potentially harmful effects. However, new synthetic CBs with modifi-
cations in their chemical structure are available in the market with increased potential
toxicity that threatens public health. Adverse effects associated with synthetic CBs include
seizures, cardiovascular effects, kidney injury, respiratory depression, hyperemesis syn-
drome, gastrointestinal problems, cerebral ischemia, and multiple organ failure leading to
death. Therefore, there is an urgent need to stop the spread and usage of these synthetic
CBs in various forms and to further understand the toxic effects of synthetic CBs to develop
treatments for intoxication.
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