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A B S T R A C T

Drug combination therapy, involving the use of two or more drugs, has been widely employed to treat complex
diseases such as cancer. It enhances therapeutic efficacy, reduces drug resistance, and minimizes side effects.
However, traditional methods to identify effective drug combinations are time-consuming, costly, and less
efficient than computational methods. Therefore, developing computational approaches to predict drug com-
binations has become increasingly important.
In this paper, we developed the Random Walk with Restart for Drug Combination (RWRDC) model to predict

effective drug combinations for cancer therapy. The RWRDC model offers a quantitative mathematical method
for predicting the potential effective drug combinations. Cross-validation results indicate that the RWRDC model
outperforms other predictive models, particularly in breast, colorectal, and lung cancer predictions across
various performance metrics. We have theoretically proven the convergence of its algorithm and provided an
explanation for the algorithm’s rationality. A targeted case study on breast cancer further highlights the capa-
bility of RWRDC to identify effective drug combinations. These findings highlight our model as a novel and
effective tool for discovering potential effective drug combinations, offering new possibilities in therapy.
Additionally, the graph-based framework of RWRDC holds potential for predicting drug combinations in other
complex diseases, expanding its utility in the medical field.

1. Introduction

Drug combinations, involving the integration of two or more active
pharmaceutical ingredients into a single dosage form, have become
increasingly vital in enhancing therapeutic efficacy while reducing the
side effects and resistance associated with monotherapies [1]. They are
classified as effective or ineffective based on demonstrated improve-
ments in clinical trials or preclinical studies [2]. Notably, effective drug
combinations interact with multiple targets within the molecular net-
works of complex diseases, making them pivotal for treating a wide
array of conditions, including various cancers [3], HIV [4], and bacterial
infections [5].

Given the vast number of potential drug combinations, experimental
screening is both time-consuming and costly. This has underscored the
need for computational methods in drug screening. Zhao et al. reviewed

databases, web servers, and computational models for drug-drug inter-
action predictions, highlighting their potential to enhance the efficiency
of drug combination screenings [6]. The rise of artificial intelligence has
brought significant advancements to the field of drug combination
prediction [7,8]. For example, Chen et al. developed the NLLSS model,
which was validated through subsequent biological experiments, con-
firming 7 out of 13 predicted antifungal synergistic drug combinations
[9]. Other studies, such as those by Hansen et al. [10] and Ali et al. [11],
have employed algorithms like Random Forest and Support Vector
Machines to identify effective drug pairs for cancer treatment. Huang
et al. [12] used logistic regression models to predict effective drug
combinations based on clinical phenotype information, while Xu et al.
[13] constructed an SGB prediction model utilizing various features for
predicting combinations of FDA-approved antihypertensive drugs. Han
et al. [14] predicted drug-drug interactions by integrating deep learning
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with biomedical knowledge graphs.
In recent years, the significance of graph networks in bioinformatics

research has been increasingly recognized. These networks play a
crucial role in systematically exploring the molecular complexities
associated with specific diseases. They enable the identification of dis-
ease modules and signaling pathways, facilitating the investigation of
potential drug mechanisms [15]. Graph network methods, which focus
on node connectivity, interactions, and relationships, have proven
effective in addressing drug-disease interactions that are biologically
relevant and clinically significant [16]. Their applications have
extended to the study of drug combinations, where they have demon-
strated versatility and potential in this evolving field.

Due to the limitations in obtaining labeled data, especially the
scarcity of marked negative samples (i.e., known non-effective drug
combinations), the effectiveness of traditional supervised learning
methods is significantly impaired. To overcome this challenge, we have
developed the Random Walk with Restart for Drug Combination
(RWRDC) model, a novel graph-based semi-supervised learning frame-
work, to predict potential effective drug combinations.

The efficacy of the RWRDC model is demonstrated by its perfor-
mance in extensive cross-validation tests, consistently outperforming
other methods, especially in the prediction of breast, colorectal, and
lung cancers, across several performance metrics. We have theoretically
proven the convergence of its algorithm and provided an explanation for
the algorithm’s rationality. A targeted case study on breast cancer ex-
emplifies the RWRDC’s capability to identify potential drug combina-
tions. The paper concludes with an in-depth discussion on the strengths
and limitations of the RWRDCmodel, as well as its potential applications
in diverse medical scenarios.

2. Methods

2.1. Data collection and pre-processing

The Drug Combination Database (DCDB) includes information on
1363 unique drug combinations, involving 1735 individual drugs.
Notably, the DCDB archives a total of 1103 effective combinations and
237 non-effective ones, offering a rich data source for identifying po-
tential drug combinations. In our study, we classify effective drug
combinations as positive samples and non-effective combinations as
negative samples.

Due to the highmortality rates associated with breast, colorectal, and
lung cancers, as referenced [17], we specifically focus on drug combi-
nations related to these types of cancer as detailed in the DCDB. Our
selection criteria are based on the use of ICD-10, a globally recognized
disease classification system developed by the WHO [18]. Each drug
combination in DCDB is tagged with one or more ICD-10 codes, facili-
tating targeted data extraction. For instance, combinations coded as C18
(malignant neoplasm of the colon) were earmarked as colorectal cancer
data. Similarly, codes C50 and C34 were indicative of breast and lung
cancer data, respectively. In this study, we excluded drug combinations
from the DCDB database that are marked as ‘Need further study’.

Here, the edge refers to an effective drug combination, and vertex
denotes the drugs involved in these combinations. Density is defined as
the ratio of the number of edges to the total number of possible edges,
signifying the proportion of effective combinations among all feasible
pairings. Table 1 shows that only 5 %–9 % of all possible drug pairings
are potentially effective. Furthermore, the datasets for breast cancer,

colorectal cancer, and lung cancer contain 4, 1, and 2 known non-
effective combinations, respectively, which correspond to the number
of drugs involved in effective combinations for each cancer type. These
negative samples are utilized to validate the reasonableness of the
effective scores discussed in section B of the Results.

2.2. Notations and definitions

Let G(V, E) be an undirected graph, where the vertex set V represents
individual drugs, and the edge set E represents pairs of effective drug
combinations, defined as E =

{(
vi, vj

)
| vi and vj are a pair of effective

drug combination
}
.

Define the set of positive samples as PS =
{(

vi, vj
)⃒
⃒
(
vi, vj

)
∈ E

}
and

the set of negative samples as NS =
{(

vi,vj
)⃒
⃒ vi and vj are a pair of non −

effective drug combination
}
. Let the set of candidate samples be CS =

{(
vi,vj

)
|
(
vi,vj

)
∕∈ E

}
.

2.3. Random walk with restart algorithm

We are provided with a connected graph G where the transition
probability pij represent the likelihood of moving from vertex j to i. In a
standard RandomWalk, at each stage, movement to any adjacent vertex
is possible. The primary goal is to determine the most probable vertex
we will end up at after a series of steps. We regard the vertex set V = {v1,
v2,…, vn} as a set of states S = {s1, s2,…, sn} in a finite Markov chainM ,
where each vertex corresponds to a state. For any vj in V, we have
∑

vi∈Vpij = 1, allowing us to define a transition probability matrix P =
{

pij

}
∈ R|V|×|V| of M .

The random walk from vj to vi of graph G is to choose an edge eij

randomly. Define transition probability pij as follows:

pij =
1
dj
, (1)

where dj is the degree of vertex vj. We denote DG to be the diagonal
matrix containing the vertex degrees of the graph and A to be the ad-
jacency matrix of G. Thus, P can be rewritten in matrix notation as
follows:

P=D− 1
G A. (2)

Let rt ∈ R|V|×1 be a vector in which the i-th element represents the
probability of finding the random walk at vertex vi at step t. The prob-
ability rt+1 can be calculated iteratively by:

rt+1 =PTrt . (3)

In random walk with restart (RWR) the main difference is that at each
stage there is a probability that we can restart i.e. go to the starting node
[19]. For the RWR algorithm, there is an additional restart item
compared to the above algorithm. The probability rt+1 can be calculated
iteratively by the following expression:

rt+1 = cPTrt + (1 − c)r0. (4)

Define the initial probability vector r0 ∈ R|V|×1 such that the i-th
element is 1 if it corresponds to an initial vertex, and 0 otherwise. Here, c
is the probability of continuing the walk, making 1 − c the restart
probability, which ranges from 0 to 1 inclusive.

At the beginning of the RWR, we select a starting vertex vi, and the
walk proceeds based on transition probability. Suppose the walk pro-
ceeds arrive at vertex vj; it then has a probability c of continuing based
on the transition probability and a probability of 1 − c of restarting the
walk, that is, returning to vertex vi. After several steps, the RWR reaches
a stable state, when the L1 norm between rt+1 and rt is less than an
arbitrarily small value. Here, we set the cutoff at 10− 6, a criterion is

Table 1
Basic information of the drug combination datasets.

Datasets Number of vertices Number of edges Density

Breast cancer 41 46 0.0561
Colorectal cancer 18 13 0.0850
Lung cancer 24 22 0.0797
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commonly used in various research studies [20,21]. When the RWR is
stable, the stable probability between vertex i and vertex j is defined as
the j-th element of rt, given that the starting vertex is vi. Fig. 1 illustrates
the flowchart of the RWR process.

2.4. .Proof of convergence

This section demonstrates the convergence of the RandomWalk with
Restart (RWR) algorithm, demonstrating that as t approaches infinity,
the steady-state condition rt+1 = rt is satisfied, according to equation
(4). To clearly demonstrate this, let us define:

X= cPT . (5)

Y =(1 − c)
(
I − cPT)− 1. (6)

Applying equations (5) and (6), we derive the following relationship:

rt+1 − Yr0=X(rt − Yr0). (7)

By defining Mt = rt − Yr0, we can then express the next iteration as:

Mt+1 =XMt . (8)

From Equation (8), setting t = 0 yields B0 = (I − Y)r0, which leads to:

Mt =Xt(I − Y)r0, (9)

rt = [Y+Xt(I − Y)]r0. (10)

The limit of Xt as t approaches infinity is 0, i.e., limt→∞Xt = 0, so:

lim
t→∞

rt =Yr0 =(1 − c)
(
I − cPT)− 1r0. (11)

Therefore, we conclude that:

lim
t→∞

(rt+1 − rt)=0. (12)

This confirms the convergence of the RWR algorithm.

2.5. Effective score of drug-drug pairs

Each candidate drug-drug pair receives two rounds of effective
scoring through the Random Walk with Restart (RWR) method. Define
Π =

{
πij
}
∈ R|V|×|V| be the stable probability matrix, where πij signifies

the stable probability between vertices vi and vj. This means when RWR
initiates from vertex vi, πij represents the probability of reaching vertex
vj as the process stabilizes.

Specifically, πij is the j-th element of the steady-state probability
(limt→∞rt) given that the i-th element of r0 is 1. The value of πij repre-
sents the likelihood of an effective combination between drug j (among
n − 1 other candidate drugs excluding drug i) and the given drug i;
likewise, πji indicates the potential for an effective combination between
drug i (excluding drug j) and the given drug j. This study aims to predict
effective drug pairings; hence each drug cannot be combined with itself
but can potentially combine with any of the other n − 1 drugs. We define
the effective score S =

{
sij
}
∈ R|V|×|V| as follows:

sij =

{
πij + πji if i ∕= j

0 if i = j (13)

The Random Walk with Restart for Drug Combination (RWRDC)
model can calculate a score for any drug pair. Pairs with higher scores
are more likely to be effective drug combinations.

3. Results

Firstly, we analyzed the selection of restart probability values and
the rationality of the scoring mechanism within the Random Walk with
Restart for Drug Combination (RWRDC) model. Then, we analyzed the
predictive performance of RWRDC through cross-validation. Finally, a
case study verified the model’s effectiveness in discovering novel drug
combinations. The study highlighted RWRDC’s practical utility and
potential in facilitating the discovery of effective drug combination
therapy.

3.1. Effects of restart probability

The receiver operating characteristic (ROC) curve is a graphical
representation that illustrates the diagnostic capability of a binary
classifier system across varying threshold levels. The Area Under the
Receiver Operating Characteristic Curve (AUC) quantifies this capa-
bility, with values ranging from 0 to 1. A larger AUC value signifies a
more effective classifier.

Leave-One-Out Cross-Validation (LOOCV), particularly advanta-
geous for smaller datasets, involves sequentially using each positive
sample (a known effective drug combination) as the test set, while the
remaining positive samples and other non-positive samples (potential
drug combinations) form the training set. The Random Walk with
Restart for Drug Combination (RWRDC) model scores and ranks each
sample in the positive samples and candidate samples. This process is
repeated for each positive sample, with the model’s predictive perfor-
mance being evaluated against varying thresholds.

Fig. 1. Flowchart of the random walk with restart.
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We investigated the impact of the restart probability (1 − c) on the
RWRDC’s performance by computing AUCs for values ranging from 0.05
to 0.95 using LOOCV. As depicted in Fig. 2, the model’s efficacy, indi-
cated by the average AUC (represented by the orange line), was maxi-
mized at a restart probability around 0.05, illustrating the importance of
this parameter in enhancing model performance. Therefore, we set
(1 − c) to be 0.05.

3.2. Rationality analysis of scoring

To check whether the drug-drug pairs with high effective scores were
more likely to be effectively combined, all candidate drug-drug pairs in
three datasets were ranked by RWRDC. In this paper, the average
effective score of PS (effective combinations), CS (unknown combina-
tions), and NS (non-effective combinations in candidate samples) were
calculated respectively. If the average effective score of PS was higher
than that of CS and also the average effective score of CS higher than that
of NS on different datasets, the scoring process was reasonable.

The average effective scores of PS, CS, and NS were expressed by PS
score, CS score, and NS score, respectively. As shown in Table 2, the PS
scores were higher than the CS scores, and the CS scores were higher
than the NS scores. Drug-drug pairs with higher effective scores were
more likely to be effective combinations across the three datasets.

3.3. Cross-validation tests

In this paper, we used LOOCV for different methods and datasets to
test the predictive ability of the model. Briefly, the drug-drug pairs
corresponding to the elements of 1 in the adjacent matrix A were pro-
portionally divided into the training set and the test set, and the ele-
ments of 0 in the adjacent matrix A were used as the CS. Then, the
effective score of each sample of the test set and the CS was predicted.

Furthermore, our study involved a comparative analysis of the
Random Walk with Restart for Drug Combinations (RWRDC) model
against not only the conventional Random Walk (RW) model and the
Network-based Laplacian regularized Least Square Synergistic drug
combination prediction (NLLSS) model but also several widely-used
machine learning algorithms, such as Logistic Regression (LR), Sup-
port Vector Machine (SVM), Random Forest (RF), and Stochastic
Gradient Descent Classifier (SGDC) across various datasets. To ensure a
fair comparison of the predictive ability of these models, we used the
same known effective drug combination data as model inputs.

We employed LOOCV to ensure a fair performance evaluation in all
datasets. The performance was evaluated using a comprehensive set of
metrics, including accuracy, recall (sensitivity), specificity, precision, F-
Score, MCC, AUC, and AUPR. In particular, the AUPR is a measure of the
average precision of a classification model at different threshold set-
tings. It is the area under the curve when the precision is plotted against

the recall for various threshold levels. The precision-recall curve is
especially useful in imbalanced classification problems. And other
metrics we used are defined as:

Accuracy=
TP + TN

TP + TN + FN + FP
(14)

Recall=
TP

TP + FN
(15)

Specificity=
TN

TN + FP
(16)

Precision=
TP

TP + FP
(17)

F − Score=
2× Recall× Precision
Recall+ Precision

(18)

MCC=
TP × TN − FN × FP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TN + FN) × (TP + FP) × (TP + FN) × (TN + FP)

√ (19)

where TP is the number of correctly predicted effective drug combina-
tions, TN is the number of correctly predicted non-effective drug com-
binations, FP is the number of non-effective drug combinations
predicted as effective ones, and FN is the number of effective drug
combinations wrongly predicted as non-effective ones.

Table 3 shows a detailed evaluation of several classification models
across different cancer datasets, using the LOOCV method to ensure the
reliability and generalizability. Our RWRDC model, especially in lung
and colorectal cancer datasets, demonstrates excellent performance in
metrics such as Accuracy, Recall, Specificity, Precision, F-Score, and
MCC. It notably outperforms other models, highlighting its robustness in
predicting effective drug combinations. The AUC and AUPR values
further confirm the superior predictive accuracy of RWRDC, especially
in handling class imbalances.

The table includes p-values, providing statistical evidence of
RWRDC’s performance superiority over other methods, particularly
noticeable in lung and colorectal cancers.

While the RWRDC model demonstrates strong performance across
multiple metrics, it does not achieve the highest Accuracy and Speci-
ficity in the Breast and Colorectal Cancer Datasets. This suggests a need
for further refinement in feature selection and model generalization to
better adapt to the complexities of these datasets. In the Lung Cancer
Dataset, the model’s Recall is not optimal, indicating potential misses of
actual positive cases. This may stem from the high variability inherent in
lung cancer data, which calls for a more tailored approach in feature
representation and model training to enhance accuracy.

3.4. Case study

This study entailed an exhaustive case analysis to evaluate the
Random Walk with Restart for Drug Combination (RWRDC) model in
uncovering novel, effective drug combinations, with a specific emphasis
on breast cancer. The process ranked all possible drug pairings for tar-
geted disease treatment based on their estimated effective scores from
the RWRDC model. During the validation phase, we compared these
scores against the Drug Combination Database (DCDB) and recent
studies. Notably, within each cancer-specific dataset, only about 5 %–9
% of all combinations were effective, as shown in Table 1. We thenFig. 2. The performance of restart probability on the LOOCV.

Table 2
Effective scores comparison across different datasets.

Datasets PS score CS score NS score

Breast cancer 4.25* 10− 2 1.56* 10− 4 6.96* 10− 5

Colorectal cancer 6.59* 10− 2 2.27* 10− 4 5.96* 10− 4

Lung cancer 5.19* 10− 2 3.16* 10− 4 1.82* 10− 7
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Table 3
Comparative performance metrics of classification models based on LOOCV.

Dataset Method Accuracy Recall Specificity Precision F-Score MCC AUC AUPR p-value

Breast Cancer Dataset LR 0.852469 0.391304 0.879169 0.157895 0.225000 0.179672 0.510274 0.151638 0.214986
SVM 0.833432 0.434783 0.856514 0.149254 0.222222 0.180989 0.536467 0.113631 0.208170
RF 0.729923 0.500000 0.743235 0.101322 0.168498 0.124604 0.633571 0.100556 0.143888
SGDC 0.856038 0.282609 0.889239 0.128713 0.176871 0.120209 0.562577 0.098605 0.177259
NLLSS 0.867936 0.456522 0.891756 0.196262 0.274510 0.237662 0.600473 0.123428 0.318696
RW 0.842951 0.478261 0.864065 0.169231 0.250000 0.215334 0.670082 0.178663 0.323176

RWRDC 0.853659 0.73913 0.860289 0.234483 0.356021 0.360848 0.858319 0.550367 ​

Colorectal Cancer Dataset LR 0.858025 0.153846 0.919463 0.142857 0.148148 0.070881 0.446373 0.0846 0.045641
SVM 0.845679 0.192308 0.902685 0.147059 0.166667 0.084206 0.493676 0.106812 0.049304
RF 0.888889 0.038462 0.963087 0.083333 0.052632 0.002228 0.434757 0.070955 0.043301
SGDC 0.895062 0.038462 0.969799 0.100000 0.055556 0.012975 0.49445 0.081007 0.051427
NLLSS 0.759259 0.384615 0.791946 0.138889 0.204082 0.115378 0.391843 0.085383 0.027443
RW 0.635802 0.692308 0.630872 0.140625 0.233766 0.1796 0.600929 0.122275 0.042143

RWRDC 0.802469 1.000000 0.785235 0.288889 0.448276 0.476283 0.933918 0.774803 ​

Lung Cancer Dataset LR 0.506944 0.863636 0.477443 0.120253 0.211111 0.182057 0.554511 0.092115 0.000337
SVM 0.826388 0.636363 0.842105 0.250000 0.358974 0.321120 0.732826 0.414010 0.004538
RF 0.560763 0.886363 0.533834 0.135888 0.235649 0.223226 0.680023 0.116705 0.001107
SGDC 0.821181 0.136343 0.877820 0.084507 0.104348 0.011460 0.447133 0.069816 0.000969
NLLSS 0.784722 0.772727 0.785714 0.229729 0.354166 0.339474 0.761876 0.241161 0.005681
RW 0.776041 0.681818 0.783834 0.206896 0.317460 0.284984 0.714798 0.148580 0.003050

RWRDC 0.975694 0.681818 1.000000 0.909604 0.810810 0.815067 0.909603 0.747903 ​

Table 4
Case study of breast cancer.

Rank Drug1 Drug2 Evidence Rank Drug1 Drug2 Evidence

1 Arzoxifene LG100268 DCDB 43 Cyclophosphamide Trastuzumab DCDB
2 Decitabine Depsipeptide DCDB 44 Bevacizumab Trastuzumab DCDB
3 Taxane Gefitinib DCDB 45 Trastuzumab Tamoxifen DCDB
4 PD98059 Gefitinib DCDB 46 Paclitaxel Trastuzumab DCDB
5 Fulvestrant Tipifarnib DCDB 47 PD98059 Taxane Null
6 Olaparib Cediranib DCDB 48 Tipifarnib Anastrozole Null
7 Vinorelbine Neratinib DCDB 49 Paclitaxel Cediranib Null
8 Cisplatin Gemcitabine DCDB 50 Neratinib Trastuzumab [20]
9 Doxorubicin Mitomycin DCDB 51 Fulvestrant Goserelin acetate [21]
10 Doxorubicin Metformin DCDB 52 Letrozole Exemestane Null
11 Methylseleninic acid Tamoxifen DCDB 53 Metformin Mitomycin Null
12 Cyclophosphamide Pemetrexed DCDB 54 Cisplatin Docetaxel [22]
13 Sorafenib Capecitabine DCDB 55 Everolimus Tamoxifen [23]
14 Ixabepilone Capecitabine DCDB 56 Anastrozole Tamoxifen Null
15 Paclitaxel Tubacin DCDB 57 Methylseleninic acid Exemestane Null
16 Paclitaxel Trabectedin DCDB 58 Methylseleninic acid Goserelin acetate Null
17 Paclitaxel Toremifene DCDB 59 Everolimus Lapatinib Null
18 Epirubicin Trastuzumab DCDB 60 Cisplatin Trastuzumab [24]
19 Trastuzumab Bortezomib DCDB 61 Ixabepilone Sorafenib Null
20 Carboplatin Trastuzumab DCDB 62 Docetaxel Mitomycin Null
21 Fulvestrant Anastrozole DCDB 63 Metformin Docetaxel [25]
22 Anastrozole Goserelin acetate DCDB 64 Pemetrexed Capecitabine [26]
23 Everolimus Exemestane DCDB 65 Paclitaxel Pemetrexed [27]
24 Everolimus Letrozole DCDB 66 Trastuzumab Mitomycin Null
25 Tamoxifen Exemestane DCDB 67 Metformin Trastuzumab [28]
26 Tamoxifen Goserelin acetate DCDB 68 Trastuzumab Pemetrexed Null
27 Lapatinib Letrozole DCDB 69 Methylseleninic acid Trastuzumab Null
28 Paclitaxel Olaparib DCDB 70 Goserelin acetate Exemestane [29]
29 Vinorelbine Trastuzumab DCDB 71 Trabectedin Tubacin Null
30 Docetaxel Gemcitabine DCDB 72 Toremifene Tubacin Null
31 Bevacizumab Lapatinib DCDB 73 Toremifene Trabectedin Null
32 Doxorubicin Docetaxel DCDB 74 Paclitaxel Capecitabine [30]
33 Gemcitabine Trastuzumab DCDB 75 Sorafenib Lapatinib Null
34 Lapatinib Capecitabine DCDB 76 Ixabepilone Lapatinib Null
35 Bevacizumab Capecitabine DCDB 77 Bevacizumab Sorafenib Null
36 Cyclophosphamide Capecitabine DCDB 78 Ixabepilone Bevacizumab [31]
37 Docetaxel Capecitabine DCDB 79 Ixabepilone Cyclophosphamide [32]
38 Paclitaxel Bevacizumab DCDB 80 Cyclophosphamide Sorafenib Null
39 Paclitaxel Lapatinib DCDB 81 Sorafenib Docetaxel Null
40 Paclitaxel Cyclophosphamide DCDB 82 Ixabepilone Docetaxel Null
41 Docetaxel Trastuzumab DCDB 83 Doxorubicin Gemcitabine [33]
42 Doxorubicin Trastuzumab DCDB 84 Trastuzumab Capecitabine [34]
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closely examined the top 10 % of these predictions to focus on the most
promising drug combinations. Table 4 outlines these top-tier pre-
dictions, with instances labeled as ‘Null’ indicating a lack of corrobo-
rative documentation in the prevailing scientific corpus.

Breast cancer is the most frequently diagnosed cancer and the lead-
ing cause of cancer-related mortality in females worldwide [35],
comprising 22 % of all cancers in women [36]. We used RWRDC to
predict potential effective drug combinations. As a result, 100 % of the
drug-drug pairs ranked in the top 5 % (a total of 42 pairs) and 73 % of
those in the top 10 % (a total of 84 pairs) of the dataset were validated.
When we considered the drug-drug pairs with the top 10 % highest
predicted effective scores as the predicted result, all the known effective
drug combinations contained in the dataset were accurately validated.
Although some predictions have not been validated in databases and
literature, there is still a strong possibility that predicted effective drug
combinations may prove effective. For example, everolimus-lapatinib
was predicted to be 59th by RWRDC and there was no direct evidence
that it was an effective drug combination. However, reference [37]
indicated that they were conducting a phase II pilot study involving
some patients with HER-2 positive metastatic breast cancer (MBC).
Additionally, the combination of sorafenib and lapatinib ranked 75th by
RWRDC. Reference [38] indicated that both sorafenib and lapatinib
alone were effective in the treatment of breast cancer, suggesting that a
combination of these two agents may be a promising therapeutic option
for the treatment of breast cancer. Furthermore, sorafenib and docetaxel
ranked 81st in the prediction results, despite the absence of specific
literature indicating that they could be combined to treat breast cancer.
A phase II trial of sorafenib combined with docetaxel in the treatment of
HER2-negative MBC was conducted [39]. The existing data do not
conclusively demonstrate that sorafenib and docetaxel can treat breast
cancer; however, with the ongoing development of the trial, clearer
conclusions are expected soon.

4. Discussion and conclusion

In recent years, researchers have increasingly recognized the
importance of graph methods in bioinformatics research. Graphs not
only systematically explore the molecular complexities of specific dis-
eases, identify disease modules and signaling pathways, but also reveal
the potential mechanisms of drug action [40]. Graph methods, focusing
on interactions between nodes, have been applied in recent studies on
drug combinations [41].

The Random Walk with Restart for Drug Combination (RWRDC)
model proposed in this study, as a graph-based method, represents a
significant advancement in predictive analysis, especially in the treat-
ment of cancer. This model uses the principles of graph theory and
employs a random walk strategy to analyze the potential effects of drug
combinations, providing new perspectives and tools for the screening
and optimization of drug combinations. This model extends the classical
random walk within a stochastic process framework, and we have
proven the convergence of the algorithm, providing a solid mathemat-
ical foundation. This progress means that we can find exact solutions to
specific problems instead of relying on iterative numerical solutions,
greatly reducing computation time and increasing accuracy for large-
scale problems. The core of the model is to achieve a steady state in
the random process, which helps calculate the effective scores of drug
combinations, enabling the RWRDC model to identify promising pairs
for targeted disease treatment.

Extensive empirical validation and cross-validation methods have

demonstrated the RWRDC model’s strong predictive power in fore-
casting drug combinations for cancer and other complex diseases.
Additionally, numerous reports have confirmed the efficacy of natural
drug combinations, emphasizing the critical role of natural compounds
in drug synergy [42–44]. Herbal medicines typically contain various
natural active ingredients, and their therapeutic effects are achieved
through a “multi-component, multi-target” mechanism. However, as the
characteristics of many herbal medicines have not been systematically
collected and organized, the RWRDC semi-supervised learning frame-
work, which does not rely on additional features, is particularly suitable
for scenarios with limited data availability.

Despite the significant effectiveness of the RWRDC model, there are
limitations. Firstly, as a semi-supervised learning framework, it has not
yet integrated additional data features, such as chemical structure sim-
ilarities between drugs, drug-pathway interactions, and drug-target in-
teractions, which could significantly enhance the model’s accuracy [45,
46]. Secondly, the current research focuses on effective combinations of
two drugs, but the model has the potential to expand to multiple drug
combinations. Future iterations of the model could adopt a more com-
plex random walk framework to predict such combinations. Thirdly, the
lack of a negative dataset is a challenge in computational modeling, as
successful drug combinations are more frequently reported while
negative combinations receive less attention. Lastly, the issue of drug
combinations being effective or ineffective is often related to drug
dosage, which warrants further exploration [47]. Although some studies
have considered the impact of drug dosage, this issue requires more
in-depth research to achieve the goal of precision medicine.

In summary, the RWRDC model is a key resource for identifying
potential effective drug combinations and provides profound insights
into the underlying mechanisms of drug interactions. It not only paves
the way for the development of new treatment strategies but also
broadens the horizons of medical research in effective drug combination
prediction.
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