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A B S T R A C T

Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts
in several clinical domains. However, classification decisions of a trained machine learning system are typically
non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study,
we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and
layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread auto-
immune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation
and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white
matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable
us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS
are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on
MRI data from the Alzheimer's Disease Neuroimaging Initiative (n=921), afterwards specializing the CNN to
discriminate between MS patients (n=76) and healthy controls (n=71). Using LRP, we then produced a
heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification
decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of
96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN
model focuses indeed on individual lesions, but also incorporates additional information such as lesion location,
non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and
advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make
diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical
review, verify diagnosis-relevant features and potentially gather new disease knowledge.
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1. Introduction

Multiple Sclerosis (MS) is the most widespread autoimmune neu-
roinflammatory disease in young adults with 2.2 million cases reported
worldwide (Mitchell et al., 2019). The disease is mainly characterized
by inflammation, demyelination and neurodegeneration in the central
nervous system and often leads to substantial disability in patients
(Reich et al., 2018). The current quasi-standard for diagnosing MS, the
McDonald criteria, relies on clinical presentation and the presence of
lesions visible in conventional T2-weighted brain magnetic resonance
imaging (MRI) data (Thompson et al., 2018). Most common in clinical
practice are fluid-suppressed T2-weighted image sequences (e.g. fluid-
attenuated inversion recovery sequence [FLAIR]), which are sensitive
towards MS-relevant white matter lesions, but also relatively unspecific
with respect to underlying disease processes (Geraldes et al., 2018).
Several other imaging markers have been described including global
brain atrophy, thalamic atrophy, cortical lesions, altered structural and
functional connectivity or central vein signs (Lowe et al., 2002;
Azevedo et al., 2018; Absinta et al., 2016; Filippi et al., 2016; Sinnecker
et al., 2019; Backner et al., 2018; Pawlitzki et al., 2017; Solomon et al.,
2017), of which some are captured in conventional MRI and others
require advanced MRI techniques such as diffusion weighted imaging or
functional MRI.

In the last decade, a lot of research effort has been put on the au-
tomatic (i.e. data-driven) detection of neurological diseases based on
neuroimaging data including MRI (Orrù et al., 2012; Woo et al., 2017).
Early approaches combined parameter-based machine learning algo-
rithms, such as support vector machines, with carefully extracted fea-
tures known or hypothesized to be relevant in the respective disease. In
MS research, features ranging from T2 lesion characteristics to atrophy
to local intensity patterns or multi-scale information extracted from
MRI data have been used in combination with standard machine
learning analyses to either diagnose MS or predict disease progression
(Eshaghi et al., 2018; Nichols et al., 2012; Weygandt et al., 2011;
Hackmack et al., 2012a; Hackmack et al., 2012b; Weygandt et al., 2015;
Wottschel et al., 2015). While choosing features based on expert criteria
reflects the current state of knowledge, it does not allow for finding new
and potentially unexpected hidden data properties, which might also
help in characterizing a certain disease. Deep learning techniques fill a
gap here and allow for utilizing hierarchical information directly from
raw or minimally processed data (Lecun et al., 2015). By being speci-
fically tailored to image data, in particular convolutional neural net-
works (CNNs) have led to major breakthroughs in medical imaging
(Litjens et al., 2017; Rajpurkar et al., 2017a; Rajpurkar et al., 2017b; De
Fauw et al., 2018). In neuroimaging, most CNN analyses so far focused
on Alzheimer's disease (Vieira et al., 2017), but there are also some
recent studies in MS. Given the importance of lesions in diagnosing MS
and monitoring disease progression, most efforts have been put on the
task of lesion segmentation (Valverde et al., 2017; Li et al., 2016;

Khastavaneh and Ebrahimpour-Komleh, 2017). Others used CNNs to
diagnose MS based on 2-dimensional MRI slices (Wang et al., 2018) or
to predict short-term disease activity based on binary lesion masks (Yoo
et al., 2016).

Despite their potential, deep learning methods are criticized for
being non-transparent (such as a ‘black box’) due to the difficulty to
retrace the classification decision in light of huge parameter spaces and
highly non-linear interactions (Castelvecchi, 2016). This is especially
problematic in medical applications since understanding and explaining
neural network decisions is required for clinical integration, error
tracking or knowledge discovery. Explaining neural network decisions
is an open research area in computer science and a number of sugges-
tions have been made in recent years. Different directions for ex-
planations include visualizing features (Zeiler and Fergus, 2014), gen-
erating images that maximally activate a certain neuron (Olah et al.,
2017) and creating heatmaps based on the input images indicating the
relevance of each voxel for the final classification decision (Simonyan
and Zisserman, 2014; Bach et al., 2015; Springenberg et al., 2015).
Heatmaps are in particular valuable in the medical context, since they
allow for an easy and intuitive investigation of what the respective
classifier found to be important directly in the input data. Besides un-
derstanding diagnostic decisions for individual patients, heatmaps
might be useful in validating CNN models. Recently, we have shown the
potential of transparent CNN applications for knowledge discovery in
Alzheimer's disease (Rieke et al., 2018; Böhle et al., 2019).

The objective of the current study was to investigate whether a
transparency approach can uncover decision processes in MRI-based
diagnosis of MS, a disease with well-defined imaging markers, thereby
supporting future clinical implementation and verification of machine
learning-based diagnosis systems. We present a transparent CNN fra-
mework (see Fig. 1) for the MRI-based diagnosis of MS relying on layer-
wise relevance propagation (LRP, (Bach et al., 2015; Samek et al.,
2017a)) – a heatmap method that has been shown to outperform pre-
vious approaches in terms of explainability and disease-specific evi-
dence (Böhle et al., 2019; Samek et al., 2017a). Since the data set was
rather small (n=147), we investigated the effect of pre-training the
CNN on data from the Alzheimer's Disease Neuroimaging Initiative
(ADNI, n=921). Using LRP, individual heatmaps were generated for
each subject and analyzed with respect to well-established imaging
features in MS (e.g. white matter lesions or thalamic atrophy). By
showing that LRP in combination with a naive CNN model (i.e. a model
independent of MS-specific knowledge) indeed helps in uncovering
relevant imaging features, we conclude that this framework is not only
useful in justifying individual diagnostic decisions but also to validate
CNN models (especially in light of small sample sizes).

Fig. 1. Illustration of the transparent CNN framework. In the
training phase, the CNN model learns a non-linear relation-
ship between the MRI data and the binary diagnostic labels
(MS yes/no). Optionally, the CNN models are pre-trained on a
substitute data set or lesions are filled in the MRI data. The
learned CNN model is then tested on new subjects to predict
the diagnostic label. By supplementing this label with a LRP
heatmap, which indicates the relevance of each voxel for the
respective label, this framework allows us to understand (at
least to some extent) the classification decision in individual
subjects. Additionally, the validity of the CNN models can be
assessed by matching highlighted brain areas with domain
knowledge.
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2. Materials and methods

2.1. Subjects

In the present study, we retrospectively analyzed data collected by
FP from Charité – Universitätsmedizin Berlin as part of the VIMS study:
Follow-up examination of visual parameters for the creation of a da-
tabase (neuro-ophthalmologic register) in patients with MS versus
healthy subjects.2 We enrolled 76 patients with relapsing-remitting MS
according to the McDonald criteria 2010 (Polman et al., 2011) and 71
healthy controls. Patients were excluded if they were outside the age
range of 18–69 or did not have an MRI scan. All patients were examined
under supervision of a board-certified neurologist at the NeuroCure
Clinical Research Center (Charité – Universitätsmedizin Berlin) be-
tween January 2011 and July 2015. All participants provided written
informed consent prior to their inclusion in the study. The study was
approved by the local ethics committee and was performed in ac-
cordance with the 1964 Declaration of Helsinki in its currently ap-
plicable version. Part of this data has been used in previous studies (e.g.
(Kuchling et al., 2018)). Demographical details of subjects can be found
in Table 1. There is a significant group difference in age (p<0.05,
obtained via a t-test), but not in sex (chi-squared test).

2.2. MRI acquisition and preprocessing

All MRI data were acquired on the same 3 T scanner (Tim Trio
Siemens, Erlangen, Germany) using a volumetric high-resolution T1
weighted magnetization prepared rapid acquisition gradient echo
(MPRAGE) sequence (TR=1900ms, TE= 2.55ms, TI= 900ms,
FOV=240×240 mm2, matrix 240×240, 176 slices, voxel size: 1 mm
isotropic) as well as a volumetric high-resolution fluid-attenuated in-
version recovery sequence (FLAIR, TR=6000ms, TE= 388ms,
TI= 2100ms; FOV=256×256 mm2, voxel size: 1 mm isotropic). All
MR images were bias field corrected using non-parametric non-uniform
intensity normalization (Tustison et al., 2010), changed to a robust field
of view and linearly oriented to MNI space using FMRIB software tools
(Jenkinson and Smith, 2001). The FLAIR images were then co-regis-
tered to the MPRAGE images using a spline interpolation with FSL
FLIRT (Jenkinson et al., 2002). Lesion segmentation was done semi-
automatically on FLAIR using the lesion prediction algorithm (Schmidt,
2017) as implemented in the Lesion Segmentation Toolbox3 version
2.0.15. Lesion masks are subsequently manually corrected by two raters
using ITK-SNAP (Yushkevich et al., 2006).4 Both raters have more than
5 years of experience in T2 lesion segmentation and were supervised by
a board-certified neuroradiologist (MS). Raters were not blinded to the
diagnosis. Generation of a brain mask and tissue segmentation into gray
matter, white matter, and cerebrospinal fluid was achieved using the
Computational Anatomy Toolbox version 11.09 (Gaser and Dahnke,
2016) implemented in SPM12 version 7219. The data were pre-
processed in that way to ensure that images are in relative realignment
while preserving individual structural variations. Only FLAIR data en-
tered the subsequent analyses because this is the most sensitive se-
quence for lesions and used in clinical routine for diagnosing MS and
monitoring disease progression. For computational efficiency initial
scan volumes (182× 218×182) were down-sampled to
96×114×96 voxels (voxel size: 2 mm isotropic) and standardized for
each subject using min-max scaling. To analyze what the classifier picks
up when there are no lesions, we generated an additional MRI data set,
in which the lesions in FLAIR images were filled. For this, we im-
plemented a version of (Valverde et al., 2014), in which lesion areas

(according to the manually segmented lesion masks) have been re-
placed by local average intensities in normal-appearing white matter.
White matter maps were obtained from the SPM 12 tissue segmentation
algorithm (Ashburner and Friston, 2003).

2.3. ADNI data for pre-training

Data used for pre-training were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database5 We have used sub-
jects from ADNI phase 1 who were included in one of two standard MRI
collections (Wyman et al., 2013). We only selected MRI data of Alz-
heimer's disease (AD) patients and cognitive normal subjects, in total
921 MRI scans from 389 subjects (covering one to three time points).
Follow-up acquisitions can be interpreted as a form of data augmen-
tation used to increase the variance within the training data base. De-
mographical information can be found in Table 2. The MRI scans were
acquired with 1.5 Tesla scanners at multiple sites and had already
undergone gradient non-linearity, intensity inhomogeneity and
phantom-based distortion correction. T1-weighted MPRAGE scans were
downloaded and warped to MNI space with ANTs (Avants et al., 2011).
As for the MS data, the initial scan volumes were down-sampled to
96× 114×96 voxels and standardized.

2.4. Classification and visualization analyses

Based on the preprocessed FLAIR data, we first trained several CNN
models (with and without pre-training, with and without lesion-filling)
to discriminate MS patients and healthy controls and then explained the
model's decisions for individual subjects in the test data using LRP. For
the CNN models, we evaluated the effect of transfer learning by (1)
training the model solely on MS data and (2) pre-training the model on
ADNI data and fine-tuning it on MS data. To examine whether our pre-
trained network can also learn from only normal-appearing brain
matter (NABM), i.e. regions without hyperintense lesions, we retrained
the network on lesion-filled FLAIR data. As baseline analyses, we in-
cluded a support vector machine to classify based on (1) lesion volume
and (2) preprocessed FLAIR data. Prior to training, the MS data set was
randomly split into two sets: (1) a set for training and hyperparameter
optimization (85%) and (2) a holdout set used only for final model
evaluation (15%). The code for all models and also the lesion filling
algorithm is available at https://github.com/derEitel/
explainableMS. In the following subsections, we specify our para-
meter settings for CNNs, transfer learning and visualization techniques
(in particular LRP).

2.4.1. Convolutional neural networks
In this study, we used a 3D CNN architecture consisting of four

convolutional layers followed by exponential linear units (ELUs) acti-
vation functions and four max-pooling layers applied after the first,
second and fourth ELU activation. For each convolutional layer, we

Table 1
Demographics of MS patients and healthy controls. Disease duration is mea-
sured in months and lesion volume in ml. EDSS, expanded disability status
scale; std., standard deviation.

MS patients Healthy controls

Subjects [n] 76 71
Female/Male, in % 55% / 45% 65% / 35%
Age (in years), mean ± std 43.32 (±11.99) 38.23 (± 13.10)
Disease duration, median, range 139.14 (0–522.59) n.a.
EDSS, median, range 2.50 (0.00–6.50) n.a.
Lesion volume, median, range 5.10 (0.12–232.47) 0.09 (0–14.98)

2 https://neurocure.de/en/clinical-center/clinical-

studies/current-studies.html
3 http://www.statistical-modelling.de/lst.html
4 http://www.itksnap.org 5 http://adni.loni.usc.edu, RRID:SCR_003007
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learned 64 filters with a kernel size of 3× 3×3. Finally, a linear layer
with an output shape of 1 and a sigmoid activation returns the classi-
fication score. To improve generalization, the model has been reg-
ularized using a dropout on the outputs of each max-pooling layer
(p=0.3), L2-regularization (λ=0.01) using the weights of the third
and fourth convolutional layer, and finally early-stopping the training
after the validation loss has not improved for 10/15 epochs during pre-
training/fine-tuning. We trained all models using the Adam optimizer
(Kingma and Ba, 2014). Hyperparameters (including learning rate, L2
regularization and dropout probability) were optimized on 85% of the
training data, leaving 15% for validation. After finding suitable hy-
perparameters, the model performance was tested out-of-sample on the
holdout set. To increase robustness, all CNN experiments were repeated
10 times on the same data split, and thus reported metrics are an
average over all 10 trials. We report balanced accuracy as a mean be-
tween sensitivity and specificity as well as area under the receiver op-
erating characteristic curve (AUC). All code was implemented using
Keras (Chollet, 2015) with the TensorFlow (Abadi et al., 2015)
backend.6

2.4.2. Transfer learning
Due to the small sample size of the MS data set, we employed the

principle of transfer learning (Crammer et al., 2008; Duan et al., 2009;
Ben-David et al., 2010), which has been shown to improve performance
in medical imaging including MRI data (Gupta et al., 2013; Tajbakhsh
et al., 2016; Ghafoorian et al., 2017; Hosseini-Asl et al., 2018; Basaia
et al., 2019). We pre-trained our CNN model on ADNI MRI data to
separate AD patients and healthy controls, and fine-tuned it on the MS
data set to separate MS patients and healthy controls. Since the ADNI
data set contains multiple scans for several subjects we ensured that
validation and testing was done on disjoint subject sets. The average
balanced accuracy over all trials was 78.47%. For further analysis, we
selected a model from the 10 trials based on its performance, and then
picked its training checkpoint with the best validation accuracy of
82.50%. Fine-tuning on the MS data set uses the same model archi-
tecture, which is initialized with the weights and biases of the selected
pre-trained model instead of randomly distributed values. We allow all
layers to re-learn because we transferred a CNN model between rather
different tasks and data sets, in particular (1) across diseases (AD to MS)
and (2) across MRI sequences (MPRAGE to FLAIR) exhibiting different
magnetic field strengths (1.5 and 3 Tesla). Additionally, the data was
augmented during fine-tuning, such that during the creation of each
mini-batch each image was flipped along the sagittal axis with a
probability of 50% and randomly translated between −2 and 2 pixels
within the axial plane. We found optimal initial learning rates to be
0.001 in the pre-training and 0.0005 with a 0.002 decay in the fine-
tuning phase.

2.4.3. Visualization
Deep learning methods are often criticized for their lack of inter-

pretability and over the last years much research has focused on im-
proving the interpretability of neural networks (Castelvecchi, 2016;
Montavon et al., 2018; Lapuschkin et al., 2019). While some work has
focused on understanding class representations and functions of in-
dividual neurons, others have developed methods to generate heatmaps

based on the input data that indicate the importance or relevance of
each pixel or voxel for the final classification decision (Bach et al.,
2015; Springenberg et al., 2015; Simonyan et al., 2013). The latter
approach is in particular promising in the medical field since it allows
for explaining in a fast and intuitive way individual classification de-
cisions without the need for delving deeply into the network structure
(Böhle et al., 2019). Generally, it is distinguished between local and
global attribution methods (Ancona et al., 2017). Whereas local attri-
bution methods represent how a change in a specific voxel would im-
pact the network's output and solely rely on the network's gradient (e.g.
sensitivity analysis resulting in image-specific saliency maps), global
attribution methods adjust the relevance of the presence of a feature
globally by weighting it with the entire input and thus are more suitable
for explanation. In the present study, we used LRP, which has been
shown to be a powerful global attribution method (Bach et al., 2015;
Samek et al., 2017a; Lapuschkin et al., 2019). It uses the classification
score f(x) directly (and not the gradient as in most other visualization
methods) and propagates it through the network using the following
rule

∑=
∑ + ∑

R
x w

x w ε sign x w
R

· ( )
.i

j

i ji

k k jk k k jk
j

(1)

Here, the relevance from layer Rj is propagated to its previous layer
Ri. The term ε is set to a small value (in this study: 0.001) to avoid
division by 0. By using both the activation x as well as the weights w
connecting layers i and j, LRP assigns a larger share to neurons that are
more strongly activated and to connections which have been reinforced
during training (Samek et al., 2017b). By decomposing the classifica-
tion score f(x) rather than the gradient and conserving the classification
score during backpropagation, LRP overcomes the flaws of sensitivity
analysis (Samek et al., 2017b) and has been shown to provide evidence
for AD in individual subjects (Böhle et al., 2019). Recently, it has been
shown that LRP can be formulated in the same mathematical frame-
work as other global attribution methods including gradient*input
(Shrikumar et al., 2017), integrated gradients (Sundararajan et al.,
2017) and DeepLIFT (Shrikumar et al., 2017) and are equivalent under
certain assumptions (Ancona et al., 2017).

In this study, we produced individual LRP heatmaps for every
subject in the holdout set. We have used the iNNvestigate im-
plementation of LRP (Alber et al., 2018).7 For comparison, we produced
heatmaps using gradient*input as an alternative global attribution
method.

2.4.4. Evaluation of heatmaps
Besides qualitatively comparing individual heatmaps, we compared

average heatmaps of MS patients and healthy controls. We evaluated
the importance of different brain regions by computing the average
relevance for each brain area in the (1) Neuromorphometrics atlas8

(Bakker et al., 2015) mostly containing gray matter regions and the (2)
JHU DTI-based white-matter atlas9 (Mori and Crain, 2005) containing
white matter regions. Areas were aggregated between left and right
hemisphere and certain substructures are combined into one region. For
visualization of (1) we selected the 30 areas with the highest sum of
absolute relevance means across MS patients and healthy controls in the
test set, yielding areas with both the highest and lowest relevance.
Please reconsider here that the MRI data have only been linearly re-
gistered and thus slight deviations from the anatomical locations stated
in the atlases are conceivable. To evaluate the effect of transfer learning
on the heatmaps, we compare average heatmaps for MS patients before

Table 2
Demographics of ADNI data set.

AD patients Healthy controls

Subjects [n] 231 158
Female/Male, in % 42% / 58% 48% / 52%
Age (in years), mean± std 74.98 (±7.40) 75.93 (± 5.01)

6 Keras version 2.2; TensorFlow version 1.11

7 The implementation can be found at https://github.com/albermax/
innvestigate

8 Contained in the SPM12 software, https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/

9 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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and after pre-training. To assess the relevance of normal-appearing
brain areas in contrast to lesion areas, we computed relevance scores
separately for the original MRI data set and the lesion filled MRI data
set. To assess the amount of relevance attributed to the lesions in the
original MRI data set, we computed

=
∑

∑

+

+

lm hm
hm

lesion relevance
*

(2)

where lm is the individual lesion mask and hm+ the individual positive
relevance.

2.4.5. Baseline analyses
As a baseline we have trained a support vector machine (SVM) to

classify between MS patients and healthy controls based on (1) FLAIR
lesion load and (2) preprocessed FLAIR volumes. Hyperparameters
were tuned on the training data set using grid search, nested within a 5-
fold cross-validation (SVM kernel: linear and radial basis function
[RBF], C, γ=[0.001,0.1,1,10]); for the preprocessed FLAIR volumes an
optional prior dimensionality reduction step via principal component
analysis was performed.

3. Results

3.1. Classification performance

In Table 3, we depict the performance for the different classification
models. As expected FLAIR lesion load – as one of the core biomarkers
in MS – in combination with a SVM led to a high balanced accuracy
(88.46%) and a high AUC (94.62%). When instead of the FLAIR lesion
load the entire FLAIR volume is used as input to the SVM, the AUC
dropped down to 66.92%. The CNN model solely trained on the MS
data set resulted in a balanced accuracy of 71.23% and an AUC of
85.46%. When the network has been pre-trained on the ADNI data set
and fine-tuned to the MS data set, the balanced accuracy increased by
16 percentage points to 87.04% and is therefore comparable to the
performance of the baseline FLAIR lesion load model. Moreover, the
pre-trained CNN model outperformed all other classifiers in terms of
AUC (96.08%) and importantly also in terms of sensitivity (93.08%).
The ROC curve for all 10 trials is shown in supplementary Fig. 1. For
further processing we have selected the model with the best validation
balanced accuracy from the 10 training repetitions of 91.67%, which
achieved a holdout balanced accuracy of 91.15%. Its training curve can
be found in supplementary Fig. 2. To assess the impact of normal-ap-
pearing brain matter, we trained the same CNN model on lesion-filled
FLAIR data. Still, a reasonable balanced accuracy of 70.15% and a re-
latively high AUC of 90.92% has been achieved.

3.2. Visualization

After the CNN models have been trained, we used LRP to generate
an individual heatmap for each subject in the holdout data set in-
dicating the relevance of each voxel for the respective classification

decision. In Fig. 2, we show the individual heatmaps overlayed on the
FLAIR data for four correctly classified MS patients, who achieved the
highest classification scores in terms of the sigmoid output. High clas-
sification scores generally indicate a higher confidence of the model for
the respective classification decision and thus the corresponding ex-
planations are usually more pronounced and less diffuse as for cases
with lower classification scores. All four patients have in common that
high positive relevance is attributed around the occipital horn of both
lateral ventricles and covers periventricular lesion areas as well as the
body and splenium of the corpus callosum. Even though the images
were clearly classified as MS, certain regions are assigned negative re-
levance, meaning that these areas speak against the MS diagnosis. Ne-
gative relevance can be found around the frontal horn of both ven-
tricles, notably even in periventricular lesion areas (see for example
subject 1). Interestingly, lesions not bordering the ventricles seem often
to be ignored or are assigned negative relevance. For comparison, we
show and discuss individual heatmaps of two misclassified subjects in
supplementary Fig. 3.

In Fig. 3, we show average heatmaps for all correctly classified MS
patients (top) and all correctly classified healthy controls (bottom) in
the holdout set. In accordance with the heatmaps of the individual
subjects in Fig. 2, posterior periventricular white matter regions have a
strong positive relevance for the MS diagnosis. This is true for both MS
patients and healthy controls, but the effect is less pronounced for
healthy controls. The reversed effect can be seen for clusters exhibiting
negative relevance in white matter areas in the corpus callosum and
close to occipital and parietal lobe. Over all voxels healthy controls
typically obtain a negative relevance sum (mean ± std.: −1.05e-
6 ± 0.0013) as opposed to a positive relevance sum in MS patients
(3.07e-06 ± 0.0014). Notably, the total relevance attributed to lesion
areas was on average 5.15% (on MS patients 9.71%) compared to a
lesion coverage of only 0.41% in the training data set. In Fig. 4, we
show that the sum of voxels containing lesions (referred to as lesion
sum) and LRP relevance sum are significantly correlated for training
and hold-out data.

In Fig. 5, we depict the region-wise LRP relevance for MS diagnosis,
separately for MS patients and healthy controls. In the Neuromorpho-
metrics atlas (see Fig. 5a), most relevance is attributed to cerebral white
matter, followed by thalamus, lateral ventricles and diencephalon.
Negative relevance is strongest in the precuneus, followed by lingual
gyrus, cuneus and insula. In the JHU white matter atlas (see Fig. 5b),
most positive relevance is attributed to posterior corona radiata and
corpus callosum, followed by posterior thalamic radiation, tapetum,
internal capsule and fornix. Notably, these areas are generally char-
acterized by a high lesion density, which is also present in this MS data
set (see supplementary Figs. 4 and 5). Negative relevance has been
found in the superior and anterior corona radiata. Generally, the re-
levance for MS patients is higher in white matter than in gray matter
areas. Moreover, the differences between MS patients and healthy
controls are more pronounced in white matter areas.

The qualitative and quantitative analysis using another global at-
tribution method, namely gradient*input, produced highly similar re-
sults as shown in supplementary Figs. 6 and 7.

In Fig. 6, we show the effects of transfer learning on the average
relevance heatmaps for the MS patients in the holdout set. For the
untrained model with random parameters (first row), only scarcely
distributed individual voxels attain tiny relevance values. For the CNN
model trained on ADNI and directly applied to MS patients (without
fine-tuning; second row), more voxels are attributed relevance and are
diffusely clustered. For the CNN model trained only on MS data
(without pre-training; third row), strong relevance is projected to the
ventricles and periventricular white matter. And finally, for the pre-
trained model (transfer learning from ADNI to MS; last row), distinct
clusters for both positive and negative relevance can be detected, which
are more delineated than for the CNN model without pre-training.

To assess the contribution of normal-appearing brain matter, we

Table 3
Performance (in %) for the different models on the holdout data set. Values are
averages over 10 trials. Highest values per column are highlighted in bold. Pre-
train., pre-training; Class., classifier; Bal. acc., balanced accuracy; Sens., sen-
sitivity; Spec., specificity; AUC, area under the curve of the receiver operating
characteristic; les. fill., lesions filled.

Data Pre-train. Class. Bal. acc. Sens. Spec. AUC

FLAIR lesion load – SVM 88.46% 76.92% 100.00% 94.62%
FLAIR – SVM 66.92% 53.85% 80.00% 66.92%
FLAIR no CNN 71.23% 68.46% 74.00% 85.46%
FLAIR yes CNN 87.04% 93.08% 81.00% 96.08%
FLAIR - les. fill. yes CNN 70.15% 92.31% 48.00% 90.92%
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compared the relevance maps between the CNN models trained on the
original FLAIR data and the lesion-filled FLAIR data (for the perfor-
mance see Table 3). In Fig. 7, we depict the relevance for the 10 top-
scored white matter regions, separately for both models. In general one
can see that the relevance shifts from a distribution more evenly spread
among multiple areas to a distribution with a prominent peak and
otherwise low shares of relevance. Notably, relevance is shifted away
from areas with large amounts of lesions such as posterior corona ra-
diata, posterior thalamic radiata as well as tapetum towards mainly the
corpus callosum and regions with very few lesions like fornix and ex-
ternal capsule (see supplementary Fig. 4 for distribution of white matter
lesions).

4. Discussion

4.1. Summary

In the present study, we introduced a transparent framework for
analyzing neuroimaging data with CNNs that is able to explain in-
dividual classification decisions. By utilizing transfer learning we could
further achieve good classification results from only a small data set of
task-specific data. In combination with LRP, we could demonstrate the
capacity of our framework to learn significant MS-relevant information
from conventional MRI data. Notably, a pre-trained CNN was able to
identify MS patients with an accuracy similar to a classical machine

Fig. 2. Individual LRP heatmaps (overlayed on the input FLAIR data) for the four MS patients with the highest classification score in terms of the sigmoid output.
Heatmap values are normalized in the range [−0.03, 0.03]. Colors indicate regions supporting (red) or rejecting (blue) the classification as a MS patient with respect
to the underlying CNN model.
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learning analysis, in which the FLAIR lesion load was used as input.
This is quite remarkable, because the CNN model was considered to be
naive by not being provided with any prior information on MS-relevant
features such as hyperintense lesions. The subsequent visualization
analysis, using heatmaps generated by LRP, revealed that the CNN
model indeed uses (posterior) white matter lesions as primary in-
formation source. In addition, other information, e.g. in normal-ap-
pearing white and gray matter (e.g. the thalamus) have been found
useful by the CNN model.

4.2. Related work

Compared to other neurological diseases, in particular AD, only a
few MS studies exist that employ machine learning methods outside the

scope of lesion segmentation. We think that the main reasons are (1) the
lack of easy accessible large open data bases such as the Alzheimer's
Neuroimaging Initiative (ADNI) data base and (2) the focus on white
matter lesion volume as primary MRI-derived outcome measure in MS.
Classical machine learning methods in combination with more or less
sophisticated feature extraction methods, from both conventional and
advanced MRI data, have been used to (1) diagnose MS (Weygandt
et al., 2011; Hackmack et al., 2012b; Zurita et al., 2018; Eshaghi et al.,
2016) (2) decode symptom severity (Hackmack et al., 2012a) (3)
identify clinical subtypes (Eshaghi et al., 2018; Nichols et al., 2012;
Eshaghi et al., 2015) and (4) predict conversion from clinically isolated
syndrome to MS (Wottschel et al., 2015; Bendfeldt et al., 2019). Deep
learning architectures have so far been implemented for lesion seg-
mentation (Valverde et al., 2017; Li et al., 2016; Khastavaneh and
Ebrahimpour-Komleh, 2017), predicting MS based on binary lesion
masks (Yoo et al., 2016), modelling brain and lesion variability (Brosch,
2016) and finding differences in normal-appearing brain matter based
on T1-weighted and myelin images (Yoo et al., 2018). To the best of our
best knowledge, the present study is the first study employing CNNs and
advanced visualization techniques for diagnosing MS based on the
clinically most relevant MRI sequence (i.e. FLAIR).

It is generally recognized that, especially in the medical field, it is
very important that classification decisions are reasonably explained
even in light of high accuracies (which are no guarantee for a – from a
human perspective – sensible discrimination strategy (Lapuschkin et al.,
2019; Lapuschkin et al., 2016)). Although a number of methods exist
that generate individual heatmaps (Zeiler and Fergus, 2014;
Springenberg et al., 2015; Simonyan et al., 2013; Zintgraf et al., 2017),
we focused here on the LRP method (Bach et al., 2015; Montavon et al.,
2018; Lapuschkin et al., 2019) which has a solid theoretical framework
and has been extensively validated (see e.g. (Samek et al., 2017a;
Lapuschkin et al., 2019; Samek et al., 2017b)). Very recently, LRP has
shown to be very helpful for explaining cognitive states or AD diagnosis
in deep neural networks trained on either functional or structural MRI
data (Böhle et al., 2019; Thomas et al., 2018). To the best of our
knowledge, these are the only applications of LRP in the neuroimaging
field. In the present study, we demonstrated that LRP is capable of
identifying reasonable areas supporting a MS diagnosis in addition to
features needing further clinical validation. Those areas have been

Fig. 3. Average LRP heatmaps for all correctly classified MS
patients (top) and all correctly classified healthy controls
(bottom) in the holdout set. Values are normalized in the
range [−0.02, 0.02]. Please note that the underlying brain
map has been computed as the average of all training subjects
and does not reflect the MRI data of individual subjects.

Fig. 4. Correlation between lesion sum and LRP relevance sum. The Pearson
correlation coefficient is shown for both training and holdout set separately, of
which both are significant (ptrain<0.001, ptest<0.001, permutation test). The
size of each data point shows the lesion-relevance similarity according to Eq.
(2).
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shown to be robust using gradient*input as a different visualization
method. By this, we have shown that those heatmaps can be very va-
luable in explaining decisions of neural networks trained on small
sample sizes and to verify whether an algorithm has learned something
meaningful (i.e. matching domain knowledge) or just spotted biases or
artifacts in the data (see also (Springenberg et al., 2015; Lapuschkin
et al., 2019)).

4.3. Key findings

4.3.1. CNNs learn to identify lesions as an important biomarker for MS
Although our pre-trained CNN model did not get any prior in-

formation about the relevance of hyperintense lesions for MS, it learned

to successfully identify lesions as a primary information source.
Notably, the total relevance attributed to lesion areas was on average
5.15% (on MS patients 9.71%) compared to a lesion coverage of only
0.41% in the training data set. In addition, LRP relevance sum was
significantly correlated to lesion sum. We show that LRP heatmaps not
only detect single lesions in individual patients but generally attributed
most positive relevance to white matter areas around the posterior
occipital horns. Importantly, the CNN model did not simply assign high
relevance to hyperintense areas in the brain, but learned to distinguish
between different lesion locations: while anterior periventricular le-
sions as well as lesions not bordering the lateral ventricles were as-
signed no or negative relevance, only posterior periventricular lesion
areas were assigned positive relevance for MS. Interestingly,

Fig. 5. LRP relevance distribution over (a) 30 (mainly) gray matter areas from the Neuromorphometrics atlas and (b) 22 white matter areas from the JHU ICBM-DTI
atlas, separately for MS patients and healthy controls in the holdout set. The absolute values per region are rather small as LRP aims to conserve the sigmoid output
and distributes it over all voxels.
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hyperintensities in posterior ventricular regions seem to be the main
reason why the healthy control in supplementary Fig. 3 has been mis-
classified as MS patient. In general, strongest positive relevance was
found in posterior corona radiata, corpus callosum and thalamic ra-
diation, which are characterized by a high lesion density in MS patients
(see (Gass et al., 2012) and supplementary Figs. 4 and 5).

4.3.2. CNNs learn to identify relevant areas beyond lesions
The CNN model primarily focuses on lesions, but relevance has also

been attributed to gray matter areas such as the thalamus, which is
known to be affected in MS from earliest disease stages (Azevedo et al.,
2018; Azevedo et al., 2015). To further investigate what the CNN model
learns beyond lesions, we repeated the analysis on lesion filled FLAIR

data. As expected, the balanced accuracy as well as AUC decreased (by
almost 17 and 6 percentage points respectively) and relevance has
shifted away from regions which typically contain hyperintense lesions.
The region that was assigned most relevance after lesion removal was
the corpus callosum. While the corpus callosum is generally susceptible
to demyelinating lesions (Barnard and Triggs, 1974; Garg et al., 2015;
Renard et al., 2014) the literature also suggests further biomarkers such
as axonal loss and diffuse atrophy (Renard et al., 2014; Evangelou et al.,
2000) or narrow T2 hyperintense bands along the callosal-septal in-
terface (Garg et al., 2015). The fornix, even though it contains a very
small amount of lesions (see supplementary Fig. 4 and (Thomas et al.,
2011)), is assigned positive relevance with lesions and an increased
relevance without lesions. It has been shown that lower fractional

Fig. 6. Average heatmaps for different CNN models applied to the MS (VIMS) cohort – starting from an untrained CNN model with random parameters over a CNN
trained only on either ADNI or MS data to a CNN pre-trained on ADNI and fine-tuned on MS. As it can be seen, the fine-tuned model led to the most concise regions of
positive and negative relevance. Please note that we averaged here the heatmaps over all (not only the correctly classified) MS patients in the holdout set and that the
heatmap values here are not normalized to a fixed range but shown with respect to the minimum value of the untrained model.
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anisotropy in the fornix is exhibited in MS subjects in comparison to
healthy controls (Roosendaal et al., 2009; Kern et al., 2012). Ad-
ditionally, external capsule and superior cerebellar peduncle receive
only positive relevance after lesion removal, which were found to be
affected in MS patients (Anderson et al., 2011; Zhang et al., 2017).
These results are generally in line with other machine learning studies
finding differences in normal-appearing brain matter in MS patients
(Weygandt et al., 2011; Hackmack et al., 2012a; Yoo et al., 2018). It
would be very interesting to further investigate whether our findings
correlate with underlying pathological mechanisms only demonstrable
by advanced MRI sequences such as diffusion weighted imaging or
magnetization transfer imaging.

4.3.3. Transfer learning improves learning across diseases and MRI
sequences

In recent years, transfer learning has been successfully employed in
brain lesion segmentation (Ghafoorian et al., 2017) and AD classifica-
tion (Gupta et al., 2013; Hosseini-Asl et al., 2018; Payan and Montana,
2015). The latter studies used either autoencoders trained on MRI data
or natural images (Gupta et al., 2013; Payan and Montana, 2015) or
used one AD data set for pre-training and another AD data set for fine-
tuning (Hosseini-Asl et al., 2018). In the present study, we have shown
that transfer learning can also help in learning (1) across diseases (AD
to MS) and (2) across MRI sequences (MPRAGE to FLAIR) exhibiting
different magnetic field strengths (1.5 and 3 Tesla). We demonstrated
that not only the balanced accuracy increases drastically (about 16
percentage points), but also that LRP leads to much more focused
heatmaps concentrating on (posterior) periventricular lesion areas.
Given that our pre-trained model performed similar to a classical ma-
chine learning analysis using FLAIR lesion load as a classical biomarker
in MS, we believe that larger data sets might allow for outperforming
models based on lesion masks in the future. Additionally, we are con-
vinced that our approach – given a reasonable data basis –might also be
very useful in answering more complex questions such as predicting
disease progression.

4.4. Limitations

The main limitation of this study is the limited sample size.
Although a sample size of n=147 is comparable with other deep
learning studies in the neuroimaging field (Vieira et al., 2017), it is
generally considered to be too low to learn robust representations from
the data and to generalize to other data sets. To partly alleviate this
problem, we pre-trained our network on ADNI data (n=921) and fine-
tuned it on the MS data. By visualizing the average heatmaps for MS

patients, we show in addition to a balanced accuracy of 87.04 % that
the CNN captures MS-relevant information by focusing on posterior
ventricular regions usually characterized by a high rate of MS lesion
incidences. Nevertheless, future studies should verify our results in
larger data sets, preferably coming from different sites. Another lim-
itation, related to the first one, is that we were limited in the choice of
architecture used for the CNN analysis. Very deep networks with a high
capacity easily overfit on data sets with less than hundreds or thousands
of samples per class. Furthermore, since we use volumetric data the
additional dimension as compared to 2D images causes each layer to
consume substantially more GPU memory, which makes it a strongly
limiting factor in architecture design. However, we found a relatively
simple CNN architecture to be successful together with several reg-
ularization methods (drop out, L2-regularization and early stopping).
Moreover, by registering the MRI data only linearly to MNI space, the
regions contained in both atlases only roughly correspond to individual
anatomical locations. On the other hand, non-linear registration can
lead to strong deformations, in particular in patients, and we show here
that our CNN model can also operate on a more native level (in ac-
cordance with (Suk et al., 2014)). To be able to make more specific
anatomical claims in individual subjects, future studies might use in-
dividual atlases. And finally, heatmaps do neither allow to determine
the underlying pathological mechanism (e.g. atrophy, demyelination or
axonal loss) resulting in assigning a voxel to be relevant or to assess
interactions between voxels. For this, one would have to take a deeper
look into the specific filters that have been learned throughout the
training process in combination with MR sequences more sensitive for
certain tissue damage (e.g. diffusion weighted or myelin imaging).
Nevertheless, we still believe that heatmaps can be very helpful in
supplementing individual disease diagnoses by providing a simple and
intuitive explanation.

5. Conclusion

In conclusion, we have shown that our framework helps in un-
covering CNN decisions for diagnosing MS based on FLAIR data using
LRP. In particular, we demonstrated that (1) CNN models pre-trained
on AD data are capable of successfully separating MS patients and
controls on a typically sized neuroimaging cohort and (2) LRP is not
only very valuable in explaining individual network's decisions, but also
in generally helping to assess whether CNN models have learned sig-
nificant features. Notably, our CNN models focus on hyperintense le-
sions as primary information source, but also incorporates information
from lesion location and normal-appearing brain areas. We see a high
potential in the combination of CNNs, transfer learning and LRP heat-
maps and are convinced that our framework might not only be helpful
in other disease decoding studies, but also for answering more complex
questions such as predicting disease progression or treatment response
in individual subjects.
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