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ABSTRACT
A a-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mol-
lusk Mytilus galloprovincialis. As in most mollusks, this a-CA is involved in the biomineralization processes
leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular
weight of 50 kDa, which is roughly two times higher than that of a monomeric a-class enzyme. Thus,
Mytilus galloprovincialis a-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may
have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis a-CA sequence con-
tained the three His residues acting as zinc ligands and the gate-keeper residues present in all a-CAs
(Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar
to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus gallopro-
vincialis a-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat ¼ 4.1� 105 s�1

and kcat/Km of 3.6� 107 M�1 � s�1. The enzyme activity was poorly inhibited by the sulfonamide acetazo-
lamide, with a KI of 380 nM. This study is one of the few describing in detail the biochemical characteriza-
tion of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes,
their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.
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Introduction

Mollusk shell is composed of about 95% calcium carbonate
(CaCO3) and 5% of organic components1. The shell is formed by
three elements secreted by the mantle (the dorsal body of the ani-
mal): a) a thin outer periostracum; b) a middle prismatic, which is
a crystalline form of calcium carbonate; c) an inner calcareous
(nacreous) layer appearing with a vividness texture or iridescent
mother-of-pearl (nacre), depending on the species2–4. Prismatic
and nacreous layers are in the forms of calcium carbonate crystal;
but, the two layers display a crystal polymorphism because the
prismatic layer develops calcite and the nacreous layer forms ara-
gonite5. The shell grows in circumference by the addition of
material from the edge of the mantle, while grows in thickness by
deposition from the general mantle surface. Calcium for shell
growth is obtained from diet and/or from seawater, whereas car-
bonate is originated from the concentration of CO2/bicarbonate
present in the tissue of the organism6. The interconversion of CO2

and HCO3
� is balanced naturally to maintain the equilibrium

between dissolved inorganic carbon dioxide (CO2), carbonic acid
(H2CO3), bicarbonate (HCO3

�) and carbonate (CO3
2�)7–9. The spon-

taneous hydration/dehydration reaction: CO2þH2O …
HCO3

�þHþ is very slow at physiological pH. In this context, a
family of metalloenzymes, named carbonic anhydrase (CA; EC
4.2.1.1) assumes a pivotal role in the biomineralization process of
the mollusks and is essential for the shell development7,8,10–16.

CAs, in fact, have the primary function to strongly accelerate
the interconversion of CO2 and HCO3

� playing an important role
during the calcium carbonate formation in mollusks, such as acid–
base regulation, calcification and mineralization17,18. It has been
reported in literature that intracellular or cytoplasmic membrane
bound CAs are essential for cytoplasmic acid/base balance and for
transport mechanisms of CO2 and carbonate ions; different CA iso-
forms has been identified in the calcifying epithelia of the mol-
lusks17,19; CA activity has been reported in the extracellular
skeletal matrix of the cnidarian exoskeleton, crustacean calcium
storage concretions, fish otolith and molluskan shell17,19,20; more-
over, nacrein, the protein involved in the nacreous layer formation
of shell and pearl, identified for the first time in the Japanese pearl
oyster Pinctada fucata, function has a CA because it has a CA
domain in its amino acid sequence21.

The CA superfamily includes seven distinct classes known as
the a, b, c, d, f, g and h. In addition to biomineralization, these
enzymes are involved in many physiologic processes, such as
photosynthesis, respiration, CO2 transport, as well as metabolism
of xenobiotics (e.g., cyanate in Escherichia coli)13–15,22–31. Some of
the catalytically active a- and h-CAs can also catalyze the hydroly-
sis of esters, such as 4-nitrophenyl acetate (4-NpA)32. However, no
esterase activity was detected so far for enzymes belonging to the
other five classes (b-, c-, d-, f- and g-CAs)33. The a-, b-, d-, g- and,
perhaps h-CAs use Zn(II) ions at the active site, the c-CAs are
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probably Fe(II) enzymes (but they are active also with bound Zn(II)
or Co(II) ions)34–41, whereas the f-class CAs are cambialistic
enzymes, active both with Cd(II) or Zn(II) bounded within the
active site in order to perform the physiologic reaction cataly-
sis42–44. The metal ion from the enzyme active site is coordinated
by three His residues in the a-, c-, d- and h-classes, by one His and
two Cys residues in b- and f-CAs or by two His and one Gln resi-
dues in g-class with the fourth ligand being a water molecule/
hydroxide ion acting as nucleophile in the catalytic cycle of the
enzyme8,12,13,45–47. In metazoans, CAs belong predominantly to the
a-CA family, but recently b-CA family members have been identi-
fied17. In the last years, CAs have acquired a great importance in
biotechnological applications, such as in the achievement of an
artificial respiration system, selective biosensors for metal ions,
and in the carbon capture process (CCP)48,49. In the CCP context, a
number of CO2 sequestration methods have been proposed in
order to capture CO2 using different types of CA enzymatic
bioreactors48,50.

In the present study, we characterized and determined the kin-
etic constants of the CA purified from the mantle tissue of the
bivalve Mediterranean mussel, Mytilus galloprovincialis. This CA has
been purified by ammonium sulfate precipitation and ion-
exchange chromatography followed by affinity chromatography.
From the determination of its N-amino terminal sequence the
purified metalloenzyme it has been assigned to the a-class of the
CA superfamily. The kinetic study of the active a-CA in the mantle
of the adult specimens of Mytilus galloprovincialis may provide fur-
ther information on the physiological role and function of this
metalloenzymes in the process of biomineralization of the
bivalves. This is one of the few contributions, apart the character-
ization of the a-CA from Tridacna gigas, in which molluskan CAs
are investigated in detail at the biochemical level51.

Materials and methods

Chemicals

All the chemicals were commercial products of the purest quality
and purchased from Sigma. Immobilion-P membranes were from
Perkin-Elmer (Waltham, MA).

Animals

Adult specimens of Mytilus galloprovincialis were collected in the
proximity of Gulf of Naples. The mussels were maintained in sea-
water at a temperature of 4 �C. Bivalve mantels were quickly
removed and frozen at �70 �C.

Enzyme purification

All the purification steps were carried out at a temperature of
4 �C. Approximately, 20 g of mussel mantles were homogenized in
50ml of 20mM Tris-HCl buffer pH 8.3 containing 10�3 M PMSF,
10�3 M benzamidine and 2� 10�3 M EDTA. The homogenate was
centrifuged twice for 30min at 12,000 � g, and the resulting
supernatant was centrifuged again for 45min at 100,000 � g. This
supernatant containing approximately 200mg protein in a volume
of 60ml was subject to an ammonium sulfate precipitation. An
amount of ammonium sulfate gradually was added to obtain satu-
rations of 30%. After resting for 14 h at 4 �C, the sample was cen-
trifuged at 12,000 � g at 4 �C for 30min. The hydratase activity
was detected in the supernatant fraction. This fraction was dia-
lyzed against 20mM Tris-HCl buffer pH 8.3. An amount of samples

containing 5mg of total protein was applied to a 4.6� 50mm
anion-exchange Q column (BioSuite Q-PEEK, Waters Corporation)
mounted on an Ultimate 3000 HPLC system (Dionex). The column
was pre-equilibrated with 20mM Tris-HCl, pH 7.5 (Buffer A). The
CA was eluted by a linear gradient from 0% Buffer A to 100%
Buffer B (20mM Tris-HCl, pH 7.5, containing 0.5 M NaCl) with a
flow rate set to 1ml/min with a continuous monitoring of the
absorbance at 280 and 220 nm; 1-ml fractions were collected. The
fractions were tested for the CA presence using the protonogra-
phy technique. A peak of CA activity was eluted at a concentration
of NaCl of approximately 0.1 M. At this stage of the purification,
the CA was 60% pure and the obtained recovery was of 1mg of
the native protein. The active fraction was pooled, dialyzed against
20mM Tris-HCl buffer pH 7.5 and further purified by affinity chro-
matography on a p-aminomethylbenzenesulfonamide agarose
resin (pAMBS; Sigma-Aldrich). 1ml of pAMBS resin was applied to
an empty econocolumn (BioRad) and equilibrated with 0.1 M
Tris-HCl, pH 7.5 buffer containing 0.2 M K2SO4, 0.5mM EDTA. The
sample containing about 1mg of total protein was loaded on the
p-AMBS column equilibrated as aforementioned. Unbound pro-
teins were removed by washing extensively with the same buffer.
The bound CA was eluted using 0.4 M KSCN dissolved in 0.1 M
Tris-HCl, pH 7.5 buffer. The CA-containing fractions were pooled,
dialyzed and concentrated by ultrafiltration. The CA-containing
sample was subject to protonography. At this stage of the purifi-
cation, the CA isolated from M. galloprovincialis was 90% pure
with a total concentration of 0.1mg. Its N-amino terminal
sequence was determined for assigning the CA at one of the
seven classes of CA described in literature.

SDS-PAGE, electroblotting and sequencing

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis
(PAGE) was carried out according to Laemmli52. Samples were dis-
solved in buffer with 5% b-mercaptoethanol. Gel was stained with
Coomassie blue. Blotting from gel onto an Immobilion-P mem-
brane was performed as described by Matsudaira53. N-terminal
sequencing was performed on the blotted protein by automated
Edman degradation54. Protein concentration was determined by
Bio-Rad assay kit.

Carbonic anhydrase assay

CA activity assay was a medication of the procedure described by
Capasso et al.55. Briefly, the assay was performed at 0 �C using CO2

as substrate following the pH variation due to the catalyzed con-
version of CO2 to bicarbonate. Bromothymol blue was used as the
indicator of pH variation. The production of hydrogen ions during
the CO2 hydration reaction lowers the pH of the solution until the
color transition point of the dye is reached. The time required for
the color change is inversely related to the quantity of CA present
in the sample. Wilbur-Anderson units were calculated according to
the following definition: One Wilbur-Anderson unit (WAU) of activ-
ity is defined as (T0� T)/T, where T0 (uncatalyzed reaction) and T
(catalyzed reaction) are recorded as the time (in seconds) required
for the pH to drop from 8.3 to the transition point of the dye in a
control buffer and in the presence of enzyme, respectively.

Esterase activity

Activity for p-nitrophenylacetate (p-NpA) hydrolysis was deter-
mined at 0 �C using a modification of the method proposed by
Armstrong et al.56. The reaction mixture contained 0.3ml of freshly
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prepared 3mM p-NpA and 0.7ml of 15mM Tris sulfate buffer, pH
7.6. An aliquot of enzyme solution was added, and the catalyzed
reaction was monitored reading the increase in A348 nm for 5min.
The catalyzed reactions were corrected for the non-enzymatic
reaction. One enzyme unit was defined as the amount capable of
producing an OD348 nm¼ 0.03 in 5min.

Kinetic and inhibition assays

An applied photophysics stopped-flow instrument has been used
for assaying the CA catalyzed CO2 hydration activity. Phenol red
(at a concentration of 0.2mM) has been used as indicator, working
at the absorbance maximum of 557 nm, with 20mM Tris (pH 8.3)
as buffer, and 20mM NaClO4 (for maintaining constant the ionic
strength), following the initial rates of the CA-catalyzed CO2 hydra-
tion reaction for a period of 10–100 s. The CO2 concentrations
ranged from 1.7 to 17mM for the determination of the kinetic
parameters (by Lineweaver–Burk plots) and inhibition constants.
For each inhibitor at least six traces of the initial 5–10% of the
reaction have been used for determining the initial velocity. The
uncatalyzed rates were determined in the same manner and sub-
tracted from the total observed rates. Stock solutions of inhibitor
(10–100mM) were prepared in distilled–deionized water and dilu-
tions up to 0.01mM were done thereafter with the assay buffer.
Inhibitor and enzyme solutions were preincubated together for
15min at room temperature prior to assay, in order to allow for
the formation of the E–I complex or for the eventual active site
mediated hydrolysis of the inhibitor. The inhibition constants were
obtained by non-linear least-squares methods using PRISM 3 and
the Cheng–Prusoff equation, as reported earlier, and represent the
mean from at least three different determinations.

Protonography

Protonography is a simple and inexpensive method, similar to
zymography, which allowed the detection of CA activity on the
polyacrylamide gel following the formation of Hþ ions produced
by hydratase activity of CAs57–59. Samples were run on SDS-PAGE
at a concentration of about 1 lg per well. SDS-Page was carried
out as described in the section “SDS-PAGE”, with the exception
that samples were mixed with Laemmli loading buffer without 2-
mercaptoethanol and without boiling the samples, in order to pre-
vent protein denaturation induced by heating. The gel was run at
180 V until the dye front ran off the gel57–59. Following the elec-
trophoresis, the gel was treated with Triton X-100 at 2.5% and
kept under stirring for one hour to remove the SDS. The gel was
subjected to a washing step of 20min with 100mM Tris-HCl, pH
8.3, containing 10% isopropanol. It was washed two times for
10min. Finally, the gel was incubated for 30min at 4 �C under stir-
ring with 0.1% bromothymol blue (BTB, the pH indicator) in
100mM Tris-HCl pH 8.3. To detect the hydratase activity, the gel
was immersed in distilled water saturated with CO2 prepared by
bubbling CO2 into 200ml of distilled water for about 3 h. The
localized decrease of the pH value, due to the presence of the
enzymatic activity of CAs, was detected through the formation of
yellow band due to the change of color of the BTB from blue
(alkaline pH) to yellow (acidic pH)29,57–61.

Results and discussion

Purification of the native form of CA

The native CA was isolated and purified to homogeneity at 4 �C
from the mantles of about 30 mussels belonging to the species

Mytilus galloprovincialis, the Mediterranean mussel. Most of the CA
activity was recovered in the soluble fraction of cell extract after
ultracentrifugation as described in “Materials and methods” sec-
tion. Contaminants proteins, such as actin and chitinase, were pre-
cipitated by addition of solid ammonium sulfate (30% saturation).
Following the ammonium sulfate precipitation, the hydratase
activity was detected in the supernatant fraction, which was frac-
tioned by anion-exchange chromatography as showed in Figure 1.
The elution profile from anion-exchange chromatography showed
the presence of at least 8 peaks with a significant absorption at
280 nm (Figure 1, panel A). All the peaks were analyzed by proto-
nographic technique, which allowed the detection of CA activity
on the polyacrylamide gel following the formation of Hþ ions pro-
duced by hydratase activity of CAs. The protonogram was stained
with bromothymol blue, an indicator monitoring the pH variation.
This dye appears blue in its deprotonated form, while its color
changes to yellow in the protonated form. The production of
hydrogen ions during the CO2 hydration lowers the pH of the
solution until the transition point of the dye is reached (pH 6.8)
and the yellow color appears on the gel (Figure 1, panel B). As
shown in Figure 1, the protonograms clearly showed a hydratase
activity only associated to the peak number 4 eluted at a concen-
tration of NaCl of approximately 0.1 M and with a retention time
of about 10min. At this stage of the purification, the CA was 60%
pure as in agreement with the SDS-PAGE analysis of the native
enzyme (data not shown). The hydratase-containing peak was fur-
ther purified by pAMBS affinity chromatography.

SDS-Page and protonography

In Figure 2 is shown the SDS-PAGEs obtained analyzing the sam-
ple after the tissue homogenization of the mussels (panel A) and
the column affinity chromatography (panel B). The native CA was
purified to an apparent homogeneity, as indicated by a single pro-
tein band after SDS-PAGE (Figure 1, panel B, lane 3). The molecular
weight estimated by SDS-PAGE was 50.0 kDA under both reducing
and non-reducing conditions. Generally, a subunit molecular mass
of about 26.0 kDa was calculated on the basis of the amino acid
sequence translated from the a- or b-CAs usually found in metazo-
ans, although the Tridacna gigas CA was observed to possess a
MW of 70 kDA, being a dual glycoprotein with two different CA
domain, one at the amino-, the other at the carboxy-terminal
parts, of the protein51. So, with the information available at this
moment, we cannot rule out that the M. galloprovincialis CA may
be a homodimer, or as the T. gigas enzyme, a glycoprotein with
two different CA domains.

The hydratase activity of the purified mussel CA was confirmed
by protonography. Figure 3 showed the protonogram obtained
with the native mussel CA. The commercial bovine CA (bCA) was
used as positive control. The yellow band corresponded to the CA
position on the gel. The SDS-PAGE and protonogram showed
clearly that the native mussel CA had a dimeric arrangement, sug-
gesting that this enzyme may acts as a physiological dimer. This is
very intriguing because generally a-CAs are monomeric enzymes.
But, in the last years, it has been discovered dimeric arrangements
for several members of the a-class, such as SspCA, from
Sulfurihydrogenibium yellowstonense YO3AOP139; NgCA, from
Neisseria gonorrhoeae62; CrCA, from Chlamydomonas reinhardtii63;
AoCA, from Aspergillus oryzae64; and three human isoforms, indi-
cated with the acronyms hCA VI, hCA IX and hCA XII65–67.
Moreover, CAs (a-type) from mammalian sources catalyze the
reversible hydrolysis of esters. Thus, with p-NpA as substrate, the
presence of esterase activity was investigated in the native mussel

634 R. PERFETTO ET AL.



enzyme. The mussel CA showed an esterase specific activity 100
times smaller than that of the commercially available bovine bCA II.

Primary structure analysis

The N-amino terminal sequence of the electroblotted enzyme was
found to be SWGYGNDNGP. Using the Basic Local Alignment

Search Tool (BLAST) and using as query sequence the N-amino ter-
minal obtained as described above, the purified native CA com-
pletely matched (query cover 100%) the N-amino terminal of the
a-CA previously identified in the genome of the Mediterranean
mussel, Mytilus galloprovincialis (Figure 4). The M. galloprovincialis
CA is a polypeptide chain formed by 255 amino acid residues. In
Figure 5, the M. galloprovincialis CA sequence was aligned with
Homo sapiens CA isoforms (hCA I and hCA II) sequences. It may be

Figure 2. SDS-Page of the native CA purified from the mantles of M. galloprovin-
cialis. Panel A, lane 2: cell extract protein from the mussel mantles before the
purification; Panel B, lane 3: purified CA from pAMBS affinity column. Panel A and
B, lane 1: molecular markers. Starting from the top: 250 kDa, 150 kDa, 100 kDa,
75 kDa, 50 kDa, 37 kDa, 25 kDa, 20 kDa, 15 kDa and 10 kDa.

Figure 3. Protonogram obtained using the native CA from Mytilus galloprovincialis
and the commercial bovine CA (bCA). Lane 2: mussel CA protonogram showing a
band (yellow color) with an apparent molecular weight of 50 kDa; Lane 1: bovine
CA is present in a monomeric state corresponding at a molecular weight of about
26 kDa; Lane 1: molecular markers. Starting from the top: 75 kDa, 50 kDa, 37 kDa,
25 kDa and 20 kDa.

Figure 1. (A) Elution profile from the anion-exchange chromatography column of the supernatant obtained from the ammonium sulfate precipitation. Dot line repre-
sents the linear gradient from 0 to 0.5 NaCl; (B) Protonographic analysis carried out on the peaks eluted from the column. The yellow band denotes the hydratase
activity due to the native CA purified by the mantles of the Mediterranean mussels, M. galloprovincialis.
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observed that similar to the other investigated a-CA, the mussel
metalloenzyme has the conserved three His ligands, which coord-
inate the Zn(II) ion crucial for catalysis (His94, 96 and 119, hCA I
numbering system). Interesting to note that the proton shuttle
residue (His64) is conserved in the human isoforms, but is missing
in the mussel enzyme, being replaced by a Lys residue. This is also
the situation for the human isoform hCA III, which has Lys64
instead of His64, and also shows a reduced catalytic activity com-
pared with isoforms hCA I and II68. This residue assists the rate
determining step of the catalytic cycle transferring a proton from
the water coordinated to the Zn(II) ion to the environment, with
formation of zinc hydroxide representing the nucleophilic species
of the enzyme. A Lys in position 64 is less efficient than a His for
assisting this process, which explains why the molluskan enzyme
has a lower catalytic activity compared with hCA I and II68. M. gal-
loprovincialis enzyme also has the gate-keeping residues (Glu106
and Thr199), which orientate the substrate for catalysis, and are
also involved in the binding of inhibitors.

Enzyme kinetics

Using the stopped-flow technique, the kinetic parameters were
determined for the native a-CA using CO2 as a substrate69. The
activity of the mussel enzyme was compared with that of other
a-CAs such as Homo sapiens isoforms (hCA I and hCA II), Stylophora
pistillata isoforms (STPCA and STPCA-2) (Table 1)18,70,71. As shown
in Table 1, the mussel a-CA had a kcat¼ 4.1� 105 s�1 with a kcat/
Km ratio 1.38 times lower with respect to that of the hCA I, which
possessed a kcat of 2.0� 105 s�1. Moreover, the kinetic constants of
the native mussel CA are very similar to those obtained for the

coral isoform STPC and only slightly lower than the isoform STPCA-
2. This is very intriguing since mussel a-CA respect to the two coral
isoforms, lacked of a His64. This residue is involved in the transfer
of proton from the water coordinated to the Zn(II) ion to the envir-
onment with the function to accelerate the rate of the catalytic
cycle. STPCA-2 from scleractinian coral Stylophora pistillata is con-
sidered highly active and has an intracellular localization in the
oral endoderm and in the aboral tissue of the coral. Interesting to
note that the native mussel CA is not well affected by acetazola-
mide inhibition showing a KI of 380mM (Table 1). The intracellular
localization of the native mussel CA and its kinetic similarity with
STPCA-2, could allow that the Mytilus galloprovincialis a-CA is
involved in pH regulation and/or in the delivery of bicarbonate
helping the mussel during the formation of the shell.

Conclusions

A a-CA has been purified and characterized biochemically from
the mollusk Mytilus galloprovincialis. As in most mollusks, this a-CA

1
Mgalloprovincialis  SWGYGNDNGPCTWCNQFPIANGKRQSPIDICPDKITCDQQLANSPLVVKYEKEPKAEAMN
N-amino terminal SWGYGNDNGP

**********

TGKSVKVQATKASEISGGPLTGTYRLEQFHFHWGADDNKGSEHTIDGKMYAAELHLVHYNTKYANFGEAVDKPDGLAVFG

FFIKPGAKHVGMKELTDNTLCSITAEGKTCNMPCDLDMASLLNSDLTKYWTYLGSLTTPPLYESVTWIVFQDPIEMSNDQ
255

LQALRNLKCGSNFIVDNYRPPVPLGDRTVRASFKN

Figure 4. Amino acid sequence of CA from Mytilus galloprovincialis deposited in the protein data bank. In bold, the N-amino terminal sequence obtained from the elec-
troblotted mussel CA. The asterisk indicates amino acid identity.

Mgalloprovincialis      ----SWGYGNDNGPCTWCNQFPIANGKRQSPIDICPDKITCDQQLANSPLVVKYEKEPKA
hCA I                   MASPDWGYDDKNGPEQWSKLYPIANGNNQSPVDIKTSETKHDTSL--KPISVSYNPATAK
hCA II                  -MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSL--KPLSVSYDQATSL
                             ***.. ***  * : :***:*:.***:** .   . * .*  .*: *.*:  .

     64                            94 96       106          119
EAMNTGKSVKVQATKASE---ISGGPLTGTYRLEQFHFHWGADDNKGSEHTIDGKMYAAELHLVHYNT-KYANFGEAVDKPDGL
EIINVGHSFHVNFEDNDNRSVLKGGPFSDSYRLFQFHFHWGSTNEHGSEHTVDGVKYSAELHVAHWNSAKYSSLAEAASKADGL
RILNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNT-KYGDFGKAVQQPDGL
  :* *::.:*:  . .:   :.***: .:*** *******: : :*****:*   *:****:.*:*: **..:.:*..:.***

                                                           199
AVFGFFIKPGAKHVGMKELTDNTLCSITAEGKTCNMPCDLDMASLLNSDLTKYWTYLGSLTTPPLYESVTWIVFQDPIEMSNDQ
AVIGVLMKVGEANPKLQKVLD-ALQAIKTKGKRAPF-TNFDPSTLLPSSL-DFWTYPGSLTHPPLYESVTWIICKESISVSSEQ
AVLGIFLKVGSAKPGLQKVVD-VLDSIKTKGKSADF-TNFAARGLLPESL-DYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQ
**:*.::* *  :  :::: * .* :*.::** . :  ::    ** ..* .:*** **** *** *.****: ::.*.:*.:*

LQALRNLKCGSN-----FIVDNYRPPVPLGDRTVRASFKN
LAQFRSLLSNVEGDNAVPMQHNNRPTQPLKGRTVRASF--
VLKFRKLNFNGEGEPEELMVDNWRPAQPLKNRQIKASFK-
:  :*.*  . :      :  * **. ** .* :.***

Figure 5. Amino acid multialignment obtained using the Mytilus galloprovincialis CA and Homo sapiens CA isoforms (hCA I and hCA II). The zinc ligands (His94, 96 and
119) and the gate-keeper residues (Glu106 and Thr199) are conserved in the mussel and mammalian sequences. The proton shuttle residue (His64) is missing in the M.
galloprovincialis enzyme. hCA I numbering system was used. The asterisk (�) indicates identity at all aligned positions; the symbol (:) relates to conserved substitutions,
while (.) means that semi-conserved substitutions are observed. Multialignment was performed with the program Muscle, version 3.1.

Table 1. Kinetic parameters for the CO2 hydration reaction catalyzed by the
purified native mussel CA, the Homo sapiens CA isoforms (hCA I and hCA II) and
coral CA isoforms (STPCA and STPCA-2). Acetazolamide (AAZ) inhibition data are
also shown.

Enzyme Class kcat (s
�1)

kcat/Km
(M�1 � s�1)

KI (acetazolamide)
(nM)

hCA I a 2.0� 105 5.0� 107 250
hCA II a 1.4� 106 1.5� 108 12
STPCA a 3.1� 105 4.6� 107 16
STPCA-2 a 5.6� 105 8.3� 107 74
M. galloprovincialis a 4.1� 105 3.6� 107 380

Errors in the range of ±5% of the reported data from three different assays.
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seems to be involved in the biomineralization processes leading
to the precipitation of calcium carbonate in the mussel shell. The
new enzyme has a molecular weight of 50 kDa, which is roughly
two times higher than that of a monomeric a-class enzyme. Thus,
Mytilus galloprovincialis a-CA is either a dimer, or similar to the
Tridacna gigas CA described earlier, may have two different CA
domains in its polypeptide chain. The Mytilus galloprovincialis a-CA
sequence contains the three His residues acting as zinc ligands
and the gate-keeper residues (Glu106-Thr199) present in all a-CAs,
but had a Lys in position 64 and not a His as proton shuttling resi-
due, being thus similar to the human isoform hCA III. This prob-
ably explains the relatively low catalytic activity of Mytilus
galloprovincialis a-CA, with the following kinetic parameters for the
CO2 hydration reaction: kcat¼ 4.1� 105 s�1 and kcat/Km of 3.6� 107

M�1 � s�1. The enzyme activity was poorly inhibited by the sul-
fonamide acetazolamide, with a KI of 380 nM. This study is one of
the few describing in detail the biochemical characterization of a
molluskan CA and may be useful for understanding in better detail
the phylogeny of these enzymes and their role in biocalcification
processes. In addition, the mussel CA is an attractive candidate for
its potential use in carbon dioxide sequestration. The recombinant
DNA technology will make possible the ingegnerization of the
mussel CA and production of large quantities of the metalloen-
zyme with the aim to use the M. galloprovincialis CA, either free or
immobilized, in the CO2 biomimetic capture process.
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