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Leptin, a pleiotropic protein has long been recognized to play an important role in

the regulation of energy homeostasis, metabolism, neuroendocrine function, and other

physiological functions through its effects on the central nervous system (CNS) and

peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese

(ob) gene. Leptin acts as a central mediator which regulates immunity as well as

nutrition. Importantly, leptin can modulate both innate and adaptive immune responses.

Leptin deficiency/resistance is associated with dysregulation of cytokine production,

increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition

and inflammatory responses. Malnutrition induces a state of immunodeficiency and

an inclination to death from communicable diseases. Infectious diseases are the

disease of poor who invariably suffer from malnutrition that could result from reduced

serum leptin levels. Thus, leptin has been placed at the center of many interrelated

functions in various pathogenic conditions, such as bacterial, viruses and parasitic

infections. We review herein, the recent advances on the role of leptin in malnutrition

in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases

such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
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INTRODUCTION

Leptin is a hormone derived from adipocytes in response to the nutritional status, and it signals
to the central nervous system (CNS) and peripheral organs (1). The circulating plasma leptin
concentrations are mostly influenced by the total body fat mass index, metabolic hormones, and
gender. Women have higher concentrations of circulating leptin compared to men (2). The central
function of leptin is metabolic homeostasis that can be attained by the delivery of information
about the total body fat mass to the hypothalamus that in turn alters the CNS function and
regulates glucocorticoids, insulin hormone and food intake & energy balance (3, 4). Concurrently,
leptin is also a critical regulator of immunity and functions as a pro-inflammatory cytokine-
like interleukin (IL)-1, IL-6, IL-8, IL-18, and tumor necrosis factor-α (TNF-α), and its deficiency
increases susceptibility to infectious (5–8).

Leptin was identified as the gene defect responsible for the obesity syndrome in Leptin-deficient
(ob/ob) mice and reported as the product of Ob gene (9, 10). Leptin is a 16 kDa α-helix type
protein like the long-chain helical cytokine family such as IL-6, IL-2, IL-12, leukocyte inhibitory
factor (LIF), Granulocyte-colony stimulating factor (G-CSF), Ciliary neurotrophic factor (CNTF),
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and Oncostatin M (11, 12). Most of the biological functions of
leptin are exerted through leptin receptor (Ob-R) signaling via
the Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway (13, 14). In general, leptin enhances the
immune response via activating antigen presenting cells (APCs),
Th1 cells function and proliferation, and mediating the secretion
of the pro-inflammatory cytokines, such as TNF-α, IL-2, or IL-
6 (7, 15, 16). Leptin-deficient (ob/ob; double knockout obese
gene) and leptin receptor-deficient (db/db; double knockout
obese receptor gene) mice display marked reduction in the size &
thymic atrophy and exhibit defective immune responses (17, 18).
Similarly, reduced leptin levels in starved and malnourished
individuals is further associated with alterations of the immune
response and thymic atrophy. However, these conditions can be
reversed by leptin administration (19–22).

Over the past decade, the role leptin in infectious diseases
was extensively explored. It has been reported that leptin
deficiency is correlated with starvation or nutritional
deprivation/malnutrition (23). Malnutrition affects both
innate & acquired immunity of the host (24) thereby increasing
the incidences of infections and mortality (25). The immune
dysfunction in malnutrition or restricted calorie intake
reduced the memory T cells, total CD4+ and CD8+ T cell
numbers compared to well-nourished infected controls (26–29).
Interestingly, leptin has a crucial role in mediating phagocytosis,
T cell number, function, and metabolism in both obesity and
malnutrition. The systemic circulating leptin deficiency in
malnutrition is also correlated with several other bacterial, viral
and parasitic infections such as tuberculosis (30), pneumonia
(31), sepsis (32), colitis (33), viral infection (34, 35) leishmaniasis
(36), trypanosomiasis (37), amoebiasis (38), and malaria (39)
due to defective cytokine production (40–45). Hence, nutritional
status is critically essential for immune cell function in both
malnutrition and infection. Understanding how leptin is altered
in malnutrition and infection will lead to better insight of and
treatment for diseases where nutritional status determines
clinical outcome. Furthermore, there has been increasing
evidence that leptin is involved in the pathogenesis of various
infectious diseases. In the present review, we will discuss the
emerging role of leptin in different infectious diseases and will
further highlight how malnutrition or starvation could play a
role.

LEPTIN AND IMMUNITY

Leptin is a pleiotropicmolecule, which can function as a hormone
as well as cytokine (adipokine). Almost all immune cells such
as neutrophils, monocytes, lymphocytes express leptin receptor
and it belongs to the family of class-I cytokine receptors (46–48).
Leptin regulates angiogenesis, hematopoiesis, innate & adaptive
immunity and induces the Th1 response by increasing IFN-γ, IL-
2, and TNF-α production, subsequently leading to the activation
of monocyte/macrophages and prevents the apoptosis of various
immune cells by delaying the cleavage of Bid and Bax (49–55).

In innate immunity, leptin enhances the activity and function
of neutrophils by the release of oxygen free radicals, increased

CD11b expression and intercellular adhesion molecule-1
(ICAM-1), which leads to migration of immune cells at the
sites of inflammation (56–58). Leptin activates the monocytes
and dendrite cells (DCs) that in turn leads to the production
of pro-inflammatory cytokines such as TNF-α, IL-6 along with
IL-12, a key cytokine that facilitates the shifting of T-cells toward
the Th1 phenotype (59–62). Leptin also promotes DCs survival
by triggering the activation of nuclear factor-kappa B (NF-kappa
B) and up-regulates B-cell lymphoma 2 (Bcl-2) and B-cell
lymphoma-extra-large (Bcl-xL) gene expression via the PI3K-
Akt signaling pathway (62). Moreover, upon leptin stimulation,
DCs also exhibit increased production of multiple cytokines
including IL-1, IL-6, IL-12, TNF-α, MIP-1α and induces the
expression of surface molecules, such as CD1a, CD80, CD83, or
CD86 (63, 64). Indirectly, leptin leads to the activation of natural
killer (NK) cells upon modulation of IL-1, IL-6, and TNF-α via
monocytes and macrophages (61) resulting an increased IL-12
and reduced IL-15 expression in NK cells (65, 66).

In adaptive immunity, leptin induces the maturation and
survival of thymic T-cells by reducing their rate of apoptosis
through inhibition of FAS-directed apoptosis pathway (16,
67). Eventually, leptin has anti-apoptotic effects on mature T-
cells, by up-regulating the expression of Bcl-xL (68), T-box
transcription factor (T-bet) (69), and synergizes with other
cytokines in lymphocyte proliferation and activation possibly
via signal transducer and activator of transcription 3 (STAT3)
signaling (70, 71). Leptin deficiency in both mouse and human
results in severe immune defects characterized by decrease
in total lymphocytes, CD4+ helper T cell number, increased
thymocyte apoptosis, and a skewing away from the Th1 toward
Th2 phenotype thereby resulting in increased susceptibility to
intracellular infections (16, 17, 72–74). Leptin mediates T-cells
polarization by inducing the cell-mediated immune response
through the secretion of IL-2, IL-12, TNF-α, and IFN-γ from
Th1 cells and suppresses the production of IL-10 and IL-4 from
Th2 cells (13, 75–78). In facts, thymocytes treated with leptin
induces CD4+CD8+ cell differentiationmainly to CD4+mature
thymocytes (79). Additionally, leptin also activates human B cells
to secrete cytokines, such as IL-6, IL-10, and TNF-α, through
the activation of JAK2/STAT3 and p38MAPK/ERK1/2 signaling
pathways (80, 81). Leptin-STAT3 signaling also influences the
production of C-X-C chemokine receptor type 3 (CXCR3)
and C-C chemokine receptor type 5 (CCR5) ligands, which
are preferentially expressed on Th1 cells and enhances pro-
inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in serum
(39, 82, 83). In conclusion, leptin acts as a Th1 cytokine and
regulates all immune cells through leptin receptor and affects
innate & adaptive immune responses together facilitating a shift
toward Th1 response. The brief role of leptin in innate & adaptive
immune response was summarized in Figure 1.

LEPTIN IN MALNUTRITION

Nutritional deficiency impaired phagocyte function, cell-
mediated immunity, cytokine production, antibody response
and the complement system (24, 25, 84) and predisposed to
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FIGURE 1 | The role of leptin in Innate and adaptive immunity: innate immunity; Leptin plays a crucial role in the activation and proliferation of macrophage, neutrophil,

and dendritic cells through the up and down regulation of various cytokine/chemokines. Adaptive immunity; Leptin-induced the activation and proliferation of total

lymphocytes (T and B cells), regulatory T cells and Naive T cells through the up and down regulation of pro-inflammatory and anti-inflammatory cytokines. The Innate

and adaptive immune response induced by leptin signaling through the phosphorylation of MAKP/STAT-3/P13K pathways (15–18, 49–55).

death from infectious diseases (85). Concurrently, malnutrition
is the most common cause of secondary immunodeficiency
worldwide associated with protein-energy malnutrition (PEM)
(86, 87), a nutritional deficiency in which individuals suffer
from protein but not calorific malnutrition (88). Strikingly,
PEM causes a drastic reduction in body fat mass and
decreases the circulating concentration of leptin, which, in
turn, impairs the generation of proinflammatory mediators
[IFN-γ, TNF-α and (NO) nitric oxide] (89, 90), and increases
the incidence of infectious diseases (72, 83). Malnutrition
is a primary risk factor for many infectious diseases. From
recent research, it seems that malnutrition is a predictor of
tuberculosis disease and is associated with worse outcomes.
Active tuberculosis is correlated with weight loss, cachexia, and
low serum concentrations of leptin which in turn suppresses
the lymphocyte stimulation and Th1 cytokines such as IL-
2, IFN-γ, and TNF-α secretion (91–96). PEM significantly
reduced the lymphocyte stimulation as well as secretion of
the Th1 cytokines such as IL-2, IFN-γ, and TNF-α, in M.
tuberculosis-infected guinea pig (92, 97). Furthermore, PEM
also diminishes leptin concentrations and increases serum
levels of stress hormones, i.e., glucocorticoids which impairs
macrophage functions by limiting NF-kB translocation into the
nucleus (96). Macrophages from experimental PEMmice are less
sensitive to lipopolysaccharides (LPS) due to decreased NF-kB
translocation resulting in impairment of active phagocytosis,

cytokines response and reactive oxygen intermediates (ROIs)
productions (98–101).

Serum leptin concentration decreases as malnutrition
becomes more pronounced and thus serves as a biomarker
of poor nutritional status in chronic cirrhosis due to viral
hepatitis and candidiasis due to Candida albicans (102–105).
Moreover, during fasting or starvation, leptin levels also fall
disproportionately due to the decrease in adipose tissue fat mass
(106, 107). The decrease in leptin level during starvation rendered
wild-type mice susceptible to LPS and TNF-α induced lethality
whereas leptin treatment restores those changes despite ongoing
starvation, suggesting that the lack of leptin plays a role in the
immune dysfunction during starvation (18, 108). Exogenous
leptin administration modulates T cell responses in mice
and prevents starvation-induced immune suppression on the
development of a delay type of hypersensitivity (DTH) response
and protects from starvation-induced lymphoid atrophy in mice
(12, 15, 68, 109).

Taken together, Leptin is a protein hormone secreted
by adipocytes, regulating body fat and food intake through
neuroendocrine-signaling system. Hence, it is possible to
speculate that leptin might act in the brain to directly
regulate metabolic response along with peripheral immune
function thereby contributing to better outcomes in various
infectious diseases compared with states of relative or total
leptin deficiency. Importantly, recent studies reported that
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serum leptin level may be used as a promising diagnostic
or prognostic marker for critical illness sepsis that is
triggered by an infective agent such as bacteria, viruses,
fungi, or parasites (110). Therefore, from here onwards, the
review focuses on the role of leptin in various infectious
diseases.

LEPTIN AND BACTERIAL INFECTIONS

Leptin-deficient mice and mice rendered leptin-deficient by
fasting exhibit impaired pulmonary bacterial clearance (Table 1)
and enhanced lethality during pulmonary tuberculosis, bacterial
pneumonia, and sepsis (30–32). The patients with pulmonary
tuberculosis (PTB) have decreased serum leptin levels, and an
increase in adiponectin may serve as a reliable biomarker for
predicting the development and progression of PTB pathogenesis
(111, 145, 146). Mycobacterium infection in ob/ob mice was
hampered to produce organized granulomatous response and
defective in CD4+ and CD8+ T cells functions, IFN-γ
and DTH responses (30). The mechanisms underlying the
defective leukocyte effector function in cells from leptin-deficient
mice were associated with a reduction in leukotriene (LT)
synthesis in alveolar macrophage (AMs), reduced complement
receptor (CR3) expression and decreased H2O2 synthesis in
neutrophils (PMNs) infected with Klebsiella pneumoniae (112–
114). Restoring the level of circulating leptin to physiological
levels in fasted and ob/ob mice significantly improved the
survival and pulmonary bacterial clearance, reduced bacteraemia,
reconstituted alveolar macrophage phagocytosis and increased
H2O2 production in the PMNs resulting in increased killing of
S. pneumonia in vitro (31, 115). Leptin binding to leptin receptor
activates multiple intracellular signaling pathways, including
STAT3, STAT5, and ERK1/2. STAT3 activates transcription
of suppressor of cytokine signaling (SOCS)-3, a protein that
inhibits JAK2 and STAT3 signaling during prolonged stimulation
of the Leptin receptor long isoform (Lep-Rb) (147, 148).
Lep-Rb mediated phosphorylation of Tyr1077 activates STAT5
signaling pathway (149). Phosphorylation of Tyr985 in leptin
receptor recruits binding partners SH2-containing tyrosine
phosphatase (SHP-2) and growth factor binding 2 (GRB2)
which activate extracellular signal-regulated kinase 1 and 2
(ERK 1/2) signaling (147, 150). A mutation of the Try985

with L985 residue in the leptin receptor exhibited increased
mortality and impaired pulmonary bacterial clearance following
an intratracheal challenge with K. pneumoniae due to the
disruption of ERK-dependent activation (151).

Moreover, Leptin-dependent neutrophilic phagocytosis of L.
monocytogenes was more potent than Escherichia coli due to the
presence of apoptotic factor Listeriolysin O, which is absent in E.
coli (116). Exogenous leptin restored the anti-listeria resistance
and monocyte chemoattractant protein-1 (MCP-1) and MIP-
2 production in leptin-deficient mice (117, 152). Clostridium
difficile colitis is a primary causative agent of nosocomial
infection in humans and murine. The defective STAT3 signaling
pathway leads to susceptibility to infectious colitis and bacterial
peritonitis (33, 153) and leptin treatment restored the protective

mucosal immune response in C. difficile colitis by the STAT3
inflammatory pathway (33).

In contrast to above finding, disruption of leptin receptor-
mediated STAT3 signaling pathway improved AMs phagocytosis
and host defense against P. pneumonia in (Leprs1138/s1138) s/smice
following an intratracheal challenge with S. pneumonia (154).
These effects are mediated by an intracellular signaling pathway
that is dependent on ERK1/2 activation in AMs resulting an
increased in LT synthesis, which enhanced the phagocytosis in
cells from s/s mice (154). Mice infected with Helicobacter pylori-
induced pro-inflammatory cytokine response and enhanced the
leptin secretion from gastric mucosa which may be playing
a role in weight gain after eradication of H pylori infection
(118–120) suggesting that leptin has a local effect rather than
systemic action in patients with gastritis (121, 155). These
findings reveal the existence of a relevant neuroendocrine control
of leptin in systemic immune defense in various bacterial diseases
thereby highlighting the possible therapeutic potential of leptin
analogous to control infectious diseases.

LEPTIN AND VIRAL INFECTIONS

Mice deficient in the leptin receptor or malnourished leads to
impaired viral clearance (Table 1), diminished lung IFNγ level
and reduced survival during influenza-A pneumonia infections
(156). The mice lacking functional leptin receptor in T cells
(LepRT−/−) limits pH1N1 influenza mortality and infection
severity in obese mice suggesting that leptin signaling in T cells
may be a critical mediator of pH1N1 severity in obese mice
(122, 123). Moreover, Leptin resistant obese mice or decreased
leptin level in obese individuals may increase the susceptibility
to influenza virus infection by suppressing the memory T-
cell function and IFN-α, IFN-β, and IFN-γ mRNA expression
which leads to an increase in viral titer and infiltration (124).
Furthermore, mice lacking functional leptin receptor in tissue-
specific lung epithelial and macrophage cells have improved
viral clearance and reduced lung injury following influenza-
A infection suggesting that leptin signaling is also associated
with non-myeloid cells such as natural killer cells and T cells
(125). Leptin significantly upregulated the Th17 subset but
suppressed Th2 subset differentiation possibly via regulating
ERK1/2 phosphorylation in human bronchial epithelial cells
(hBECs) infected with the respiratory syncytial virus (RSV) (126).
Human immunodeficiency virus (HIV)-infected patients have
an exaggerated expression of leptin receptor on their blood
mononuclear cells while low leptin levels in their serum leads to
an immune deficiency in these patients (127, 128). Importantly,
leptin therapy, a novel strategy now in clinical trials, and its
beneficial positive role in HIV patients in correction of metabolic
complications related toHIV-associated lipodystrophy syndrome
(HALS) has been reported recently (129). Leptin also diminishes
the oxidative status of monocytes suggesting that leptin can alter
the redox status of monocytes, which leads to immunological
alterations in HIV infection (35). Therefore, taken together these
findings reveal that leptin could control the systemic immune
defense failure in viral specific immune cells dysfunction and
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TABLE 1 | The distinctive immune responses in various infectious diseases upon leptin treatment were summarized.

Infectious

group

Infectious species Effect of leptin on the Immune response Model used (in-vitro

& in-vivo)

References

Bacterial

disease

Mycobacterium

tuberculosis

Increase IFNγ & TNF-α levels and PMN cells & functions.

Increase T helper CD4T cells & CD8T cells activity.

Improve Ag- specific antibody response.

Restored DTH response and Granuloma formation.

Reduced IL-6 cytokine and bacterial load.

Mice and human (30, 95, 111)

Klebsiella pneumonia Increase phagocytosis index and Leukotriene synthesis.

Improve defective alveolar macrophage phagocytosis.

Restored CD11b expression level.

Decrease bacterial load and reduce mortality.

Mice (112, 113)

Pneumococcal

pneumonia

Restored defective alveolar macrophage phagocytosis activity.

Increase PMN H2O2 production.

Reduced TNF-α, MIP-2, PGE2 in the lung.

Improves pulmonary bacterial clearance and survival.

Mice (31, 114)

Clostridium difficile Leptin receptor Q223R mutation leads to defective STAT3 signaling pathway and

associated with an increased risk of colitis.

Mutation of tyrosine 1,138 in the intracellular domain of LepRb decreased

mucosal chemokine and cell recruitment.

Increases inflammation, colonic chemokine expression, and cellular recruitment.

Improve the bacterial clearance.

Mice (33)

Sepsis Improve the Neutrophil function.

Increase the phosphorylation of p38 MAP kinase.

Control sepsis-induced organ damage

Supresses IL-6 and MCP-1 level.

Control the bacteraemia.

Mice and rat (32, 110, 115)

Listeria

monocytogenes

Induce CD11b expression on neutrophils and lower the apoptosis.

Induce effective bacterial phagocytosis and lymphocytic apoptosis in sever

immune-deficiency.

Improvement of anti-listerial resistance and the MCP-1 mRNA expression.

Decrease defective MCP-1 expression in the liver.

Control the bacteraemia.

Mice (116, 117)

Helicobactor pylori Increase mucosal leptin in the infected patients compare to uninfected patients.

Amount of gastric leptin correlated positively with the mucosal levels of IL-1β and

IL-6, but not IL-8 cytokine.

Increase of gastric leptin expression during infection may have a local rather than

systemic action.

Increase in serum leptin concentration.

Circulating leptin correlated with body mass index, but not with bacterial load.

There was no change in plasma leptin levels following cure of the infection.

Mice and human (118–121)

Viral disease Influenza A/H1N1

pneumonia

Global deficiency of leptin receptor (db/db) have worsened survival following

influenza A infection.

Leptin receptor deficiency impaired viral clearance & diminished the IFN-γ levels.

Loss of leptin receptor within lung epithelium or within macrophages is not

associated with worsened lung injury or mortality following infection.

Decrease proinflammatory cytokines IL-6 and IL-1β level and increase survival.

Disruption of leptin signaling in T cells limits worsened the pH1N1 dependent

mortality and infection severity.

Human and mice (34, 122–125)

Respiratory Syncytial

Virus

Promoted Th17 subset differentiation.

Suppressed Th2 subset differentiation.

Increased phosphorylation of ERK1/2 in peripheral Lymphocytes.

Human (126)

HIV Leptin inhibits ROS and control oxidative burst mechanism in HIV+ monocyte

patients.

Leptin receptor (ob-R) expression increased in HIV+ PBMCs than control.

Serum leptin level positively correlated with CD4+ T lymphocyte during antiviral

therapy in HIV patients.

Supresses SOCS3 & mTOR expression and Th2 subset differentiation.

Reduced viral load.

Human and mice

(in-vitro & in-vivo)

(35, 127–129)

(Continued)
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TABLE 1 | Continued

Infectious

group

Infectious species Effect of leptin on the Immune response Model used (in-vitro

& in-vivo)

References

Parasitic

disease

Leishmania

major/Leishmania

donovani

Activates macrophage phagocytosis and ROS induction.

Enhances the phosphorylation of Erk1/2 & Akt in macrophages.

Increases IFN-γ, IL12, IL-1β secretion in macrophage.

Improve IFN-γ/IL-10 ratio, GrzA and Th1 cytokine response.

Activate CD8+ T-cell compartment and reduces PD-1 & CTLA-4 expression.

Increase IgG2a levels and improve IgG2a/IgG1 ratio.

Improve granuloma formation and repaired tissue degeneration.

Reduced parasite load in visceral organs.

Human (THP-1 and

PBMCs)

Mice (in-vitro & in-vivo)

(36, 49, 130–

132)

Trypanosoma cruzi Defective leptin receptors or reduction in leptin level increase parasitemia and

mortality rate.

Reconstitution of central leptin signaling in brain reduces tissue parasitism and

mortality rates.

Improve plasma cytokines and chemokine’s.

Mice (37, 133–136)

Entamoeba histolytica Mutation in leptin receptor (LEPR Q223R).

Substitution of arginine (223R) in the cytokine receptor homology domain 1 of

LEPR are more susceptible than those have glutamine (223Q) amino acid.

Q223R polymorphism also decreased leptin-dependent STAT3 activation and

defective STAT3 signaling and increase susceptibility to liver & intestinal abscess.

Q223R leptin receptor mutation results in defective neutrophil infiltration to the

site of infection.

Mutation of tyrosine 985 or 1138 in leptin receptor results in defective

SHP2/ERK and STAT3 signaling.

Leptin-mediated resistance to amebiasis requires leptin receptor signaling

through both the STAT3 and SHP2/ERK pathways.

Leptin promotes regeneration & mucin secretion by epithelial cell and control

apoptosis & integrity in intestinal epithelium lining.

Low serum leptin increase liver and intestinal abscess.

Intestinal parasites deregulate the secretion of leptin and adiponectin and play a

role in enteric parasitosis by modulating body immunity, food intake and blood

chemistry.

Human and mice (38, 137–142)

Plasmodium berghei

ANKA parasite

Higher serum leptin levels.

Increase mTORC1 (Mechanistic target of rapamycin complex 1) activity in CD4+

and CD8+ T cells in a dose dependent manner.

Leptin act as downstream target for mTORC1 activity in T cells during ECM.

The leptin gene mutation in ob/ob is associated with observed CM resistance

phenotype.

CM resistance phenotype is due to involvement of Th1 cytokines TNF-α and

INF-γ in the regulatory cascade controlling inflammatory responses after malarial

infections.

Mice (39, 143, 144)

further suggests the possible healing potential for leptin analogs
in infectious disease.

LEPTIN AND PARASITIC INFECTIONS

Parasitic infections contribute significantly to the burden
of communicable diseases worldwide. Reportedly, much of
infections and mortality from parasitic illnesses are restricted
mainly in developing countries (157). Malnutrition or loss
of appetite is a common characteristic of many infectious
diseases including parasitic infections which result in reduced
serum leptin levels (158). Since, leptin has been reported to
induce pro-inflammatory cytokines & chemokines, neutrophil
chemotaxis, NK cell cytotoxicity, and T cell functions,
therefore its deficiency leads to an increase in susceptibility
to infectious diseases (64, 65, 159, 160). Furthermore, leptin
exerts central effects on hypothalamic-pituitary function

and disruption of these effects have been implicated into
severe parasitic diseases due to immune dysfunction in host
(35–38).

Moreover, very little is known about the role of leptin
in pathogenesis of parasitic infections. There is a need for
studying the role of leptin in controlling parasitic infections since
preponderance of such infections is associated with malnutrition
which goes hand in hand in developing countries. As a first step,
we have highlighted some of these studies to generate interest in
initiating such studies (Table 1).

Leishmaniasis
Leishmaniasis is a vector-borne protozoan disease caused by
Leishmania parasites. Leishmaniasis is commonly prevalent in
tropical and subtropical regions of the world with different
immunopathology and varying degrees of morbidity and
mortality. Among which, Visceral Leushmaniasis (VL) is
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the deadliest form of the diseases, marked by uncontrolled
parasitemia in the spleen, liver, and bone marrow (161, 162).

VL is an endemic disease found mostly in economically poor
societies, who invariably suffer from malnutrition. Malnutrition
is characterized by the lower serum leptin level which in turn
adversely alters the development of innate and adaptive immune
responses during VL in both mice and children living in
endemic areas (163–165). Hence, malnutrition and low serum
leptin level are playing a critical role in Leishmania infection
and its pathogenesis. Leptin improved cytokine production and
phagocytosis of Leishmania donovani by murine and human
macrophages by increasing the phagolysosome formation and
oxidative killing of the parasite via intracellular reactive oxygen
species (ROS) generation (36). Leptin in combination with
miltefosine, the conventional antileishmanial drug, augments
the protective immunity in mouse macrophage during L.
donovani infection in vitro (130). Similarly, it enhances the
host protective Th1 cytokine responses in THP-1, and human
PMBCs derived macrophages by inducing Erk1/2 and Akt
phosphorylation, which is usually dephosphorylated in L.
donovani infection (36). It can also maintain the protective
environment against L. donovani infection through the classical
macrophage activation (36). Recently we demonstrated that
leptin induces the innate immune response in bone marrow-
derived antigen presenting dendritic cells, and causes heightened
nitric oxide, proinflammatory cytokines (IFN-γ, IL-12, and
IL1β) in the splenocytes stimulated with soluble Leishmania
antigen. Besides this, leptin-induced IFN-γ production from
both CD4+ and CD8+ T cells compared with untreated
infected normal mice, indicates that leptin-induced heightened
Th1 response (131). Alternatively, leptin deficient ob/ob mice
had higher splenic and liver parasite burden compared with
the normal infected mice. Nevertheless, leptin treatment of
ob/ob mice failed to reduce the splenic parasite burden
and host-protective cytokine response. Moreover, in contrast
to DCs from a normal mouse, ob/ob mouse-derived DCs
showed limitation in the initiation of innate immune response
during Leishmania infection that could not be restored
by leptin treatment suggesting that leptin signaling was
differentially regulated in ob/ob mice compared with normal
mice fed with healthy diet (131, 166). Interestingly, very
recently we demonstrated that leptin also induces a protective
CD8+ T-cell dependent immune response in malnutrition
coupled with L. donovani infection through up-regulation of
Granzyme A (GrzA) and down-regulation of cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and Programmed
death-1 (PD-1) markers (132). The PD-1 ligand plays a
significant role in CD8+ T cell exhaustion during the
chronic infections of various infectious diseases including VL
(167). It is worth mentioning here that in contrast to the
above reports an increased expression or activity of leptin,
has been reported in blood samples of dogs with canine
leishmaniasis (CanL) and suggested possible use of leptin as
a biomarker for CanL (168). In conclusion, leptin treatment
may improve parasite clearance in malnourished VL condition
through restoration of normal immune cell function via leptin
signaling.

Trypanosomiasis
Chagas disease is caused by a protozoan parasite Trypanosoma
cruzi. The parasite is transmitted to humans and other hosts
mainly by feces of infected blood-feeding triatomines, blood
transfusion, or by ingestion of contaminated food (169). Chagas
disease remains a serious health problem in Central and South
America and amajor cause of morbidity andmortality (135, 170).
T. cruzi uses adipocytes as a reservoir for chronic infection
and displays a pro-inflammatory phenotype by upregulating
cytokines such as IL-1β, IFN-γ, TNF-α, and chemokines such as
CCL2, CXCL10, and CCL5 along with innate immune receptors
such as Toll-like receptor (TLR)-2 and 9 (171–173). Other
pathways, such as ERK and PI3K pathways were also activated
upon T. cruzi infection (174, 175). Additionally, Adipose
tissue profoundly expressed Peroxisome proliferator-activated
receptor (PPAR-γ ) along with adiponectin, which exerts an anti-
inflammatory effect. The levels of PPAR-γ were also decreased
in T. cruzi infected cells, which leads to the reduced secretion of
adiponectin and increased inflammatory reactions (176).

Since parasite infects many organs including adipose tissue
which is a source to a variety of adipokines, including leptin and
could have significant role in pathogenesis of Trypanosomiasis
(133, 134). Mice infected with T. cruzi showed significant
reduction in leptin levels, possibly due to adipocyte involvement
in disease progression (133, 135). It was also reported that
chemically induced diabetic mice and genetically susceptible
db/db diabetic mice with defective leptin receptors had higher
parasitemia and mortality after T. cruzi infection, which suggests
that the dysregulation of host metabolism may be beneficial
to parasitic survival in the host (136). Moreover, mice with
defective leptin receptor are metabolically challenged and upon
infection with T. cruzi suffer high mortality (37). In NSE-Rb
db/db mice, a genetically modified db/db mouse, central leptin
signaling is reconstituted only in the brain which is sufficient
to correct the metabolic defects and when infected with T.
cruzi showed reduced parasitemia, mortality rates, and tissue
parasitism as compared to normal db/db mice. The plasma
levels of several cytokines and chemokines were also significantly
increased in infected db/db mice compared with NSE-Rb db/db
mice (37). In summary, the normalization of the metabolic
dysfunction in NSE-Rb db/db mice through the restoration
of leptin receptor signaling in brain reconstitute the normal
immune response against T. cruzi infection, but not peripheral
restoration, highlighting that leptin may play a role as a central
regulator for both metabolic function and immune response.

Amoebiasis
Amoebiasis is the disease caused by an enteric protozoan parasite
Entamoeba histolytica. Infection results from ingestion of the
parasite cyst from feces-contaminated food or water (177). E.
histolytica primarily lives in the intestinal mucosa and mainly
restricted in colon infection causing devastating dysentery,
colitis, and liver abscess by producing tissue damages (178, 179)
while many deaths are associated with extraintestinal invasive
disease (180, 181). Amoebiasis occurs when trophozoites disrupt
themucosal barrier and penetrate the underlying tissue and break
down extracellular matrix, destroy cells, and phagocytose cellular
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FIGURE 2 | The possible model of Leptin and Immune response in malnutrition coupled infectious diseases. In malnutrition, low adipocyte mass causes a reduction

of serum leptin level resultant impairment of normal macrophages and lymphocytes activities. Infected macrophages induce the SOCS1 & 3 proteins expression

subsequently upregulates ROS scavenging enzyme Thioredoxin which leads to activates SHP1/PTPase molecules. SHP1/PTP1 negatively regulates the JAK/STAT,

and MAP-Kinase pathways thus inhibiting IFN–inducible macrophage functions (increased IL-10 and TGF-β level and decreased the IL-12 cytokines in infected

macrophage). IL-10 suppresses the NO activity and improves the parasite survival. TGF-β activates SHP1/PTPase activity in lymphocytes through TGF-β receptor

(TBR) which leads to lymphocytes apoptosis. In contrast, Leptin treatment inactivated SHP1/PTPase directed pathways and reversed the macrophage activities by

up-regulating the pro-inflammatory cytokines (IFNγ, TNF-α, and IL-12) secretion and NO expression. IL-12 cytokine released from activated macrophage upon leptin

treatment inhibits the SHP1/PTPase dependent T lymphocytes apoptosis by activation of JAK/STAT pathway. Moreover, Leptin directly inhibits the FasL-dependent T

lymphocytes apoptosis by the inhibition of the caspase 8 activity. Caspase-8 then promotes mitochondrial outer membrane permeabilization (MOMP) by diminishing

the inhibitory effect of various antiapoptotic and proapoptotic molecules. MOMP results in cytochrome-c release from the mitochondria, enabling activation of a

supramolecular complex, the apoptosome that activates caspase-3 to undertake apoptotic cell death (Suppressors of cytokine signaling: SOCS1 & 3; Protein tyrosine

phosphatases: SHP1/PTP1, Mitochondrial membrane potential drop: MMP drop, and P: phosphorylation) (192–206).

debris (182). Studies on amoebic liver abscess (ALA) carried out
in Indian subcontinent suggest that malnutrition is associated
with ALA outcome (183, 184).

Moreover, malnutrition and serum leptin levels are directly
proportional to the pathogenesis of amoebiasis, and low serum
leptin plays a critical role in E. histolytica- associated diarrheal
illness and extent of liver injury (137, 185). The mucosal
immune response can be suppressed by a mutation in leptin
receptor and defective STAT3 signaling pathways, resulting in
susceptibility to intestinal abscess due to E. histolytica infections
(38, 138). The mechanism of mucosal immune suppression
depends on homozygous allelic mutation in leptin receptor
Q223R (rs1137101) that ablates STAT3 signaling, results in
decreased mucosal chemokine’s LIF, CXCL9, CXCL10, CCL3,
and CCL4 secretion (68, 69). A mutation or polymorphism in
leptin receptor at 233 (from glutamine to arginine) is liable to
enhance 4 times more susceptibility to E. histolytica infection

in children irrespective of nutritional status (139). The leptin-
deficient (ob/ob) and LepRb-deficient (db/db) mice were highly
susceptible to infection with E. histolytica, whereas wild-type
C57BL/6 mice were resistant. Moreover, mice either homozygous
or heterozygous for the 223R allele of leptin receptor were
significantly more prone to amoebic infection. Both types of mice
ceca were shown to have profound epithelial denudation because
of trophozoites invasion. Leptin signaling in the intestinal
epithelium and downstream STAT3 and SHP2 (Src homology
phosphatase 2) signaling was required for protection in the
murine model of amoebic colitis (140). Leptin-mediated specific
activation of STAT3 and ERK or Akt signaling pathways in gut
mucosal epithelial cells offers more resistance against amoebiasis
caused by E. histolytica infection (141, 142). In conclusion,
leptin may control the amoebic infections by the activation of
leptin signaling pathway in gut mucosal epithelial cells via up-
regulation of various signaling pathway.
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Malaria
Malaria is caused by Plasmodium species, an intracellular
parasite transmitted by the bite of an infected female Anopheles
mosquito. It is endemic in most of the tropical countries such as
sub-tropical regions of Asia, Africa, South and Central America
(186). Plasmodium falciparum is the most virulent form of the
human malaria parasites and responsible for 90% of malaria-
related morbidity and mortality (187). During a mosquito bite,
sporozoites are injected into host’s skin, enter the bloodstream
and reach to the liver. Parasites differentiate and replicate
inside hepatocytes, and then released as merozoites into the
bloodstream, which subsequently invades red blood cells (RBCs)
(186).

Inflection of diet can affect the outcome of parasitic diseases
either through the effects on parasite growth and development,
or via the host immune response, or both. Leptin is a
cytokine predominantly secreted by adipocytes that increases in
proportion to total body fat mass, and upon exposure to pro-
inflammatory cytokines, it inhibits both appetite and adiposity
in malaria infection (39). Moreover, serum leptin levels were
approximately five-fold higher in Plasmodium berghei-infected
mice than in non-infected controls (188). Leptin-deficient mice
infected with P. berghei ANKA were shown to be resistant to
the development of cerebral malaria whereas the normal mice
developed signs of cerebral malaria. Dietary restriction prevented
severe experimental cerebral malaria (ECM) symptoms and
death in mice through modulation of leptin levels and
mechanistic target of rapamycin complex 1 (mTORC1) activity
in T cells (143). Pharmacological inhibition of either leptin
signaling with a mutant peptide, or downstream mTORC1
signaling with rapamycin, blocked ECM symptoms and reduced
mortality (39). Furthermore, leptin exerts central effects on
hypothalamic-pituitary function and these outcomes might affect
the severity of malaria disease. Disturbance in hypothalamic-
pituitary-adrenal axis during P. falciparum infection have been
involved in the pathogenic mechanism of severe malaria (144).
Importantly, the level of leptin in serum of malaria patients
has been recently reported to be used as prognostic markers of
treatment outcomes and pathogenesis of malaria patients (144).
In conclusion, leptin could play an important role to control the
immuno-compromised malarial infections by the activation of
immune cells through leptin signaling pathway.

CONCLUSION AND SUMMARY

Many studies have been conducted in recent past to understand
the role of leptin in immune modulation such as activation of
phagocytosis, cytokine polarization and cell-mediated immunity
in infectious diseases. Both obesity and malnutrition are
pandemics associated with immune-deficiencies that lead to
increased vulnerability to infectious disease. Interestingly, both
obesity and malnutrition are related to aberrant leptin levels,
obesity due to chronically elevated leptin levels, whereas
malnutrition results in significantly diminished leptin levels.
Emerging data from animal models and human indicates that

immune dysfunction underlies the etiology of malnutrition
and reduced immune-mediated protection from infections,
which interplay between nutrition, leptin levels and immune
responses (86, 189, 190). Malnutrition is characterized by
immune suppression and increased risk of mortality from
infectious diseases (191). The immune dysfunction is not only
a consequence of inadequate diet but also contributes in various
mechanisms, including the energy homeostasis, metabolism, the
role of leptin and it signals to the hypothalamic-pituitary-adrenal
axis and peripheral organs. Thus, it is likely that the CNS plays
a critical role in malnutrition associated immune deficiency.
Protein-energymalnutrition reduces leptin concentrations which
impairs macrophage functions, ability to engulf pathogens and
to produce proinflammatory cytokines (25, 27). Importantly,
leptin has a crucial role in mediating innate and adaptive
immune response which are significantly affected by nutritional
status and play a vital role in the immune adaptation in
both malnutrition and infection. Moreover, many infectious
diseases directly or indirectly are linked to malnutrition which
compromises the innate and adaptive immunity of host and
increased susceptibility to infectious disease.

More importantly the mechanism of leptin signaling in
various infectious diseases is depends on SOCS3 expression
as describes in NF-κB dependent pathway. The SOCS3
expression attenuates the macrophage’s response to IFN-γ at
both proximal level activation and downstream expression.
Hence, taken together above-mentioned observations indicate
that the potential role of leptin signaling in various pathogens
has been summarized in a schematic diagram (Figure 2) (192–
205). Therefore, understanding the link between nutrition,
leptin, and immune dysfunction in murine and human
infectious diseases will inform targeted interventions for a
vulnerable population with undernutrition, which is a crucial
need for new approaches to reduce global mortality from
infectious diseases. Present review provides a rationale for
future studies to explore role of leptin as therapeutics
to host immune dysfunction in infectious diseases during
malnutrition.
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