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Gastric cancer and colorectal cancer are the leading cause of cancer mortality and have

a dismal prognosis. The introduction of biological agents to treat these cancers has

resulted in improved outcomes, and combination chemotherapy with targeted agents

and conventional chemotherapeutic agents is regarded as standard therapy. Additional

newly clarified mechanisms of oncogenesis and resistance to targeted agents require

the development of new biologic agents. Aberrant activation of the inositide signaling

pathway by a loss of function PTEN mutation or gain of function mutation/amplification

of PIK3CA is an oncogenic mechanism in gastric cancer and colorectal cancer. Clinical

trials with biologic agents that target the inositide signaling pathway are being performed

to further improve treatment outcomes of patients with advanced gastric cancer and

metastatic colorectal cancer (CRC). In this review we summarize the inositide signaling

pathway, the targeted agents that inhibit abnormal activation of this signaling pathway

and the clinical trials currently being performed in patients with advanced or metastatic

gastric cancer and metastatic CRC using these targeted agents.
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INTRODUCTION

Phosphoinositides are ubiquitous signaling molecules in eukaryotes that are modified by
phosphorylation at multiple positions on phosphatidylinositol (PtdIns). PtdIns is a membrane
phospholipid containing a hydrophobic diacylglycerol and water soluble inositol ring.
Phosphorylation at different positions on the inositol ring results in seven phosphoinositides
(Sasaki et al., 2009). The phosphoinositide signaling system is essential for regulating cellular
processes, including cell proliferation, vesicle transport, and cytoskeletal remodeling. Deregulation
of phosphoinositide signaling by altering the genes encoding phosphoinositide-modifying enzymes
leads to many diseases, such as cancers, inflammatory bowel disease, rheumatic disease, diabetes,
and others (Bunney and Katan, 2010; Raimondi and Falasca, 2012).

In this article, we focus on the phosphoinositide signaling system and possible targeted therapies
in gastric cancer (GC) and colorectal cancer (CRC).

THE PHOSPHOINOSITIDE SIGNALING SYSTEM

The parent PtdIns synthesized in the endoplasmic reticulum is phosphorylated into several
different PtdIns monophosphates in the plasma membrane. The phosphorylated PtdIns4P further
undergoes phosphorylation to PtdIns(4,5)P2 by PtdIns4P-5 kinases in the plasma membrane.
Subsequent conversion to PtdIns (3,4,5)P3, a key lipid with signaling functions controlling
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cell growth and proliferation, is carried out by PI3K. The protein
kinases, Akt/protein kinase B (PKB), 3-phosphoinositide-
dependent protein kinase 1 (PDK1), and BTK cooperate
to transduce different downstream signaling pathways.
Dephosphorylation of PtdIns (3,4,5)P3 by PtdIns-3 phosphatase
(PTEN) and PtdIns-5 phosphatase generate PtdIns (4,5)P2 and
PtdIns (3,4)P2, respectively(Di Paolo and De Camilli, 2006;
Engelman et al., 2006; Leslie et al., 2008; Ooms et al., 2009;
Bunney and Katan, 2010). Phosphorylation of Akt/PKB on
threonine 308 (Thr308) and serine 473 (Ser473) results in
activation of the kinase and subsequent inactivation of tuberous
sclerosis complex2 (TSC2) via phosphorylation. The inactivation
of TSC2 leads to proteasomal degradation of the TSC1/TSC2
protein complex which in turn activates the mammalian target
of rapamycin (mTOR) activation (Inoki et al., 2002; Potter et al.,
2002; Figure 1).

PI3K AND PTEN

PI3K is a family of lipid kinases known to phosphorylate
PtdIns(4,5)P2 at position 3 resulting in PtdIns(3,4,5)P3.
PtdIns(3,4,5)P3 is a second messenger involved in regulating
cell survival, proliferation, and growth, and its enhancement
frequently leads to cancers (Engelman et al., 2006; Yuan and
Cantley, 2008). PI3Ks are categorized into classes I–III based on
their structures and substrate preference (Cantley, 2002). Class
I PI3Ks are further grouped into two sub-families of class 1A
and class1B according to their receptors. Class IA PI3Ks are
heterodimeric proteins comprised of a regulatory subunit (p85α,
p85β, or p55γ) and a catalytic subunit (p110α, p110β, or p110δ).
Signaling from receptor tyrosine kinases (RTKs) is mediated
through class IA PI3Ks by binding of the p85 regulatory subunit
to phospho-tyrosine residues in the activated RTKs. The amino
(N)-terminal p85-binding domain of the p110 catalytic subunit
binds to the p85 regulatory subunit, and this interaction recruits
the p85-p110 heterodimer to PtdIns(4,5)P2, which is a substrate
located in the plasma membrane (Fruman et al., 1998; Engelman
et al., 2006). Class IB PI3K is a heterodimer comprised of the
p110 γ catalytic subunit and two regulatory subunits (p84 and
p101). Class IB PI3K is activated by G-protein coupled receptors
through interactions with the p101 regulatory subunit and the
Gβγ subunit of the receptor (Stephens et al., 1997;Wymann et al.,
2003). Class II PI3Ks consist of a p110-like catalytic subunit that
preferentially phosphorylates PtdIns (Katso et al., 2001). Class III
PI3Ks, or human vacuolar protein-sorting defective 34 (Vps34),
regulates mTOR but little is known about their functions
(Nobukuni et al., 2005). PTEN, which dephosphorylates PtdIns
(3,4,5)P3, is a phosphatase that acts on phosphoinositides.

Akt

Serine/threonine protein kinase Akt/PKB plays a role
regulating cellular growth, survival, proliferation, and
metabolism. Activation of Akt downstream of PI3K is
mediated by phosphorylation with protein kinases. Following
phosphorylation to PtdIns(3,4,5)P3 by PI3K, Akt/PKB is

recruited to the plasma membrane enriched with PtdIns(3,4,5)P3
through its N-terminal pleckstrin homology (PH) domain. PDK1
then phosphorylates the recruited Akt at Thr308 on the central
kinase catalytic domain (CAT). mTOR complex2 (mTORC2) is
responsible for phosphorylation of the other Ser 473 site on the
carboxyl terminal extension domain (EXT). Activated AKt/PKB
then phosphorylates downstream substrates such as mTOR to
control cellular functions (Alessi et al., 1997; Sabatini et al., 2005;
Manning and Cantley, 2007; Gonzalez and McGraw, 2009).

mTOR

mTOR is a 289-kDa serine/threonine kinase that plays a central
role regulating cellular processes including cell growth and
proliferation. mTOR exerts its effects by forming two distinct
complexes distinguished according to the binding proteins
mTORC1 and mTOR2. mTORC1 consists of mTOR, proline-rich
Akt substrate 40 kDa, mammalian lethal with SEC13 protein8
(MLST8), and the regulatory-associated protein of mTOR.
Activation of mTORC1 downstream of Akt/PKB subsequently
phosphorylates substrates S6 kinase 1 (S6K1) and 4E-binding
protein 1 (4E-BP1), which leads to initiation of mRNA
translation and progression and stimulates protein synthesis.
mTORC2 consists of mTOR, rapamycin-insensitive companion
of mTOR, MLST8, and mammalian stress-activated protein
kinase interacting protein 1. Activated mTORC2 phosphorylates
Akt/PKB on Ser473, which is then fully activated with additional
phosphorylation on Thr308 by PDK1 (Fingar et al., 2004;
Sarbassov et al., 2005; Yang and Guan, 2007; Zoncu et al., 2011;
Al-Batran et al., 2012).

THE ROLE OF PHOSPHOINOSITIDE
PATHWAY DYSREGULATION IN THE
BIOLOGY OF STEM CELLS

Tissue regeneration in the gut is ultimately regulated and
sustained by intestinal stem cells (ISCs) that proliferate
constantly and live long (Barker et al., 2010; Merlos-Suárez et al.,
2011). In an animal study, ISCs were shown to initiate crypt
expansion resulting in the formation of polyps, a precancerous
neoplasm, but it is unclear which mutations in ISCs result
in primary tumor initiation (He et al., 2007). Impaired bone
morphogenic protein (BMP) signaling and activating mutations
of Wnt signaling in ISCs can result in polyposis (Howe et al.,
2001; Haramis et al., 2004; Sancho et al., 2004). There is evidence
that PTEN and Akt could play crucial roles in the interaction
between BMP and Wnt signals (He et al., 2007). Inactivation of
PTEN was reported to cause Akt activation and activated Akt
phosphorylates β-catenin, a main effector of the Wnt pathway,
resulting in β-catenin’s nuclear localization (Persad et al., 2001;
He et al., 2007). In several organ systems including the intestine,
nuclear translocation of β-catenin is considered to be crucial
in activation of ISCs (Lowry et al., 2005). Bone morphogenetic
protein4 (BMP4) treatment caused a substantial rise in PTEN
levels in conjunction with the induction of differentiation and
loss of tumorigenicity in CRC stem cells, but was not effective in
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FIGURE 1 | The inositide signaling pathway and target agents used to treat gastric cancer and colorectal cancer. Phosphatidylinosityo-4,5-bisphosphate

[PtdIns(4,5)P2] is converted to phosphatidylinosityo-3,4,5-triphosphate [PtdIns(3,4,5)P3] by phosphoinositide 3-kinase (PI3K) as a result of phosphorylation. Akt/PKB

is recruited to the plasma membrane followed by phosphorylation by mammalian target of rapamycin (mTOR) complex2 and 3-phosphoinositide-dependent protein

kinase 1 (PDK1). Inactivation of tuberous sclerosis complex (TSC) 2 by Akt leads to degradation of TSC1/TSC2, which permits activation of mTOR. mTOR complex 1

phosphorylates downstream substrates S6 kinase 1(S6K1) and 4E-binding protein 1(4E-BP1), leading to mRNA translation initiation. RTK, receptor tyrosine kinase;

GPCR, G-protein coupled receptor.

stem cells harboring a PI3KCAmutation or with complete PTEN
loss (Lombardo et al., 2011). These results show a coordination
among BMP, PI3K/Akt, and Wnt signaling pathways in the
biology of ISCs.

GENETIC/EPIGENETIC ABERRATIONS OF
PHOSPHOINOSITIDE SIGNALING SYSTEM
IN GI CANCERS

Mutations in the p110α, a catalytic subunit of class IA PI3K,
are reported in 14–32% of patients with CRC (Samuels et al.,
2004; Velho et al., 2005; Yuan and Cantley, 2008). Samuels et al.
evaluated functional effects of themutation of PIK3CA in CRC by
inactivation of PIK3CAmutation in CRC cell lines. They reported
PIK3CA mutations facilitate tumor invasion and attenuate
apoptosis (Samuels et al., 2005). Studies on the prognosis of
patients with CRC harboring PIK3CA mutations have reported
controversial results, and the impact of the mutation has been
regarded as insignificant (Cathomas, 2014). In GC, the PIK3CA
mutation is reported in 4–25% (Samuels et al., 2004; Li et al.,
2005; Velho et al., 2005). A study concerning the role of
amplification of PIK3CA gene in GC reported a high frequency

TABLE 1 | Genetic aberrations and their effects on prognosis.

Cancer type (references) Aberration of PI3KCA or PTEN Effect on

prognosis

GASTRIC CANCER

Shi et al., 2012 Amplification of PI3KCA Poor survival

COLON CANCER

Iida et al., 2012 Mutation or methylation of PI3KCA Poor survival

Phipps et al., 2013 Mutation of PI3KCA Poor survival

Eklöf et al., 2013 Mutation of PI3KCA No association

Loss of PTEN No association

Mouradov et al., 2013 Mutation of PI3KCA No association

(67%) of amplification in GC and that amplification of PIK3CA
is associated with poor prognosis (Shi et al., 2012) (Table 1).

PRECLINICAL STUDIES OF
PHOSPHOINOSITIDE PATHWAY

Several studies have demonstrated that the phosphoinositide
pathway is associated with proliferation, apoptosis, and
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metastasis. A preclinical study demonstrated activation of
Akt1 promoted cell survival by showing inhibition of Akt1
phosphorylation and subsequent inhibited cell growth with
LY294002, a PI3K inhibitor, in GC. In this study, dominant
negative Akt also showed inhibition of proliferation and
induction of cell cycle arrest in GC cells (Han et al., 2008).
Another study showed upregulated PIK3CA expression is
associated with lymph node metastasis in GC (Liu et al., 2010).
Xing et al. investigated the effects of LY294002 on invasiveness
with a GC mouse xenograft model. They found that LY294002
inhibited tumor growth and promoted apoptosis (Xing et al.,
2009). The role of PIK3CA mutations was also demonstrated in
CRC by showing inhibition of growth in PIK3CA mutant CRC
cell lines by treatment with LY294002 (Samuels et al., 2005).

NEXT DRUGGABLE TARGET CANDIDATE

PI3K expression of metastatic tumors in CRC is higher than that
of primary tumors (Zhu et al., 2012), suggesting that PI3K might
contribute to the progression and distant metastasis of CRC as in
other advanced stage cancers. As activating PIK3CA mutations
are observed in up to 20% of CRCs, many PI3K inhibitors have
been studied (DeVita et al., 2008). Three types of PI3K inhibitors
are now available for targeted therapy of solid tumors, such as
Pan-class I inhibitors, isoform specific PI3K inhibitors, and dual
PI3K/mTOR inhibitors (Vadas et al., 2011; Martini et al., 2013).

PAN- CLASS I INHIBITORS

Pan-class I inhibitors are active against all p110 isoforms. These
inhibitors include quecertin, the first non-specific PI3K inhibitor,
wortmannin, LY294002, PX-866, NVP-BKM120, ZSTK474,
BKM120, GDC0941, XL147, and BAY80-6946 (Singh et al., 2015).
Wortmannin is a potent and specific PI3K inhibitor that binds
covalently to Lys802 on the catalytic subunit of p110α and to
Lys883 on the p110γ subunit (Powis et al., 1994; Wymann et al.,
1996; Walker et al., 2000). Despite the potent inhibitory effect of
wortmannin against PI3K, its short half-life, biological instability,
and toxicity limits its clinical application (Yuan and Cantley,
2008). PX-866 is a biologically stable semisynthetic viridian
derivative of wortmannin that shows good pharmacokinetics and
has a prolonged inhibitory effect on PI3K (Ihle et al., 2004).
A recent multicenter phase I trial of PX-866 reported tolerable
toxicity and prolonged stable disease in patients with untreatable
solid tumors including GC and CRC (Hong et al., 2012). BKM120
is an oral pyrimidine-derived inhibitor that targets class I PI3Ks
but not class III PI3K or mTOR (Pecchi et al., 2010). In a
phase I clinical trial, BKM120 was tolerated and demonstrated
preliminary activity against advanced cancers (Bendell et al.,
2012).

ISOFORM-SPECIFIC PI3K INHIBITORS

Isoform-specific inhibitors were produced with the hope of
taking advantage of the superior efficacy of pan PI3K inhibitors

without the unwanted side effects. These inhibitors include NVP-
BYL719, CAL-101, GSK2636771, and MLN1117 (INK1117).
NVP-BYL719 is an α-specific PI3K inhibitor derived from the 2-
aminothiazole class (Furet et al., 2013). A phase I clinical trial
of BYL719 in combination with the heat shock protein (HSP)
90 inhibitor AUY922 in patients with advanced gastric cancer
has been completed recently (NCT01613950). A phase I clinical
trial of NVP-BYL719 including patients with metastatic CRC
bearing PIK3CAmutations was performed (Juric et al., 2012). In
this study, NVP-BYL719 had tolerable side effects and acceptable
efficacy. INK1117 is a potent, α-selective PI3K inhibitor with
good oral bioavailability that inhibits proliferation of tumor cell
lines carrying PIK3CA mutations (Jessen et al., 2011). Results of
a phase I clinical trial performed on patients with advanced solid
malignancies including GC treated with MLN1117 were recently
reported. The antitumor activity of this agent was demonstrated
by showing an objective response in patients with breast cancer
and GC (NCT01449370; Juric et al., 2015). The β-selective PI3K
inhibitor GSK2636771 was developed based on the preclinical
observation that selective depletion of a PI3K isoform expression
reduces tumorigenesis in PTEN-deficient tumors (Rivero and
Hardwicke, 2012). As loss of the PTEN is prevalent in CRCs,
further assessment of GSK2636771 in patients with CRC is
necessary. An in vitro study suggested that activation of PI3K
plays a crucial role in resistance against a BRAF inhibitor in
patients with CRC carrying the BRAF mutation (Mao et al.,
2013).

DUAL PI3K/mTOR INHIBITORS

Pan PI3K/mTOR inhibitors block the activities of both PI3Ks
and mTOR kinases by competitively binding to the ATP-
binding sites. Because mTOR is structurally related to PI3Ks,
ATP-competitive compounds inhibit these two kinases with
equivalent potency. In comparison with mTORC1 inhibitor,
dual PI3K/mTOR inhibitors could overcome loss of mTORC1-
dependent negative feedback on PI3K signaling (Roper et al.,
2011). mTORC1 blockade might be attenuated by resultant
mTORC2-mediated activation of Akt by phosphorylation at
Ser473 (Roper et al., 2011). NVP-BEZ235, NVP-BGT226, VS-
5884, PI-103, XL765, GDC-0980, and PF-05212384 are dual
Pan PI3K/mTOR inhibitors. In a preclinical study using a
genetically engineered mouse model carrying wild-type PIK3CA
with CRC, NVP-BEZ235 induced tumor regression (Roper
et al., 2011). Considering the relatively low prevalence of the
activating PIK3CA mutation (up to 20%), further studies should
be performed on the efficacy of NVP-BEZ235 in patients with
wild-type PIK3CA.

Akt INHIBITORS

Akt/PKB is an essential protein kinase comprised of three
isoforms, such as Akt1 (PKBα), Akt2 (PKBβ), and Akt3 (PKBγ).
The Akt structure consists of three conserved domains, including
an N-terminal PH domain, a CAT domain, and a C-terminal
EXT domain. Akt inhibitors are classified depending on the
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mechanism of action, such as compounds that compete for the
ATP-binding site, allosteric inhibitors, agents targeting the PH
domain, and pseudosubstrate inhibitors (Kumar and Madison,
2005). Among these groups, allosteric inhibitors and ATP
mimetics are the two main groups that have been investigated
for clinical application. Several Akt inhibitors are currently
being studied for GC, including AZD5363, MK-2206, triciribine
phosphate monohydrate (TCN-PM), perifosine, GDC-0068, and
GSK690693. AZD5363 is a potent ATP-competitive inhibitor of
Akt and a novel pyrrolopyrimidine-derived compound that acts
against all Akt isoforms (Luke et al., 2011; Davies et al., 2012).
MK-2206 is an allosteric inhibitor that binds to the PH and
kinase domains, which blocks transport of Akt to the membrane
and it activation (Hirai et al., 2010). Results of a phase II study
of MK-2206 in patients with GC have been recently released.
Patients with GC and gastroesophageal junction cancer who
progressed to first-line treatment were administrated MK-2206.
The primary endpoint of median overall survival (OS) was 5.1
months (m) [95% confidence interval (CI), 3.7–9.4m] and did
not meet the study efficacy endpoint of 6.5m (Ramanathan
et al., 2015). In a phase I study, MK-2206 was well tolerated
with evidence of Akt blockade (Yap et al., 2011). Subsequently,
two phase II studies were planned. TCN-PM exerts its effect by
targeting the PH domain and blocking translocation of Akt to the
plasma membrane (Berndt et al., 2010). A phase I trial of TCN-
PM in patients with solid tumors including gastroesophageal
cancer carrying increased phosphorylated Akt (p-Akt) reported
modest decreases in tumor p-AKT after TCN-PM monotherapy
treatment (Garrett et al., 2011).

mTOR INHIBITORS

Two kinds of mTOR inhibitors called rapalogs and mTORC1/2
inhibitors have been reported and categorized by their specificity
for mTOR complexes. Rapamycin is the first mTOR inhibitor
discovered. Formation of an inhibitory complex upon binding
of rapamycin to the intracellular receptor FK506 binding
protein 12 (FKBP12) leads to binding of the complex to the
FKB12-rapamycin binding domain at the C-terminus of TOR
proteins, which subsequently prevents mTOR from signaling
downstream targets (Kunz and Hall, 1993; Chen et al., 1995; Choi
et al., 1996; Zhou et al., 2010). Temsirolimus, everolimus, and
ridaforolimus are rapalogs that have been studied for treating
GC. Temsirolimus is a dihydroxymethyl propionic acid ester of
rapamycin that inhibits phosphorylation of S6K1 and 4E-BP1
mediated by mTOR (Rini, 2008). A phase I trial to determine
the pharmacokinetics of temsirolimus in patients with advanced
cancers including GC showed an anti-tumor effect of this agent
(Hidalgo et al., 2006). Everolimus is an oral formula of a
rapamycin analog. A phase II trial was conducted to investigate
the efficacy of everolimus combined with capecitabine in patients
with refractory GC. The primary endpoint of overall response
rate was 10.6% (Lee et al., 2013). In the phase III GRNITE-
1 study, patients with refractory GC who had undergone at
least one prior systemic chemotherapeutic trial were randomized
to receive everolimus with best supportive care (BSC) or

placebo plus BSC. However, the primary endpoint of significantly
improved OS was not observed in the everolimus group (median
OS: 5.4 vs. 4.3 m; hazard ratio, 0.9; 95% CI, 0.75–1.08; p = 0.124;
Ohtsu et al., 2013). Despite the failure of meeting the primary
endpoint, significant improvement in progression free survival
was observed, and one of causes of the failure might have been
the effect of a salvage therapy after progression to the treatment
in clinical trial. mTOR1/2 inhibitors exert their effects against
mTORC1 and mTORC2 at nanomolar concentrations without
inhibiting other kinases. These new-generation ATP-competitive
mTOR inhibitors include PP242, PP30, AZD2014, AZD8055, and
OSI-027 (Feldman et al., 2009; Zhou et al., 2010).

DUAL TARGETED STRATEGY FOR THE
RAS/MEK/ERK AND PI3K/Akt/mTOR
PATHWAYS

Treating patients with metastatic CRC using biologic agents
combined with chemotherapeutic agents has become standard
therapy. Although the epidermal growth factor receptor
monoclonal antibody has brought improved outcomes in those
with wild-type RAS (Fakih, 2015), the acquired resistance to the
monoclonal antibody, even in patients with CRC carrying wild-
type RAS, has been a treatment issue possibly due to crosstalk
between signaling pathways (Chong and Jänne, 2013). Several
studies have suggested the possibility of a combined therapy
targeting the RAS/MEK/ERK and PI3K/Akt/mTOR pathways
(Yu et al., 2008). A dual PI3K/mTOR inhibitor combined with
the MEK inhibitor selumetinib produces growth-suppressive
effects in patient-derived xenografts fromCRCwithmutatedRAS
(Migliardi et al., 2012). Shimizu et al. retrospectively analyzed
clinical outcomes of 236 patients who received the dual targeted
strategy involving the RAS/MEK/ERK and PI3K/AKT/mTOR
pathways (Shimizu et al., 2012). Although the study focused on
drug safety rather than efficacy, the clinical outcomes suggested
that the dual targeted strategy is more effective compared with
monotherapy in properly selected patients (Shimizu et al., 2012).

POTENTIAL PHARMACODYNAMIC
MARKERS OF INHIBITORS

Since PI3K pathway inhibitors have a role in physiological
glucosemetabolism, estimating insulin resistance could be a good
pharmacodynamic marker (Engelman et al., 2006; Luo et al.,
2006).

Assessment of phosphorylation of Akt at Thr308 and Ser473,
4E-BP1 at Ser65 and Thr70, ribosomal protein S6 (RPS6)
at Ser240 and Ser244, or PRAS40 could offer potential as
pharmacodynamic markers (Rodon et al., 2013). Quantification
of these molecular pharmacodynamic biomarkers have been
performed in not only tumor tissues but also surrogate
tissues, like peripheral bloodmononuclear cells, platelet-enriched
plasma, skin, and hair, and should be feasible in the clinic
(Jimeno et al., 2010; Biondo et al., 2011; Rodon et al., 2013).
However, these methods have that limitation that increased
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RAS.RAF/ERK/mTORC1 activity could adjust phosphorylation
of RPS6, 4E-BP1, or PRAS40 (Manning and Cantley, 2007).

CONCLUSION

Phosphoinositides are versatile and indispensable for regulating
various cellular functions. The phosphoinositide signaling system
can become deregulated occasionally because of mutations in
genes encoding kinases or phosphatases, and consequently,
becomes integral to carcinogenesis and progression of GC and
CRC. Therefore, the phosphoinositide pathway is an important
target for the development of anticancer drugs.

Several key steps are required to develop optimal targeted
agents. A novel approach can be formulated by using tumor
genotypic and molecular biologic analyses. Patients should be
properly selected based on preclinical data and well standardized
predictive markers for combined targeted therapy to be effective.
Avoiding bias in well-planned clinical trials is also important for
the success of targeted therapy.
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