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Abstract

The second generation (G2) PhyloChip is designed to detect over 8700 bacteria and archaeal and has been used over 50
publications and conference presentations. Many of those publications reveal that the PhyloChip measures of species
richness greatly exceed statistical estimates of richness based on other methods. An examination of probes downloaded
from Greengenes suggested that the system may have the potential to distort the observed community structure. This may
be due to the sharing of probes by taxa; more than 21% of the taxa in that downloaded data have no unique probes. In-
silico simulations using these data showed that a population of 64 taxa representing a typical anaerobic subterranean
community returned 96 different taxa, including 15 families incorrectly called present and 19 families incorrectly called
absent. A study of nasal and oropharyngeal microbial communities by Lemon et al (2010) found some 1325 taxa using the
G2 PhyloChip, however, about 950 of these taxa have, in the downloaded data, no unique probes and cannot be definitively
called present. Finally, data from Brodie et al (2007), when re-examined, indicate that the abundance of the majority of
detected taxa, are highly correlated with one another, suggesting that many probe sets do not act independently. Based on
our analyses of downloaded data, we conclude that outputs from the G2 PhyloChip should be treated with some caution,
and that the presence of taxa represented solely by non-unique probes be independently verified.
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Introduction

Understanding the structure and function of microbial com-

munities is critical as they play key roles in environmental

processes such as nutrient cycling [1]. Molecular biology has

delivered numerous techniques that have revolutionised the field

of microbial ecology. The most recent, high-throughput sequenc-

ing technologies have resulted in quantum leaps in our

understanding of these communities [2]. For highly replicated

experiments or for environmental monitoring, however, massive

sequencing can still be prohibitively expensive. Microarray

technologies like the PhyloChip [3] or Geochip [4] – which are

designed to detect bacteria and archaea in the environment using

16S ribosomal DNA or functional genes, respectively – provide an

affordable alternative.

The PhyloChip is widely regarded as an innovative technology

that offers great potential for environmental research and has won

numerous accolades [5–7]. The technology has been used to assay

microbial diversity in habitats including soil, sediments, plant

tissues and air along with various human microbiomes [3,8–15].

The second generation (G2) of this technology is designed to detect

over 8700 microbial taxa in environmental samples. The array is

based on 25 base pair single-stranded DNA probes, derived from

the 16S ribosomal DNA, which are bound to a silicon chip.

Labelled target DNA is washed across the chip, matching DNAs

bind to the probes, and are detected by fluorescence. Each

perfectly matched (PM) probe is accompanied by a mismatched

(MM) probe in which the central nucleotide is replaced with one of

the 3 alternate nucleotides. Taxa are represented on that array by

a set of at least 11 probes. The detection of the OTUs (<species)

on the G2 microarray, occurs when a specified percentage of the

probes (typically 90 to 95%) within a probe set are positive, ie

intensity of the PM probe is at least 1.3 times that of the MM

probe.

Results

After obtaining PhyloChip G2 OTU numbers from PhyloTrac

[16], we obtained the corresponding perfectly matched probe set

data from the Greengenes web site (http://greengenes.lbl.gov/cgi-

bin/nph-show_probes_2_otu_alignments.cgi) as directed in Bro-

die et al [17]. In that data, (Data S1) we identified a total of

521,206 PM probes in 8934 probe sets. Our subsequent analyses

are based on this data set, and the simulated microarray based on

this data we will call the In Silico Phylogenetic MicroArray (ISPMA).

Since the target 16S rDNA is highly conserved, many of the
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probes are shared between probe sets [3]. There were 182,653

different DNA sequences, of which 159,824 occurred only once

and were hence unique. The remaining 22,829 probes occurred in

at least 2 and up to 300 probe sets. On average, probe sets contain

58 probes, though probe sets as large as 762 probes were detected.

We found 222 probe sets with 10 or fewer probes. These 222 small

probe sets are usually not included in analyses [3] reducing the

effective number of OTUs to 8712, slightly fewer than the 8741

reported in Brodie et al [3], the difference probably being due to

our use of PhyloTrac to obtain OTU numbers. The PhyloChip

has been reported to contain 297,851 probes, of which half are

mismatch probes, thus there are approximately 148,925 matched

probes on the microarray [18]. The difference between this

number and the 182,625 different probe sequences we identified in

the Greengenes database may be large probe sets designed for

pathogen-specific detection [19] not typically used for environ-

mental samples.

Of the 8712 probe sets in the downloaded data with greater

than 11 probes, 21.4% (1864) contain no unique probes (Table

S1). That is, the entire probe set can be found within the probe sets

of other taxa. In broad terms, these 1864 OTUs can be divided

into two groups. The first comprises those OTUs whose probe sets

are exact subsets of other single organisms (Fig. 1). This means that

if a particular organism is actually present in a sample examined

on the array, all the organisms whose probe sets are subsets of its

probes will necessarily appear to be also present. For example, the

probe set for the acidobacterial OTU 6350 also includes the entire

probe sets for both acidobacterial OTUs 6366 and 6368 (Fig. 1).

Thus, if 16S rDNA from a pure culture of 6350 was hybridised to

the ISPMA, three probe sets would be detected, all perfectly

matched, falsely leading the experimenter into believing that

OTUs 6366 and 6368 were also present in the sample. This

‘subsetting’ phenomenon occurs in 327 OTUs, whose probe sets

are exact subsets of other OTUs. In most cases, these 327 OTUs

individually are subsets of one or two other OTUs, however, more

extreme examples were found. For example, the probe set for

OTU 1405, an Arthrobacter species, is a subset of some 39 other

OTUs, similarly the probe set for the actinobacterial OTU 1687,

Jonesia quinghaiensis, is an exact subset of 61 other OTUs.

The second group are those OTUs for which two or more other

OTUs can be combined to complete their probe set. Thus, an

OTU which is not actually present in a sample will necessarily be

identified as present, if the sample contains sufficiently many of its

donor OTUs (Fig. 1B). An example of this phenomenon is given in

Figure 1B where all the probes in the probe set for OTU 5951, an

OTU from the phylum Bacteroidetes (class KSA) can also be

found in a union of other OTUs. Intriguingly, 15 of the probes are

also used to detect the presence of a Firmicute (Clostridium cocleatum)

and only one probe originated in a member of the Bacteroidetes

(in our example, Hyphomicrobium sulfonivorans). It is worth noting

that even if this Bacteroidetes taxon was absent, and the other 4

taxa present, 95.4% (21/22 probes) of the probe set would still be

found, and using the standard cut-offs of 90–95%, OTU 5451

would still be deemed to be present under normal analyses.

In addition to probe sets that register presence when their

targets are actually absent, we have identified over 500 erroneous

probe sets in the downloaded data that will not report presence

when their targets are actually present (Table S1). There appears

to be two main causes of these errors, in some cases undefined

bases (Ns) in reference sequences have been deleted and the non-

contiguous bases rejoined, in other cases it appears that probes

may have been designed to consensus sequences.

In order to better understand how the downloaded probe sets

might have been designed we plotted probe set uniqueness against

probe set size (Figure S1A) and performed simulations, described

in Methods S1, to try to delineate the different probabilistic

characteristics present in these data (Figure S1B). Probe data

downloaded from Greengenes and the simulation reveal a general

trend where probe set uniqueness declines as probe set size

increases.

To delve further into how the PhyloChip may be functioning,

we performed an in silico hybridisation assuming perfect matching.

To the ISPMA we presented sequences from 64 OTUs (Table S2)

that were an approximation of an anaerobic microbial community

and determined how many OTUs would be detected as being

present using the 90, 92 and 95% thresholds (Fig. 2 and Table S3).

Our in silico trials indicate that in addition to inflating the

number of taxa detected, the ISPMA also appears to distort the

observed community structure (Fig. 2). Indeed, using the most

stringent (95%) cutoff with a ‘sample’ of 64 species, the ISPMA

detected a total of 96 taxa. At the family level, 19 families actually

present were not detected and representatives of 15 families were

incorrectly called as present. Specifically, OTUs representing the

families Burkholderiaceae, Desulfurococcaceae, Desulfuromonda-

ceae, Lachnospiraceae, Methanospirillaceae, Prevotellaceae, Psue-

domonadaceae, Pyrodictiaceae and Spirochaetaceae, and others,

were not detected. In contrast, OTUs from families: Bartonella-

ceae, Beijerinklaceae, Burkholderiales Incertae Sedis, Cryomorpha-

ceae, Cystobacteraceae, Erythryobacteraceae, Micrococcaceae,

Pseudoalteromonadaceae and others, were detected, despite being

absent from the 64 species ‘sample’ (Fig. 2). Moreover, though

only single OTUs from the Bradyrhizobiaceae and the Comamo-

nadaceae were in the 64 OTU ‘sample’, nine and ten OTUs from

these families were detected by the ISPMA (Fig. 2). When

comparing the different thresholds, it is evident that while more

taxa were correctly called present using the lower thresholds, the

number of taxa falsely detected was even greater.

In a recent paper by Lemon et al [20], the microbial diversity

present in the nose and oropharynx from seven healthy individuals

was compared using both the 16S rDNA clone and sequence

method and the G2 PhyloChip. The clone method identified 36

and 71 taxa in the nose and oropharynx, respectively, and

statistically projected (from ,700 clones from each site) estimates

of richness (Chao 1) for each site were 5067.2 and 120617. In

comparison, the PhyloChip detected 911 nasal and 1066

oropharyngeal taxa. There was significant overlap of taxa between

the sites and a total of 1325 different taxa were detected. The

majority of these were detected at low levels and their presence

was not independently validated. Clearly, all methods have their

shortcomings and the cloning of PCR products is likely to under-

represent the real diversity through limited sampling of the clone

pool as well as PCR bias. Nevertheless, of the 1325 taxa detected,

about 950 are from OTUs that, in the downloaded data, have no

unique probes and more than 1100 have fewer than 10% unique

probes, and therefore could have been incorrectly counted as

present due to the contribution of DNA from other taxa. Whilst it

is not reasonable to assume that all 1100 taxa are absent from the

sites in question, the remaining number of taxa, ,225, is much

closer to the number predicted by Chao 1 estimates of richness.

Since the sharing of probes is more likely to occur within

phylogenetic groups, the problem of false positives would be most

likely to occur within groups. In order to investigate this, we re-

examined a random subset of the results of Brodie et al [3] for the

classes Actinobacteria, Bacilli, Clostridia, Alpha-, Beta- and

Gamma- Proteobacteria. For each pair of OTUs within a class,

the OTU abundance (intensity) data from 18 different PhyloChip

experiments was plotted and a Pearsons correlation coefficient (R-

value) was computed. Since there are .105 such plots, a histogram

Analysis of a Phylogenetic Microarray Performance
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of these values for each class was plotted and compared to the

expected distribution for independent probe sets. All six classes

show a distribution of R-values that is strongly skewed towards 1

(Fig. 3). That is, the abundance data of a disproportionately large

number of probe sets appear to be strongly correlated with each

other, and hence are not independent. This phenomenon also

occurs in other smaller-sized classes commonly detected by Brodie

et al [3] including the Acidobacteria, chloroplastic sequences

(Cyanobacteria), Solibacteres and the Verrucomicrobiae (data not

shown).

Discussion

Data presented here suggests that analyses using the G2

PhyloChip may be problematic. Our analysis of the data

downloaded from Greengenes indicates that there were 1864

OTUs with no unique probes, 6829 OTUs with at least one

shared probe and 19 OTUs with no shared probes. The presence

of OTUs defined by these probe sets without unique probes and

should be viewed critically if detected. It is possible for these 1864

taxa to be detected to 100% of their probe set, without the target

organism being present. Moreover, papers using PhyloChip do not

require 100% of probes to match in order to call a taxon as

present. Instead, cutoffs of 90 to 95% are typically used which

would increase the numbers of OTUs that cannot be reliably

identified as present or absent in a given sample.

Using a 90, 92 or 95% cutoff, the ISPMA simulation based on

downloaded data indicated an inflation of OTU richness. It is

important to note that the community tested on the ISPMA were

selected without any prior knowledge of how they would affect

results; instead, sequences were selected to approximate a sub-

surface, anaerobic microbial community. It would thus be possible

to engineer greater inflation rates of OTU richness if a mixture of

OTUs that contributed large numbers of shared probes were

chosen, and the converse is also true. In part this observation may

account for some of the significant differences observed in

estimations of species richness in environmental samples between

the PhyloChip and cloning and sequencing [21,22] approaches.

For example, estimates of OTU richness derived from the

PhyloChip were 2 to 5 times more OTU rich than those derived

from Good’s-adjusted [23] clone-sequence information from

uranium mine soils for the same samples [21]. Likewise, Chao 1

estimates of species richness based on clone sampling in the study

of Lemon et al [20] were almost 10-fold lower than that detected

by the PhyloChip.

Moreover, for the study of Lemon et al [20] zero, or low, probe

set uniqueness, within the downloaded data, was predictive of the

microbial diversity observed. That is, of the 1325 detected OTUs,

,950 were present in the list of OTUs which, for the downloaded

data, contained no unique probes (Table S1). The hypergeometric

probability of this occurring by chance is extremely remote

(P%0.0001). Initially we hypothesized that the ISPMA simply

inflated OTU richness, detecting all query taxa and then perhaps

adding a small number of closely related taxa. However, it seems

to distort the observed community composition further, by

variously omitting taxa which are actually present, as well as

Figure 1. Two examples of probe sharing between OTUs. On the left are shown the 56 probes that represent the OTU 6350. Probes shared
with OTU 6368 are shown in the red shape, while those shared with OTU 6366 are shown in blue. The intersection of the red and blue shapes shows
probes shared by all three OTUs (centre circle). All 14 and 17 probes (100% of the probe sets) for 6368 and 6366, respectively, can be found in the
probe set for OTU 6350. On the right is illustrated how the complete 22 probe, probe set for OTU 5451 can be assembled from probes representing
other OTUs.
doi:10.1371/journal.pone.0033875.g001
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adding large numbers of taxa increasing the diversity of some

families (the Bradyrhizobiaceae and Comamonadaceae, in our

example) by an order of magnitude. Moreover, this distortion does

not necessarily require related taxa to be present in the sequences

applied to the array. In our 64 taxa (95% threshold) test, members

of 15 different families were falsely detected without representa-

tives of these families being present in the query taxa.

Reanalysis of data from Brodie et al [3] indicated that a

disproportionately large number of probe sets appear to be

strongly correlated with each other, and were not independent. In

normal microbial communities, a range of interactions between

OTUs are possible including: symbiosis, commensalism, compe-

tition and parasitism. These interactions should be ‘observed’ in

Phylochip data as positive or negative relationships between the

abundance of pairs of OTUs. Most interactions would be expected

to be neutral, resulting in no relationship (independence) between

the pairs of OTUs. This was not observed and the overwhelming

predominance of positively correlated abundances of OTUs

within each class is likely to be due to the same probesets

contributing to multiple OTUs.

On the functioning of the ISPMA, it is noteworthy that the

present study has not examined the issue of cross hybridisation.

This analysis is based on the best case, perfect matching scenario,

and the performance of the chip may be reduced by sub-optimal

hybridisation.

Regardless of potential problems highlighted here, the PhyloChip

has potential to rapidly assay microbial communities at relatively low

cost and we understand that these issues may have been addressed in

subsequent generations of the technology. To date, we believe

erroneous results generated on the G2 PhyloChip may affect

approximately 50 published manuscripts or conference proceedings

in the microbial ecology field. In any of these studies, we recommend

investigators check for the presence of the 1864 OTUs that contain

no unique probes. If detected, their presence should be critically

examined. Following this, an assessment of intensity of probe set

pairs, across multiple arrays, should be undertaken, checking

thoroughly for co-linearity with the consideration of biological

interactions within the environment. We believe that meaningful

interpretation, albeit with a potentially smaller number of organisms

may still be possible by careful re-analyses of those results.

Methods

Probe and probe set uniqueness
The OTU probe numbers were obtained from Phylotrac [16]

and the corresponding aligned 16S rDNA sequences and their

Figure 2. Results of the ISPMA analyses for the 64 OTU ‘sample’. The number of OTUs representing each family is proportional to the font
size in this ‘‘Wordle’’ image. The families shown ‘pre-analyses’ (top) are represented by one (smaller text), or two (larger text) OTUs. After analyses,
using a 95% detection threshold, however, some families are ‘increased’ in their OTU numbers by an order of magnitude. Families shown in red in the
input sample are not present in the output set, families in green font in the output set are not present in the input sample. The inset table also shows
the outputs at 90 and 92% detection thresholds.
doi:10.1371/journal.pone.0033875.g002
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associated probes were downloaded from Greengenes in Novem-

ber, 2010 (http://greengenes.lbl.gov/cgi-bin/nph-show_probes_

2_otu_alignments.cgi) as directed by Brodie et al (2006) [17]. The

downloaded file was then parsed to obtain just the set of probes

corresponding to each OTU. The uniqueness of these probes was

determined by adding the probes to a hash table, incrementing a

counter associated with each probe sequence whenever a probe

was encountered multiple times. The count values from this hash

table were then used to construct a uniqueness histogram,

showing how many probes were used only once, how many were

used in two OTUs and so on. The test for probe set uniqueness

took the same file of probe sets and again stored the probes in an

all-probes hash table, together with their repetition count. The

code then went through each probe set, looking up each probe in

the all-probes hash table and incrementing the ‘unique probes’

counter for the probe set whenever a probe had a repetition

count of 1.

Subsetting probe sets
Subsetting probe sets (probe sets where every probe can be

found in a single other ‘containing’ probe set) were found by first

matching each of the probes from each probe set in turn against all

of the probes from all the other probe sets. A probe set was

determined to be fully contained in those cases where every probe

from that set matched a probe in the probe set for a single other

OTU.

In Silico Phylogenetic MicroArray and contributing probe
sets

The ISPMA uses a set of hash tables, each one containing the

probes from a single OTU. A simulated environmental sample

was constructed by creating a file containing a number of

reference 16S rDNA sequences (in FASTA format). This sample

was ‘hybridised to’ the probe sets by turning each reference

sequence into a complete set of 25-mers and looking up each of

these 25-mers against each of the OTU probe set hash tables in

turn. The counts of unique matches to each OTU set were

accumulated over all the reference sequences and reported at

the end. Probe sets where more than 90%, 92% or 95%) of the

probes had matches from any of the reference sequences were

then regarded as ‘present’. Examples of how unrelated

organisms can share probes and contribute to the counts used

to determine OTU presence also came from ISPMA process.

The code that implements this process will accept a single OTU

id as a ‘target’ and all matches to this OTU’s probe set are

written to an output file for further analysis. In order to

compare phylogenetic identity of taxa before and after ISPMA

analyses, input ‘samples’ and results from the ISPMA were

compared using RDP classifier [24] to ensure consistency of

taxonomy. Word clouds of families, used in Figure 2, were

constructed using Wordle (Jonathan Feinberg, http://www.

wordle.net/). Size of text in word clouds is indicative of the

number of OTUs within given families.

Figure 3. Reanalysis of some of the Texas Aerosol data by Brodie et al [3]. Observed and expected distribution of correlation coefficients for
pairwise comparisons of intensity of detected OTUs within the classes Actinobacteria, Bacilli, Clostridia, Alpha-, Beta- and Gamma- Proteobacteria and
the expected distribution of independent probe sets (black).
doi:10.1371/journal.pone.0033875.g003
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Identifying non-functional probe sets
The functionality of each probe set was tested by determining if

it would correctly detect the prokMSA reference 16S sequence

defined as corresponding to the OTU. We downloaded the

PhyloChip taxonomic file from Greengenes, and this file specifies

(in most cases) a prokMSA Id for each OTU. These prokMSA Ids

were used as a key to extract the corresponding 16S rDNA from

the prokMSA reference sequence set (also downloaded from

Greengenes). Each of these reference sequences were then turned

into a complete set of 25-mers and each of these were matched to

the set of probes defined for the corresponding OTU. Those

OTUs where every probe did not get matched by at least one 25-

mer from the reference were written out for further analysis, and

the reasons for the failure determined by examining the probes,

the 16S sequence(s) used to derive them and the 16S sequence

defined in the prokMSA file.

Reanalyses of Brodie et al [3]
The abundance data (intensity) for the six largest classes

detected in Texas air samples as per Table 1 of Brodie et al.

[3], were used to investigate whether probe set results were

independent. A random subset, (SA_wk34_ttc, AU_wk19_ttc,

AU_wk20_ttc, AU_wk21_ttc, AU_wk22_ttc, AU_wk23_ttc,

AU_wk24_ttc, AU_wk25_ttc, AU_wk27_ttc, AU_wk28_ttc,

AU_wk29_ttc, AU_wk32_ttc, SA_wk19_ttc, SA_wk20_ttc,

SA_wk21_ttc, SA_wk22_ttc, SA_wk23_ttc, SA_wk33_ttc) of

Brodie’s samples was used . Pearson’s correlation coefficients

between the abundances of OTUs within each class were

calculated in Stata/SE 11.0. Histograms with bin size 0.02 were

plotted in SigmaPlot and the counts in each bin scaled to give the

same area under the curve. The distribution of Pearson’s

correlation coefficient expected if the abundances of OTUs were

independent of each other was calculated in R using the SuppDists

package to find p-values for n equal to 18 then scaling these p-

values to give the same area under the curve as the data plots. All

scaled counts were plotted in Matlab version 7.7.0(R2008b).

Reanalysis of OTUs detected by Lemon et al., 2010
OTUs detected by Lemon et al. [20], were obtained from

Supplementary Data submitted with their publication. The 1325

detected OTUs were compared with calculated probeset unique-

ness for each OTU derived from data downloaded from Green-

genes. As Lemon et al [20] used a cutoff of 90%, OTUs with

,10% unique probes were counted, and the hypergeometric

probability of this many low-uniqueness OTUs being present in a

dataset of 1325 OTUs was determined.
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probes, rather than probeset uniqueness. (B) Simulated model of

these data. The model does not account for the high-uniqueness,

large size probe sets (shown in yellow) or for the number of 0%

unique probe sets, which is an order of magnitude greater in data
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