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Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical
Sciences, Beijing, China
N6-Methyladenosine (m6A) imbalance is an important factor in the occurrence

and development of prostate cancer (PCa). Many m6A regulators have been

found to be significantly dysregulated in PCa. ELAVL1 is an m6A binding protein

that can promote the occurrence and development of tumors in an m6A-

dependent manner. In this study, we found that most m6A regulators were

significantly dysregulated in PCa, and some m6A regulators were associated

with the progression-free interval. Mutations and copy number variations of

these m6A regulators can alter their expression. However, ELAVL1 mutations

were not found in PCa. Nevertheless, ELAVL1 upregulation was closely related

to PCa proliferation. High ELAVL1 expression was also related to RNA

metabolism. Further experiments showed that ELAVL1 interacted with other

m6A regulators and that several m6A regulatory mRNAs have m6A sites that

can be recognized by ELAVL1. Additionally, protein–protein interactions occur

between ELAVL1 and other m6A regulators. Finally, we found that the

dysregulation of ELAVL1 expression occurred in almost all tumors, and

interactions between ELAVL1 and other m6A regulators also existed in almost

all tumors. In summary, ELAVL1 is an important molecule in the development of

PCa, and its interactions with other m6A regulators may play important roles in

PCa progression.
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Introduction

N6-Methyladenosine (m6A) is an RNA modification in

which the 6th hydrogen atom of adenine is substituted by a

methyl group (1). m6A is present in almost all types of RNA,

including mRNA, tRNA, rRNA and noncoding RNA, and

approximately half of mRNAs in eukaryotic cells have m6A

sites (1, 2). mRNA is dynamically modified by methylation and

demethylation at m6A sites, which ultimately impacts mRNA

metabolism depending on the recognition of m6A binding

proteins (3). Previous studies have reported that the dynamic

regulation of m6A is involved in adipogenesis, brain

neurodevelopment, hematopoietic stem cell differentiation,

circadian rhythm maintenance, immune function regulation,

and spermatogenesis (4–9). An imbalance in m6A can lead to

the occurrence of various diseases, including tumors, obesity,

and cardiovascular diseases (10–12).

Several studies have shown that m6A dysregulation is

associated with tumorigenesis and cancer progression (13–16).

The expression of multiple m6A regulators, including METTL3,

FTO, ALKBH5, and YTHDF3, is significantly changed in

different tumors, including lung cancer, osteosarcoma, gastric

cancer, melanoma, and cholangiocarcinoma (17–21). These

changes in m6A regulators affect the biological functions of

tumor proliferation, migration, invasion, and cell cycle

progression through m6A. Prostate cancer (PCa) is a common

tumor in elderly men. Similar to the case of other tumors, in

PCa, the level of m6A is significantly higher than that in normal

prostate tissue, and the expression of some m6A regulators,

including FTO, METTL3, IGF2BP2, and YTHDF2, is

downregulated (22–26). The dysregulated m6A regulator-

mediated abnormal RNA metabolism pathways, such as RNA

stability, have been studied in detail.

ELAVL1 is an important RNA-binding protein, and

numerous studies have found that it is highly expressed in

different tumors, including lung cancer, liver cancer, and

pancreatic cancer, and that it promotes tumor occurrence and

development (27–29). ELAVL1 expression is also related to

resistance to chemotherapy (30–32) and radiotherapy (33, 34).

In recent years, ELAVL1 was found to be an m6A regulator that

acts as a reader, binding to RNAs with m6A sites and increasing

the stability of those RNAs (33, 35). In addition, ELAVL1 has

been reported to synergistically promote RNA stabilization by

binding to molecules such as YTHDC1 and IGF2BP1 in tumors

(36, 37). Furthermore, previous studies have reported that

ELAVL1 is highly expressed in PCa and promotes its

development (38, 39). However, the interaction of ELAVL1

with other m6A regulators in PCa remains to be studied.

In the present study, we analyzed the multiomic signature of

m6A regulators in PCa. ELAVL1 was found to be significantly

correlated with certain m6A regulators. At the same time,
Frontiers in Oncology 02
ELAVL1 was related to the regulation of several m6A

regulators through m6A, and it had obvious protein–protein

interactions with other m6A regulators. Overall, our study

revealed the interactions between ELAVL1 and other m6A

regulators in PCa and broadened our knowledge of the m6A

regulatory network in PCa.
Materials and methods

Cell lines and culture

The human PCa cell lines LNCaP and PC-3 and the human

normal prostate epithelial cell line RWPE-1 were purchased

from the Cell Resource Centre of Peking Union Medical College

(Beijing, China). PC-3 cells were cultured in DMEM (Gibco;

10566016) containing 10% fetal bovine serum (FBS), LNCaP

cells were cultured in 1640 medium (Gibco; C11875500BT), and

RWPE-1 cells were cultured in Prostate Epithelial Cell Medium

(ScienCell, 4411).
Adenovirus infection

ELAVL1 knockdown (shELAVL1 sequence- sense: 5’-AAT

TCGTACCAGTTTCAATGGTCATAATTCAAGAGATTA

TGACCATTGAAACTGGTATTTTTTG-3’; antisense: 5’-G

ATCCAAAAAATACCAGTTTCAATGGTCATAATctcttgaa

TTATGACCATTGAAACTGGTACg-3) and control adenoviruses

were purchased from Hanbio Co., Ltd. (Shanghai, China).

Adenoviral infection was performed according to the

recommended protocol. Briefly, control and knockdown

adenoviruses (MOI=100) were quantified and diluted in serum‐

free DMEM. Subsequently, the adenovirus mixtures were added to

the cultured plates containing DMEM. The supernatants were

discarded after 8 h and replaced with standard DMEM

containing 10% FBS for the next assay.
RNA extraction and RT–qPCR

Total RNA was extracted with TRIzol™ Reagent according to

the manufacturer’s instructions (Invitrogen, 15596026).

Precipitated RNA was reverse transcribed into cDNA using

ReverTra Ace qPCR RT Master Mix with gDNA Remover

(TOYOBO, FSQ-301), and qPCR was performed using

THUNDERBIRD SYBR qPCR Mix (TOYOBO, QPS-201).

ELAVL1 was amplified with the forward primer TAAGGTGT

CGTATGCTCGCC and reverse primer CGGATAAACGCAAC

CCCTCT. GAPDH-forward: 5’- TCAAGGCTGAGAACGGG

AAG-3’, GAPDH-reverse: 5’- TCGCCCCACTTGATTTTGGA-3’.
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Immunohistochemistry

PCa tissue chip sections (4 µm) obtained from Shanghai

Outdo Biotech Company were used for IHC staining. Sections

were dewaxed with xylene and rinsed sequentially with 100%,

95%, and 75% ethanol. Then, the sections were heated in citric

acid at 95°C for 10 min for antigen retrieval. Subsequently,

endogenous catalase was blocked by treatment with 3%

hydrogen peroxide at room temperature for 10 min. Sections

were then incubated with primary antibodies, followed by

horseradish peroxidase-labeled secondary antibodies. Finally,

the sections were stained with diaminobenzidine and

counterstained with hematoxylin.
Cell proliferation assay

Cell proliferation assays were performed using Cell

Counting Kit-8 (Beyotime, C0037). Cells were seeded in 96-

well plates with 3000 cells per well and incubated with 10%

CCK-8 medium for 1 h at 0 h, 24 h, 36 h, 48 h, and 72 h after

seeding. The absorbance at 450 nm was measured with a

multimode reader (Varioskan Flash, Thermo).
Coimmunoprecipitation and
mass spectrometry

Coimmunoprecipitation was performed using an

Immunoprecipitation Kit (Beyotime, P2179S) according to the

manufacturer’s instructions. Briefly, the cells were lysed and

then incubated with the primary antibody at 4° overnight; then,

Protein A+G beads were added to the cell lysate and primary

antibody mixture for 1 h at room temperature, and the beads

were washed with 1× TBS. After that, 1×SDS–PAGE was

performed to elute protein from the beads. As previously

described (40), the eluate was digested into peptides, alkylated

and desalted. It was then injected into an Ultimate 3000

RSLCnano system (Thermo Fisher Scientific) for mass

spectrometry analysis. MaxQuant version 1.5.2.8 software was

used for protein identification and quantification by intensity-

based absolute quantification (iBAQ) values (41). CRAPome

analysis was used to identify and remove nonspecifically bound

proteins, as previously described (42).
RNA immunoprecipitation assay
and sequencing

Cells were collected and lysed with nondenatured lysate on

ice for 30 min. After centrifugation, the supernatant was

collected and quantified with BCA protein (Thermo Scientific,
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23227). An appropriate amount of supernatant was mixed with

primary antibody and incubated at 4 °C for 6 h. An appropriate

amount of BSA-blocked Protein A/G magnetic beads (Thermo

Scientific, 26162) was added to the mixture overnight. After the

magnetic beads were cleaned twice with low-salt Tris buffer and

high-salt Tris buffer, the magnetic beads were resuspended in

lysate buffer, and an appropriate volume was taken for western

blotting to verify the IP effect. Other magnetic beads were

collected and eluted with protein K buffer at 55 °C for 30 min.

Precipitated RNA was collected with an RNeasy MinElute ®

Cleanup Kit (Qiagen, 74204). The extracted RNA was then sent

to Genevan Biotech (Shanghai, China), for sequencing.
Data collection

Prostate cancer datasets from the TCGA database, including

the gene expression profiles, somatic mutation data and copy

number data, were downloaded from GDC PanCanAtlas

Publications. GSE147885 (43), containing the m6A-seq dataset

of a human prostate cell line, was obtained from the

GEO database.
Differential expression analysis

Differentially expressed genes between the two groups were

defined with the limma (3.48.3) package (44). After log2

transformation, the standardized counts were used for

differential expression analysis. Genes that met the criterion of

adjusted P < 0.01 were regarded as differentially expressed

between the two groups.
Enrichment analyses

GO and KEGG enrichment analyses of DEGs were

performed by clusterProfiler (4.0.5) (45). The minimum

number of genes annotated by term for clustering was set to

10, and the maximum number of genes annotated for clustering

was set to 500. All other parameters were set to their default

settings. P values were adjusted by the Benjamini–Hochberg

(BH) method. The results were considered statistically

significant at a false discovery rate (FDR) <0.05.
Somatic copy number alteration analysis

Copy number fi les (broad.mit .edu_pancan_geno

me_wide_snp_6_whitelisted. SEG) were downloaded from

GDC PanCanAtlas publications for analysis. GISTIC 2.0

software was used to analyze CN files with the command line

parameters indicated in the GDC documentation (46).
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m6A data analysis

GSE147885 MeRIP-seq data were downloaded, and the data

type was converted from SRA to fastq. The reads were trimmed

for quality control. Bowtie2 (47) was used to compare reads with

rRNA, and the unmapped reads were retained for further

analysis. Hisat2 (48) was used to annotate the remaining reads

according to the hg38 human genome assembly (GENCODE,

GRCh38.p13). Peak calling was carried out using exomePeak2.
DNA mutations and copy number
alterations of m6A regulators and their
correlation with their expression

In the cBioPortal database (https://www.cbioportal.org/),

three datasets, including prostate adenocarcinoma (TCGA,

Cell 2015), prostate adenocarcinoma (TCGA, Firehose Legacy)

and prostate adenocarcinoma (TCGA, PanCancer Atlas), were

applied to detect DNA mutations and copy number alterations

of all m6A regulators. All cases in the above three datasets were

included for DNA mutation and copy number alteration

analysis. Then, the correlation analysis for every m6A

regulator was performed between mRNA expression [e.g.,

mRNA expression (RNA Seq V2 RSEM) (log2(value + 1)] and

copy number (e.g., capped relative linear copy-number values).

The expression {e.g., mRNA expression (RNA Seq V2 RSEM)

[log2(value + 1)]} of every m6A regulator was compared

between mutation and no mutation.
Expression and mutation analysis for
pan-cancers

Modules including “Gene_DE”, “Gene_mutation” and

“Gene_Corr” in the function “cancer exploration” in the

Timer 2.0 database (http://timer.cistrome.org/) were applied to

detect ELAVL1 expression, its relationship with its mutation and

the correlation between ELAVL1 and other m6A regulators in

pan-cancers.
Statistical analysis

Statistical analyses were performed using R software (version

4.1.1) or SPSS 22.0 (SPSS Inc., Chicago, IL, United States). Student’s

t test was used to analyze expression differences between mutation

and no mutation by SPSS 22.0. Pearson’s correlation analysis

(correlation coefficient: 0.8-1.0, very strong correlation; 0.6-0.8,

strong correlation; 0.4-0.6, medium correlation; 0.2-0.4, weak

correlation; 0.0-0.2, very weak correlation.) was performed to

determine the correlation between the two variables by R

software. Progression-free interval (PFI) analysis via the Kaplan–
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Statistical significance was set at p < 0.05.
Results

Multiomics characterization of m6A
regulators in PCa

Accumulating studies have shown that dysregulation of

m6A regulators is associated with tumorigenesis (17–21). To

clarify the expression patterns of m6A regulators in PCa, we

analyzed the expression of m6A regulators in the PCa dataset

from the TCGA database (Figure 1A) and found that the

expression levels of 21 m6A regulators were significantly

dysregulated. Subsequently, we analyzed the effects of these

m6A regulators on the survival of PCa patients (Figure 1B)

and showed that 8 m6A regulators, CBLL1, EIF3A, ELAVL1,

FTO, G2BP2, HNRNPA2B1, METTL3, and ZC3H13, were

related to the PFI of patients.

DNA mutations or copy number alterations can affect gene

transcription. We analyzed the mutation status of each m6A

regulator in PCa in the cBioPortal database (Figure 2). The

results showed that except for ELAVL1, the m6A regulators have

mutations or copy number variations (CNVs) in PCa, and CNVs

are predominant. Among these CNVs of m6A regulators, CNVs

of ZC3H13 were largest. Then, we analyzed the correlation

between DNA methylation (or copy number) and m6A

regulator expression. The expression levels of most m6A

regulators were related to their DNA methylation and copy

number (Figures S1–2).
ELAVL1 is highly expressed in PCa and is
associated with tumor proliferation

ELAVL1 has been reported to be involved in tumor

occurrence (27–29). In 47 PCa samples, we found that

ELAVL1 was indeed more highly expressed in PCa than in

para-tumor tissues (Figures 3A, B). This was consistent with

previous TCGA analysis data. Subsequently, we observed higher

levels of ELAVL1 mRNA in LNCaP and PC-3 cells than in

RWPE-1 cells (Figure 3C). PCa cell proliferation was inhibited

after ELAVL1 knockdown (Figures 3D, E).
Characterization of PCa with high and
low ELAVL1 expression

To evaluate the differences between high and low ELAVL1

expression levels in PCa, we divided the PCa cases in the TCGA

database into PCa with low ELAVL1 expression and PCa with

high ELAVL1 expression. We found that the two groups differed
frontiersin.org
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significantly in terms of DNA mutation profile (Figure 4A) and

CNVs (Figure 4B). The number of gene mutations in the high-

ELAVL1 group was significantly higher than that in the low-

ELAVL1 group. The types of genetic mutations were not the

same in the two groups. In addition to some common mutated

genes, there were unique mutated genes in each group, such as

MUC16 and KMT2C in the high-ELAVL1 group and ATM and

HMCN1 in the low-ELAVL1 group. In addition, some common

mutated genes also had significantly different mutation

frequencies between the two groups. For example, SPTA1 had

a high mutation frequency in the high-ELAVL1 group and a low

mutation frequency in the low-ELAVL1 group. Then, we

analyzed the somatic copy number alterations (SCNAs) in the

low-ELAVL1 and high-ELAVL1 groups and found that the

regions of significant focal SCNAs, including amplification and

deletion, were almost completely different between the two

groups. The numbers of regions with expansions and deletions

were greater in the high-ELAVL1 group than in the low-

ELAVL1 group.

To further analyze the expression signatures of the two

groups, we performed differential expression analysis, followed
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by BP analysis and KEGG analysis of the identified DEGs

(Figure 4C). The BP analysis showed that the upregulated

genes were mainly enriched in terms related to RNA

metabolism, such as translation and splicing, and the

downregulated genes were mainly enriched in immune-related

terms. KEGG analysis showed that upregulated genes were also

enriched in ribosome and splicing signaling pathways, while

downregulated genes were enriched in immune-related

signaling pathways.
ELAVL1 is involved in the regulation of
m6A regulators in PCa

As noted above, the highly expressed genes in the high-

ELAVL1 group were enriched in RNA metabolism. It is known

that m6A regulates RNA metabolism, and dysregulated m6A

affects RNA metabolism to promote tumor development (17–

21). Thus, we asked whether there is a relationship between

ELAVL1 and other m6A regulators, including ALKBH5, CBLL1,

EIF3A, FMR1, FTO, G3BP1, G3BP2, HNRNPA2B1, HNRNPC,
B

A

FIGURE 1

RNA m6A regulator expression in prostate cancer (A) and its relationship with progression-free interval (B). *p < 0.05, **p < 0.01, ***p < 0.001.
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IGF2BP1, IGF2BP2, IGF2BP3, METTL14, METTL16, METTL3,

PRRC2A, RBM15, RBM15B, RBMX, VIRMA, WTAP,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, ZC3H13

and ZCCHC4. The expression levels of 20 m6A regulators were

significantly different between the high- and low-ELAVL1

groups (Figure 5A), and correlation analysis showed that there

was a significant correlation between the expression of ELAVL1

and that of other m6A regulators (Figure S3). In addition,

different m6A regulators appeared in SCNAs, including both

amplifications and deletions, associated with the high- and low-

ELAVL1 groups.

Several studies have found that ELAVL1 is involved in

regulating tumorigenesis as an m6A binding protein (33, 35).

To clarify how ELAVL1 affects other m6A regulators, we

hypothesized that some m6A regulators might have m6A sites.

After reanalysis of the GSE147885 dataset in the GEO database

(Supplementary File 1), we found that the m6A levels of 12 m6A

regulators were significantly altered in LNCaP cells compared

with RWPE-1 cells, with increased m6A levels for RBM15B,

G3BP2, and EIF3A and decreased m6A levels for the other m6A
Frontiers in Oncology 06
regulators (Figure 5B). This result indicated that some m6A

regulators indeed have m6A sites. To determine whether

ELAVL1 binds to these m6A regulators via m6A, we

performed ELAVL1 RIP-seq and found that ELAVL1 indeed

interacted with 8 m6A regulators, namely, EIF3A, METTL3,

PRRC2A, RBMX, HNRNPA2B1, WTAP, YTHDF3 and

ZC3H13 (Figure 5C; Supplementary File 2). IgV plots showed

that three m6A regulators, namely, WTAP, ZC3H13 and EIF3A,

had marked m6A peaks in LNCaP cells (Figure S4). Through the

POSTAR3 database (http://111.198.139.65), we obtained

potential ELAVL1 binding sites on the above three m6A

regulators, and the sites within the m6A peak were considered

ELAVL1 binding sites on the three m6A regulators in LNCaP

cells (Supplementary File 3). Additionally, mutation sites of the

three regulators in Figure 2 (Supplementary File 4) obtained

from the cBioPortal database (https://www.cbioportal.org/) did

not appear in the ELAVL1 binding site on the three regulators in

LNCaP cells. Finally, GO analysis showed that ELAVL1-

immunoprecipitated mRNAs were associated with RNA

metabolism functions, including RNA decay, translation,
FIGURE 2

Gene mutations and copy number variants of RNA m6A regulators in prostate cancer.
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splicing, and nuclear export (Figure 5D). Previous studies have

shown that PCa development is associated with RNA

metabolism due to m6A imbalance (49–51). Therefore, we

speculate that ELAVL1 in PCa may be involved in tumor

development by regulating the RNA metabolism of

m6A regulators.

Studies have found that ELAVL1 interacts with YTHDC1

and IGF2BP1 to play a synergistic regulatory role in tumors (36,

37). We asked whether ELAVL1 also interacts with other

regulators. We performed ELAVL1 coimmunoprecipitation

combined with mass spectrometry analysis in PCa cells, and

the results showed that ELAVL1 interacts with 16 m6A
Frontiers in Oncology 07
regulators (Figure 5E, Supplementary File 5). In addition, GO

analysis of molecules immunoprecipitated by ELAVL1 showed

that these molecules were indeed enriched in gene sets related to

RNA metabolism, including translation and alternative

splicing (Figure 5F).
ELAVL1 in other tumors

In our study, ELAVL1 was found to be highly expressed in

prostate cancer. Knockdown of ELAVL1 can inhibit the

proliferation of prostate cancer. In addition, ELAVL1 interacted
B

C D

E

A

FIGURE 3

ELAVL1 promoted prostate cancer growth. (A) Immunohistochemistry for ELAVL1 expression in samples of prostate cancer; (B) H-score of
ELAVL1 for immunohistochemistry of prostate cancer samples; (C) ELAVL1 expression in cell lines of prostate cancer; (D) RT–qPCR for ELAVL1
knockdown in prostate cancer cells; (E) CCK-8 for detecting prostate cancer proliferation after ELAVL1 knockdown. **p < 0.01, ***p < 0.001.
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B

C

A

FIGURE 4

Differences in the characteristics of PCa patients with low and high ELAVL1 expression. (A) Landscape of gene mutations in the low-ELAVL1 and
high-ELAVL1 groups; (B) GISTIC q-values for deletions and amplifications plotted across the genome; (C) GO-BP and KEGG enrichment analysis
of differentially expressed genes between the low and high groups.
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with other m6A regulators. We wanted to further understand the

characteristics of ELAVL1 in other tumors. In TCGA data,

ELAVL1 was found to be highly expressed in almost all tumors,

indicating that high ELAVL1 expression is closely related to

tumor development (Figure 6A). In addition, in almost all
Frontiers in Oncology 09
tumors, there was a significant correlation between the

expression of ELAVL1 and other m6A regulators (Figure 6B),

indicating that the interaction between ELAVL1 and other m6A

regulators is a common phenomenon in tumors. In addition, in

the TIMER2.0 database, we found no significant difference in the
frontiersin.org
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A

F

FIGURE 5

Interactions between ELAVL1 and other m6A regulators. (A) Differentiated expression of m6A regulators between the low- and high-ELAVL1
groups; (B) Venn diagram for differentially expressed m6A genes in LNCaP cells and m6A regulators; (C) Venn diagram for ELAVL1 RIP and m6A
regulators; (D) GO analysis for ELAVL1 RIP; (E) Venn diagram for ELAVL1 co-IP and m6A regulators; (F) GO analysis for ELAVL1 co-IP. *p < 0.05,
**p < 0.01, ***p < 0.001.

https://doi.org/10.3389/fonc.2022.939784
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cai et al. 10.3389/fonc.2022.939784
mutation frequency of ELAVL1 in almost all tumors (Figure 6C).

In the cBioPortal database, we found a low frequency of ELAVL1

mutation and CNV in almost all tumors (Figure 6D). The low-

frequency ELAVL1 mutation sites are shown in Figure 6E.
Discussion

PCa is a common tumor in elderly men. Although there are

various clinical treatments, the mortality rate is still high.

Moreover, the detailed pathogenesis of PCa is still unclear.

The findings related to m6A have opened up new directions

for the study of the pathological mechanisms of the disease. m6A

dysregulation has been confirmed to be related to tumor

occurrence and drug resistance (17–21, 52, 53), and many

m6A regulators are significantly dysregulated in various

tumors (17–21). Corresponding bioinformatics analysis studies

have also found DNA mutations and CNVs of m6A regulators

(54). A previous bioinformatic study of m6A regulators in PCa

showed that the expression of most m6A regulators was

dysregulated and that some regulators were related to survival

(55). Similarly, we also found that multiple m6A regulators were

dysregulated in PCa. However, m6A regulators related to the

progression-free interval, including CBLL1, EIF3A, ELAVL1,

FTO, G2BP2, HNRNPA2B1, METTL3, and ZC3H13, were

partially different from those including RBM15B, METTL3,

HNRNPA2B1, RBMX, YTHDF1 and HNRNPC in a previous

bioinformatic study (55). This discrepancy was due to the

different samples included in our study. Additionally, in our

study, most of the m6A regulators exhibited gene mutations and

CNVs, consistent with previously published findings (56). The

dysregulated expression of multiple m6A regulators in PCa was

related to DNA methylation levels and copy number. DNA

mutations, changes in methylation and CNVs are important

etiologies of tumor development. We believe that alterations in

m6A levels in PCa are associated with alterations of these m6A

regulators at the DNA level. The results of this study are similar

to those related to m6A in other tumors (57).

Before ELAVL1 was recognized as an m6A regulator,

ELAVL1, as a traditional RNA-binding protein, was found to

be involved in the occurrence and progression of almost all

tumors (58, 59). With the development of m6A research,

ELAVL1, as an m6A regulator, was found to interact with

other m6A regulators to regulate RNA metabolism (36, 37).

Therefore, among many m6A regulators, we focused on the

ELAVL1 gene. In addition, cumulative studies have found that

ELAVL1 is not only related to tumor occurrence and

progression but also to radiotherapy resistance and

chemotherapy resistance (27–29, 58). These findings suggest

that ELAVL1 is an important target for tumor treatment and

that disrupting ELAVL1 expression in tumors is expected to

inhibit tumors or improve the therapeutic response. In PCa, it

was reported that normal prostate epithelium had mild to
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and both higher cytoplasmic and nuclear expression in cancer

cells (38). Similarly, our study also showed that compared with

para-tumor tissue, PCa tumor tissue had stronger ELAVL1

staining and a higher H-score. High ELAVL1 was found to be

related to tumor proliferation. We further analyzed the

differences in transcripts between high- and low-ELAVL1 PCa

and found that highly expressed genes in high-ELAVL1 PCa

were enriched in RNA metabolism. At the same time, we found

significant differences in the expression of m6A regulators

between the two groups, and correlation analysis also showed

that ELAVL1 expression was significantly correlated with the

expression of other m6A regulators. The above results led us to

speculate that ELAVL1 promotes PCa growth and may be

related to the regulation of other m6A regulators. For

example, METTL3 has been found to promote PCa

development, and our study shows that METTL3 expression is

related to ELAVL1 expression. Therefore, ELAVL1 may regulate

PCa development by affecting METTL3.

In studies on m6A and tumors, ELAVL1, as an m6A reader,

was found to regulate RNA stability in an m6A-dependent

fashion (33, 35). In this study, we found that compared with

those in RWPE-1 cells, the m6A levels on some m6A regulators

were either upregulated or downregulated in PCa cells. These

m6A regulators with altered m6A levels are considered to be

m6A modifications. We also further found that m6A regulators

can bind to ELAVL1, so we believe that ELAVL1 may regulate

the RNA metabolism of some m6A regulators through m6A

modification in PCa. Previous studies have found that ELAVL1

can interact with proteins such as YTHDC1 and IGF2BP1 and

can synergistically promote RNA stabilization (36, 37). We also

found that ELAVL1 can interact with 16 m6A regulators in PCa.

The above findings suggest that there is a close relationship

between ELAVL1 and other m6A regulators in PCa; further

experimental studies are needed to uncover the detailed role

of ELAVL1.

Several studies have found a tumor-promoting effect of

ELAVL1 in various tumors (27–29). Our study also found that

ELAVL1 expression was upregulated in almost all tumors.

However, the mutation frequency of ELAVL1 in tumors was

low, indicating that the upregulated expression of ELAVL1 may

not be a cause of tumorigenesis. In addition, our study also

found an interaction between ELAVL1 and m6A regulators in

almost all tumors. Cumulative studies have confirmed that m6A

imbalance is closely related to tumors (13–16). Therefore, we

believe that although high expression of ELAVL1 is not the cause

of tumorigenesis, it may be one of the key molecules in

this process.

In conclusion, our study shows that the expression of m6A

regulators is significantly deregulated and that these m6A

regulators exhibit DNA mutations and CNVs in PCa. In

addition, ELAVL1 is highly expressed in PCa and can promote

tumor proliferation. ELAVL1 may rely on m6A to participate in
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FIGURE 6

ELAVL1 in various types of tumors. (A) ELAVL1 expression in tumors; (B) correlation between ELAVL1 and other m6A regulators in tumors; (C)
ELAVL1 mutation in tumors in the TIMER 2.0 database; (D) ELAVL1 mutation and copy number variants in tumors in the CBioPortal database; (E)
landscape of ELAVL1 mutation sites. *p < 0.05, **p < 0.01, ***p < 0.001.
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the regulation of RNA metabolism of m6A regulators or interact

with m6A regulators to play a tumor-promoting role.
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