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Abstract

Background: Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play
an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large
scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based
software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the
signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi
transcriptome.

Results: 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins
containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while
the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these
putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal
peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and
transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized
into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in
cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an
enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number
of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also
identified, which may be involved in the pathogenicity of the sunflower rust pathogen.

Conclusions: This investigation proposes a new approach for identifying elicitors and pathogenic factors. The
eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding
of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to
intervene in disease states.
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Background
Sunflower rust, caused by Puccinia helianthi Schw., is a
widespread disease of sunflower (Helianthus annuus L.)
throughout the world and may cause significant yield losses
and loss of seed quality. P. helianthi is an obligate pathogen
and completes its life cycle on sunflower. Although P.
helianthi is a pathogen of great economic importance, little

is known about the molecular mechanisms involved in its
pathogenicity and host specificity.
Pathogen secretory proteins and host plant defense in-

teractions involve complex signal exchanges at the plant
surface and at the interface between the pathogen and
the host [1, 2]. Plant pathogens are endowed with a spe-
cial ability to interfere with physiological, biochemical,
and morphological processes of the host plants through
a diverse array of extracellular effectors. These are
present or active at the intercellular interface or deliv-
ered inside the host cell to reach their cellular target and
facilitate infection or trigger defense responses [3–5].
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Thus, genes encoding extracellular proteins have a
higher probability of being involved in virulence.
Many Avr genes encoding secreted proteins were iden-

tified from haustoria-forming pathogens, such as
AvrL567, AvrM, AvrP4, and AvrP123 in flax rust caused
by Melampsora lini [6, 7], AvrPi-ta and AvrPiz-t in rice
blast Magnaporthe grisea [8, 9], Avr1b-1 in stem and
root rot of soybean Phytophthora sojae [10], Avr3a in
potato late blight P. infestans [11], and ATR13 and ATR1
in downy mildew of Arabidopsis caused by Hyalopero-
nospora parasitica [12, 13]; all of which exhibit patho-
genic functions during pathogen infection. In addition,
some cell wall degrading enzymes (CWDEs) produced
by pathogens are secretory proteins, such as the wood
Xylanase Xyn22 and Xyn33 of M. grisea [14], and pec-
tinlyase Pmr6 of Erysiphe cichoracearum [15]. Some
virulence-related proteins, such as Gas1 and Gas2
(expressed specifically at the appressorium formation
stage) [16], hydrophobic protein Mpg1 [17], tetraspanin-
like protein Pls1 [18] and chitin binding protein Cbp1 of
rice blast [19] are in the same category.
Amino terminal signal peptides are responsible for

transporting the virulent factors [20]. The N-terminal
signal peptides can be classified into four types based on
recognition sequences of signal peptidases. The first
class is composed of “typical” signal peptides, which are
cleaved by one of the various type I SPases of Bacillus
subtilis [21–23] and most secretory proteins with this
signal peptide are secreted into the extracellular environ-
ment. This group also includes signal peptides with a
so-called twin-arginine motif (RR-motif ) that are trans-
ported via the twin-arginine translocation pathway (Tat
pathway). In bacteria, the Tat translocase is found in the
cytoplasmic membrane and exports proteins to the cell
envelope or to the extracellular space [24]. The second
class of signal peptides are lipoproteins cleaved by the
lipoprotein-specific (type II) SPase of B. subtilis (Lsp)
[25, 26]. Secretory proteins with the aforementioned sig-
nal peptides are transported via the general secretion
pathway (Sec-pathway) [27]. The third class constitutes
prepilin-like proteins cleaved by the prepilin-specific
SPase ComC and the fourth class of signal peptides con-
sists of ribosomally synthesized bacteriocin and phero-
mone [28, 29]. These signal peptides lack a hydrophobic
H-domain and they can be removed from the mature
protein by a subunit of the ABC transporter or by
specific SPases.
With the development of molecular biology, large

scale genome and transcriptome sequencing has been
used as an effective method for discovering gene expres-
sion profiles and novel genes. Several computer-based
prediction algorithms have been used to predict the
secretomes from many microbial species, such as Can-
dida albicans [30], P. infestans [31, 32], Saccaromyces

cerevisiae [33], Agrobacterium tumefaciens [34], Fusar-
ium graminearum [35], Neurospora crassa [36], Verticil-
lium dahliae [37], Aspergillus oryzae [38], Puccinia
striiformis f. sp. tritici [39], and Colletotrichum gramini-
cola [40]. These predicted secretomes provide a basis for
further investigations using wet-lab procedures or
more in-depth computational comparisons of relevant
data sets.
An examination of the pathogenesis-related secretome

of P. helianthi is important for understanding the mo-
lecular mechanism of pathogen-host interaction. Here,
we generated a high-throughput transcriptome analysis
of proteins containing a signal peptide. We analyzed a
total of 35,286 ORFs of the P. helianthi transcriptome
using SignalP v4.1, TMHMM v2.0, TargetP v1.1, TatP
v1.0 and big-PI predictor bioinformatics tools to identify
secretory proteins.

Methods
Isolates and culture conditions
Rust-infected sunflower leaves were collected in paper
bags seperately, air dried at room temperature for 24 h
and then spores from mature uredial pustules were
brushed off the leaves and stored at 4–5 °C. The col-
lected inocula were inoculated on universal susceptible
line 7350. After 10–15 days urediospores of a single pus-
tule were used inoculating two weeks old susceptible
plants to produce purified isolates. Subsequently, fresh
urediniospores of each isolate were collected from rusted
leaves by flicking leaves against parchment paper, and
then fresh spores were dried for 3 days in a desiccator
and stored individually in the refrigerator at 80 °C below
zero. In this experiment, the transcriptome data were
obtained from P. helianthi isolate SY.

Puccinia helianthi transcriptomic data sets
We constructed a P. helianthi reference transcriptome
for different growing stage urediniospores (0 h fresh ure-
diniospores, 4, and 8 h germinated spores). The cDNA
library was sequenced on the Illumina HiSeq™ 2500. For
the assembly library, raw reads were filtered to remove
those containing an adapter and reads with more than
5% unknown nucleotides. Low quality reads were also
removed, in which the percentage of low Q-value (≤10)
bases was more than 20%. Clean reads were de novo as-
sembled by the Trinity Program yielding 59,409 tran-
scripts with a mean size of 1394 bp. Sequence data has
been uploaded to the Short Read Archive (https://
www.ncbi.nlm.nih.gov/sra) of the National Center for
Biotechnology Information (NCBI); accession number
SRP059519. The secretory proteins were predicted
according to the N-terminal amino acid sequences of
35,286 ORFs (Additional file 1).
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Prediction and validation of excretory/secretory (ES)
proteins
ORFs fulfilling the following four criteria were defined
as the computational secretome: (a) the ORF contains an
N-terminal signal peptide; (b) the ORF has no trans-
membrane domains; (c) the ORF has no GPI-anchor site;
and (d) the sequence does not contain the localization
signal, which may target mitochondria or other intracel-
lular organelles.
Table 1 summarizes the bioinformatic tools used in

this study. SignalP v4.1, TMHMM v2.0, TargetP v1.1,
ProtComp v9.0 and big-PI predictor tools were
employed to identify expected secretory proteins of P.
helianthi. SignalP predicts classical secretory proteins
in eukaryotes and a truncation protein sequence at 70
amino acids as filters. The standard was L = −918.235-
123.455* (Mean S score) +1983.44* (HMM score) and
L > 0 for predicting signal peptide proteins. TargetP
allowed the prediction of mitochondrial proteins with a
cut-off of 0.95 for mitochondrial proteins and 0.90 for
proteins in other locations. Transmembrane proteins
were predicted with TMHMM (version 2.0) with default
options. The putative proteins generated from the tran-
scriptome were initially analyzed by SignalP to predict
classical secretory proteins on the basis of a D-score
greater than 0.5. The proteins identified were then ana-
lyzed with TMHMM to screen for classical secretory
proteins without transmembrane segments. Proteins
that passed the first two steps were then evaluated by
TargetP to identify mitochondrial proteins. Once mito-
chondrial proteins were identified, the remaining
secretory proteins were examined and their sub-cellular
localization was predicted with Protcomp. Those
assigned to extracellular (secreted) categories were con-
sidered pathogenic secretory proteins.

Analysis of signal peptide sequences
In order to further examine the length of signal peptide
sequences, the secretory proteins obtained from the pre-
vious step were analyzed using custom Perl script. Lipo-
protein signal peptide prediction was done with LipoP

v1.0, which was able to distinguish among lipoproteins
(SPaseII-cleaved proteins), SPaseI-cleaved proteins, cyto-
plasmic proteins, and transmembrane proteins [41].
Signal peptides with an RR-motif were selected by TatP
v1.0 and homology prediction of those signal peptide
sequences was evaluated following alignment by Clustal
Omega.

ES proteins annotation
Predicted ES proteins were annotated with InterProScan
and gene ontology (GO) terms for protein domain and
family classification [42]. GO term enrichment analysis
was performed using the DAVID bioinformatics resource
[43]. KAAS (KEGG Automatic Annotation Server) per-
formed functional annotation by BLAST search against
the manually curated KEGG database [44] and provided
insight into BRITE functional hierarchies and KEGG
pathway maps [45]. The ES proteins were independently
assessed for homology matches against NCBI’s non-
redundant protein database and for orthologs against
the Cluster of Orthologous Groups of proteins (COG)
database using BLAST with permissive (E-value: 1e-10)
search strategies. Finally, the ES proteins were predicted
to have pathogenic function by BLAST analysis of the
Pathogen Host Interaction (PHI) database (identity > 25,
E-value: 1e-10).

Results
ES protein prediction from the transcriptome data set of
P. helianthi
A total of 2,350 (6.7%) out of 35,286 ORFs were pre-
dicted as classical secretory proteins with SignalP. Ac-
cording to TMHMM v2.0 tool prediction, 149 (6.3%)
proteins have two or more transmembrane helices, 422
(18.0%) proteins have one transmembrane helix, and
1,779 proteins lack transmembrane helices, accounting
for 75.7% among 2350 proteins with N-terminal signal
peptides. The remaining 1,779 proteins without trans-
membrane helices were queried with big-PI Predictor
yielding 22 potential GPI-anchored proteins that may

Table 1 The bioinformatic tools adopted for the prediction of secretory proteins from Puccinia helianthi transcriptome

Prediction algorithms Objects predicted References

SignalP v4.1 N-terminal signal peptides http://www.cbs.dtu.dk/services/SignalP/

TMHMM v2.0 Transmembrane domains http://www.cbs.dtu.dk/services/TMHMM/

Big-PI predictor GPI-anchor site http://mendel.imp.ac.at/gpi/fungi_server.html

TargetP v1.1 Secretion pathway and position http://www.cbs.dtu.dk/services/TargetP/

ProtComp v9.0 Localization sequences http://linux1.softberry.com/

LipoP v1.0 Lipoprotein signal peptides http://www.cbs.dtu.dk/services/LipoP/

TatP v1.0 Signal peptide with RR-motif http://www.cbs.dtu.dk/services/TatP/

Clustal Omega Proteins homology prediction http://www.ebi.ac.uk/Tools/msa/clustalo/

Jing et al. BMC Bioinformatics  (2017) 18:166 Page 3 of 13

http://www.cbs.dtu.dk/services/TargetP/
http://linux1.softberry.com/
http://www.cbs.dtu.dk/services/LipoP/
http://www.cbs.dtu.dk/services/TatP/
http://www.ebi.ac.uk/Tools/msa/clustalo/


not be extracellularly secreted and 1,757 non GPI-
anchored proteins ORFs.
TargetP v1.1 software was used to predict mitochon-

drial proteins. Among 1,757 proteins, 1,676 (95.4%)
proteins had extracellular targeting signals, 68 (3.9%)
proteins contained mitochondria targeting signals and
15 proteins (0.9%) contained other targeting signals.
The application of ProtComp v9.0 to the remaining

1,676 ORFs yielded a total of 908 ORFs (54.2%) as ES pro-
teins (Additional file 2) and the remaining 768 proteins
were predicted to be transported to the mitochondria
(11.3%), cell membrane (14.9%), nucleus (3.8%), golgi
(2.9%), cytoplasm (3.0%), endoplasmic reticulum (4.4%),
lysosome (2.9%), peroxisome (1.3%) and vacuole (1.6%).

ORF length of the secretory proteins from P. helianthi
To examine the ORF length of the predicted secretory
proteins from P. helianthi, 35,286 P. helianthi ORFs
were analyzed by bioinformatics tools and 908 (2.6%)
ORFs were identified as secretory proteins. Among
them, 728 proteins contained the complete ORF. The
longest protein was 1001 amino acids (aa) and the short-
est one was 34 aa. The length of most secretory proteins
(79.8% of the total identified proteins with a complete
ORF) was between 51 and 300 aa. Within this group,
41.0% of them were 101–200 aa long. Thus, we suggest
most secretory proteins probably fall in the shorter
length range (Fig. 1).

Characteristics of signal peptides of predicted secretory
proteins in P. helianthi
The analysis of the signal peptides of 908 predicted
secretory proteins reveals the length of the signal pep-
tide ranges from 10 to 34 aa (mean = 21 aa) and most
signal peptides (35.8%) ranged from 18 to 20 aa. Signal
peptides with 19 aa length, however, were the most
abundant, accounting for 13.7% (Fig. 2). The alignment
of all 908 signal peptide sequences was done by Clustal

Omega. The homology among the signal peptide se-
quences was low with the highest similarity (66.7%) ob-
served between signal peptide sequence KU994941 and
KU994981. No protein with an RR-motif signal peptide
was found by TatP v1.0 while 463 proteins contained
secretory pathway signal peptides cleavable by SpaseI,
and 55 proteins harbored lipoprotein signal peptides
cleavable by SpaseII. N-terminal transmembrane helices
were found in 30 proteins and 360 of them could be lo-
calized to cytoplasmic organelles. Thus, most of the
secretory proteins were determined to be secreted
through the general secretion pathway (Sec-pathway).

Amino acid composition of signal peptides of predicted
secretory proteins in P. helianthi
The distribution of 20 amino acids in the signal peptide
was statistically analyzed and the frequencies of amino
acid residues in a descending order were: L - S - T - R -
A - I - C - V - F - E - K - M - G - N - Q - P - Y - H -
W - D. Hydrophobic amino acid leucine (L) showed an
appearance rate of 16.1%, followed by serine (S) as
10.8% (Fig. 3). The occurrence of the negatively charged
hydrophilic amino acid aspartate (D) is the lowest, ac-
counting for 0.5%.
In general, the C-terminal region of signal peptides

contains an enzyme recognition site. Based on this cleav-
age site, the amino acids of negative direction were
named as −1, −2, and −3; those of positive direction
were named as +1, +2, and +3. Between protein cutting
locus positions −3 and +3, valine (V) is most likely to
occupy the position −3 at a frequency of 26.7%. The fre-
quency of serine (S) being at position −2 is 16.5%, ala-
nine (A) has a 49.1% chance to be at position −1, while
12.9% of the time glutamine (Q) is found in position +1
(Table 2). Interestingly, it was found that most amino
acids were widely used in the range of cleavage site −3
to +3 position in sunflower rust but no H, K, or Y was
observed at position −1. This indicates amino acids near

Fig. 1 Length distribution of Puccinia helianthi ORFs coding secretory proteins
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the cleavage site are highly polymorphic in sunflower
rust.

Annotation of excretory/secretory (ES) of P. helianthi
All ES proteins identified were searched for sequence
homology against our non-redundant dataset using
BLAST. It was found that 581 (64.0%) computationally
predicted ES proteins shared similarities with known pro-
teins. A total of 143 ES proteins could be annotated in
Gene Ontology (GO) and were classified into 27 func-
tional groups, including 14 groups in biological process,
seven in cellular component, and six in molecular func-
tion (Fig. 4). Within biological process, “metabolic
process” (GO: 0008152) with 63 ES proteins and “cellular
process” (GO: 0009987) with 26 ES proteins were pre-
dominant. In the category of cellular component, the three
main groups were “extracellular region” (GO: 0005576, 19
ES proteins), “cell” (GO: 0005623, 18 ES proteins), and
“cell part” (GO: 0044464, 18 ES proteins). The categories
“catalytic activity” (GO: 0003824) and “binding” (GO:
0005488) were most common in molecular function,
represented by 63 and 37 ES proteins, respectively.
ES proteins were subjected to GO enrichment analysis.

The 10 top significant enriched GO terms are shown in

Table 3. The hydrolase activity, hydrolyzing O-glycosyl
compounds (GO:0004553), hydrolase activity (GO:001
6787), hydrolase activity, acting on glycosyl bonds (GO
:0016798), carbohydrate metabolic process (GO:0005
975), peptidase activity, acting on L-amino acid pep-
tides (GO:0070011), extracellular region (GO:0005576),
peptidase activity (GO:0008233), serine-type endopep-
tidase activity (GO:0004252), serine-type peptidase
activity (GO:0008236) and serine hydrolase activity
(GO:0017171) are significantly enriched. These proteins
included glycoside hydrolase, glucoamylase, phosphat-
ase, phosphoesterase, lipase, cysteine peptidase, peptid-
ase, cysteine-rich secretory protein, etc. Pathway
associations were established for 82 (9.0%) ES proteins
with the majority belonging to metabolism. The pre-
dicted ES protein dataset is comprised of important
biological molecules, including enzymes, the spliceo-
some and the ribosome (Table 4).

Function prediction of predicted secretory proteins in P.
helianthi
Out of 908 secretory proteins queried against our non-
redundant dataset using BLAST, 581 had functional de-
scriptions, of which 279 had clear functional descriptions

Fig. 2 Length distribution of Puccinia helianthi signal peptides

Fig. 3 Percentage of 20 amino acid residues in Puccinia helianthi secretory protein signal peptides
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Table 2 Amino acids frequency and distribution in cleavage sites of signal peptide of secretory proteins

Kinds of aa 20 amino acid residues at the cleavage position from - 3 to + 3 of the signal peptides

−3 −2 −1 +1 +2 +3

No. Percentage (%) No. Percentage (%) No. Percentage (%) No. Percentage (%) No. Percentage (%) No. Percentage (%)

V 242 26.7 34 3.7 3 0.3 50 5.5 34 3.7 72 7.9

A 147 16.2 40 4.4 446 49.1 94 10.4 18 2.0 53 5.8

S 135 14.9 150 16.5 148 16.3 96 10.6 97 10.7 72 7.9

T 103 11.3 42 4.6 47 5.2 44 4.8 57 6.3 68 7.5

I 81 8.9 27 3.0 1 0.1 30 3.3 36 4.0 76 8.4

C 72 7.9 14 1.5 70 7.7 15 1.7 22 2.4 43 4.7

L 45 5.0 137 15.1 18 2.0 84 9.3 59 6.5 89 9.8

G 34 3.7 9 1.0 123 13.5 33 3.6 29 3.2 36 4.0

F 6 0.7 53 5.8 3 0.3 30 3.3 25 2.8 35 3.9

H 6 0.7 48 5.3 0 0.0 33 3.6 22 2.4 24 2.6

R 6 0.7 26 2.9 6 0.7 41 4.5 34 3.7 13 1.4

K 6 0.7 24 2.6 0 0.0 30 3.3 50 5.5 38 4.2

N 5 0.6 57 6.3 3 0.3 40 4.4 60 6.6 49 5.4

E 5 0.6 77 8.5 5 0.6 66 7.3 86 9.5 39 4.3

M 4 0.4 15 1.7 4 0.4 11 1.2 4 0.4 12 1.3

Y 4 0.4 31 3.4 0 0.0 26 2.9 18 2.0 16 1.8

Q 3 0.3 73 8.0 10 1.1 117 12.9 42 4.6 45 5.0

W 2 0.2 15 1.7 3 0.3 3 0.3 4 0.4 13 1.4

D 1 0.1 31 3.4 5 0.6 58 6.4 59 6.5 43 4.7

P 1 0.1 5 0.6 13 1.4 7 0.8 152 16.7 72 7.9

Fig. 4 Gene ontology annotation of the secretory proteins of Puccinia helianthi. The best hits were aligned to the GO database, and 143 putative
secretory proteins were assigned to at least one GO term. Most consensus sequences were grouped into three major functional categories and
27 sub-categories
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and 302 were predicted as hypothetical, conserved hypo-
thetical, uncharacterized, or unnamed proteins. The
querying of 908 secretory proteins against the COG data-
base was performed for functional classification (Fig. 5). A
total of 80 proteins could be assigned to the COG classifi-
cation, of which 26 (32.5%) potentially participated in the
transport and metabolism of carbohydrates (G; Fig. 5),
followed by 23.8% involved in post-translational modifica-
tions, protein turnover, and molecular chaperones (O;
Fig. 5). Proteins participating in inorganic ion transport
and metabolism; replication, recombination and repair;
transcription; amino acid transport and metabolism
accounted for only 1.3%, respectively (P, L, K, E; Fig. 5).
188 out of the 908 proteins had annotations based on
InterPro, of which 62 (33.0%) were hydrolases, including
19 peptidases, 15 glycoside hydrolases, seven esterases,
five phosphatases, four each ribonuleases, and polysac-
charide deacetylases, three each alpha/beta hydrolases,
and glucanases (Table 5).
Peptidase, glycoside hydrolase, pectinesterase, polysac-

charide deacetylase, pectate lyase and glucanosyltransfer-
ase were found possibly to be related to cell wall
degradation. Nine proteins contained an MD-2-related
lipid-recognition (ML) domain, six contained a lipocalin/
cytosolic fatty-acid binding domain, and three contained
a tyrosinase copper-binding domain. Six were annotated
as lipocalin, four as the proteinase inhibitor I25 cystatin,
four as apolipoprotein, three each as ribosomal protein,
one as thaumatin, and two were annotated as the
cysteine-rich allergen V5/Tpx-1-related secretory pro-
tein. The functions of most predicted secretory proteins
are still unknown.
Blasting PHI yielded a total of 43 secretory proteins that

could be correlated to pathogenicity (Tables 6 and 7). Of
these, three secretory proteins (KU994907, KU994919 and
KU994955) were predicted to be similar to an effector

(plant avirulence determinant, Phibase accesstion ID: PHI:
653, PHI: 653 and PHI: 652, respectively) of P. sojae
(Table 7).

Discussion
Protein is the major functional component of living or-
ganisms. Many pathogenic microbes can secrete proteins
into host cells to promote their infection process [46].
Therefore, analysis of secretory proteins in the pathogen
genome or transcriptome will help reveal pathogenic
mechanisms. According to the signal peptide hypothesis
[47], secretory protein destination is determined by its
signal peptide. The signal peptide will be cleaved off
when the protein reaches its destination. A free online
program, SignalP, has been developed that accurately
identifies eukaryotic signal peptides [48, 49]. An analysis
of 47 known secretory protein and 47 other proteins of
C. albicans by SignalP v2.0 showed that the putative
results obtained were credible [30].
Signal peptides structures from various proteins com-

monly contain a positively charged N-region, a hydro-
phobic H-region and a neutral polar C-region. In the
C-terminal region, helix breaking proline and glycine
residues and small uncharged residues which are often
found at the positions −3 and −1 determine the signal
peptide cleavage site [50]. In P. helianthi, valine was
observed more frequently (26.7%) at position −3, alanine
was most likely to be at position −1 (49.1%), while histi-
dine, lysine, tyrosine were not observed at this position.
This indicates amino acids at −3 and −1 positions are
relatively conserved, which might guarantee the recogni-
tion accuracy of signal peptidases.
Numerous algorithms are freely available for the

prediction of protein structures, functions and inter-
actions. Analyses of entire S. cerevisiae genome data-
bases have included identification of GPI-anchored

Table 3 The 10 top GO terms significantly enriched for secretory proteins

GO term GO-ID Category % of input genes in GO-term P-Value

Hydrolase activity, hydrolyzing O-glycosyl
compounds

GO:0004553 Molecular function 14.9 3.41E-20

Hydrolase activity GO:0016787 Molecular function 3.7 7.09E-20

Hydrolase activity, acting on glycosyl bonds GO:0016798 Molecular function 14.0 1.68E-19

Carbohydrate metabolic process GO:0005975 Biological process 7.4 1.65E-16

Peptidase activity, acting on L-amino
acid peptides

GO:0070011 Molecular function 7.1 5.09E-12

Extracellular region GO:0005576 Cellular component 17.6 6.93E-12

Peptidase activity GO:0008233 Molecular function 6.6 2.31E-11

Serine-type endopeptidase activity GO:0004252 Molecular function 16.9 7.50E-11

Serine-type peptidase activity GO:0008236 Molecular function 12.7 4.59E-10

Serine hydrolase activity GO:0017171 Molecular function 12.7 4.59E-10

GO enrichment analysis was carried out using the hypergeometric test with a value threshold of 0.05. Most significantly enriched terms were selected according
to their p-value
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proteins [51], a prediction of protein sub-cellular
localization [52] and a prediction of the “typical”
secretory protein with Internet-based software SignalP
v3.0, TargetP v1.01, Big-PI predictor and TMHMM
v2.0 [33]. Bioinformatics approaches made the large
scale prediction and analysis of ES proteins of Hel-
minths possible, which included a comprehensive
BLAST analysis to annotate the function of the ES
proteins [53]. Thus, one approach to rapidly analyze
the entire P. helianthi transcriptome and to predict
its secretome is to utilize a wide range of appropriate
and efficient bioinformatics tools.
After screening 35,286 ORFs of transcriptome data, 908

(2.6%) were predicted as secretory proteins. These putative
secretory proteins were small proteins. Up to 79.8% of
these secretory proteins were between 51 and 300 aa with
signal peptide length between 18 and 20 aa. The short
length of amino acids in secretory proteins is likely due to
the reference genome of P. helianthi is not available and
the unavoidable limitations of de novo transcriptome re-
construction. In signal peptides, the frequency of leucine
(L), a hydrophobic amino acid, reached 16.1%. Abundant
hydrophobic amino acids may be relevant to the secretion
of secretory proteins and their subsequent destination.
Most of the amino acids in signal peptides were aliphatic,
which are mostly neutral amino acids or hydroxyl or sul-
fur amino containing amino acids. These amino acids may
be important for physiochemical properties of the
secretory proteins, which can make the signal peptide
cross the plasma membrane easier and enhance signal
guidance function. Prediction result showed most of the
signal peptides of 908 putative secretory proteins were
cleaved by SpI. The majority of the secretory proteins in
P. helianthi are likely transported via the general secretory
pathway. Furthermore, no signal peptide contained the
RR-motif, which may indicate the Tat pathway does not
exist or has minor roles in P. helianthi.
Signal peptides can guide the secretory proteins to

subcellular locations, and play a key role in the process
of metabolism. Signal peptide sequence analysis of all
908 secretory proteins showed sequence similarity is

Table 4 Pathway categorization of the secretory proteins from
Puccinia helianthi

Parent KEGG pathway No. of ESPs KEGG pathway in the category

Metabolism: 21

Amino Acid Metabolism 1 Arginine and proline
metabolism

Biosynthesis of Other
Secondary Metabolites

2 Phenylpropanoid biosynthesis

Carbohydrate
Metabolism

3 Galactose metabolism

1 Propanoate metabolism

4 Starch and sucrose metabolism

Energy Metabolism 1 Oxidative phosphorylation

Enzyme Families 3 Peptidases

Lipid Metabolism 2 Steroid biosynthesis

1 Sphingolipid metabolism

Metabolism of Cofactors
and Vitamins

2 Riboflavin metabolism

1 Porphyrin and chlorophyll
metabolism

Genetic Information
Processing

17

Folding, Sorting and
Degradation

3 Chaperones and folding catalysts

2 Protein processing in
endoplasmic reticulum

1 Ubiquitin system

1 Ubiquitin mediated proteolysis

Replication and Repair 1 Base excision repair

1 Chromosome

Transcription 4 Spliceosome

1 Transcription factors

Translation 3 Ribosome Biogenesis

Environmental Information
Processing

7

Signal Transduction 1 Jak-STAT signaling pathway

1 MAPK signaling pathway -
yeast

1 mTOR signaling pathway

1 Notch signaling pathway

Signaling Molecules
and Interaction

1 CAM ligands

1 Cytokines

1 Neuroactive ligand-receptor
interaction

Cellular Processes 26

Cell Communication 4 Focal adhesion

1 Adherens junction

Transport and
Catabolism

20 Lysosome

1 Phagosome

Organismal Systems 7

Digestive System 1 Salivary secretion

Endocrine System 2 PPAR signaling pathway

Table 4 Pathway categorization of the secretory proteins from
Puccinia helianthi (Continued)

Immune System 2 Antigen processing and
presentation

2 Complement and coagulation

Human Diseases 4

Infectious Diseases 1 African trypanosomiasis

1 Tuberculosis

1 Staphylococcus aureus infection

Neurodegenerative
Diseases

1 Alzheimer’s disease
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low, which indicates higher sequence variability, consist-
ent with previous reports [34]. The low conservation
might contribute to accurate positioning and specific
metabolic functions of individual secretory proteins.
Among the 908 secretory proteins, most with func-

tional descriptions are proteins responsible for transport
and metabolism of carbohydrates, which is similar to
previous research on Bradyrhizobium japonicum [54]
and Rhizobium etli [55]. This implies a great deal of
materials needed for rust pathogen development and in-
fection may involve sugars, inorganic salt, and organic
small molecules, which can be used as cofactors and to
meet pathogen energy requirements. Our GO enrich-
ment analysis indicated that hydrolase activity, carbohy-
drate metabolic process, peptidase activity were
significantly enriched in the putative secretory proteins.
It suggests rust pathogen P. helianthi can secrete various
types of extracellular hydrolases which may include nu-
cleases that can degrade the genetic material of the host
plants and interfere with the host genetic metabolism.
Additional hydrolase enzymes may be responsible for
cell wall degradation; thereby making the host conducive
to rust pathogen colonization by destroying the host cell
structure and accelerating the process of infection. In
addition, the secretory proteins also contain relatively
unique serine proteases and similar proteins. In fungi,
serine proteases are closely linked with pathogen infec-
tion and are often used to degrade the host plant pro-
teins [56]. This suggests serine proteases may also be
associated with the rust infection process. Cysteine
peptidases (CPs) play important roles in facilitating the

survival and growth of mammalian parasites [57]. CPs
found in the sunflower rust pathogen, in turn, could also
be associated with virulence to the host. In addition, two
cysteine-rich secretory proteins identified as calcium
chelating serine proteases [58] could be candidate effec-
tors of this pathogen [59]. Three proteins similar to
effectors of P. sojae were also found that might be simi-
larly correlated with the pathogenicity of P. helianthi.
These candidate proteins may provide more insight into
common pathogenesis pathways utilized by both P. sojae
and P. helianthi but more experimental evidence is
necessary to confirm the biological roles of P. helianthi
effectors.
Proteins containing the conserved ML domain are

involved in lipid recognition or metabolism and are
particularly important for the recognition of pathogen-
related processes such as lipopolysaccharide (LPS) bind-
ing and signaling [60]. LPS and glycoproteins have been
detected in the neck region of haustoria [61]. Proteins
containing the ML domain in P. helianthi may, there-
fore, play a role in the recognition of host lipid-related
products.
The thaumatin protein is considered a model

pathogen-response protein domain for pathogenesis-
related (PR) proteins involved in systematically acquired
resistance and stress responses in plants, although their
precise role is unknown [62]. Thaumatin-like secreted
proteins of rust fungi may alter the plant-signalling path-
way and have also been reported in the Melampsora
secretome [63]. Future research into the role of thauma-
tin in sunflower rust infection will provide a better

Fig. 5 COG classifications of predicted secretory proteins in the transcriptome of Puccinia helianthi. All 80 putative proteins showing significant
homology to those in the COG database were functionally classified into 14 families. Note: P, Inorganic ion transport and metabolism; L,
Replication, recombination and repair; K, Transcription; E, Amino acid transport and metabolism; C, Energy production and transformation; U,
Intracellular trafficking, secretion, and vesicular transport; S, Function unknown; M, Biosynthesis of cell and outer membrane; J, Translation,
ribosomal structure and biogenesis; Q, The biosynthesis of secondary metabolites, transport and catabolism; R, General function prediction; G, The
transport and metabolism of carbohydrates; O, Post-translational modification, protein turnover and molecular chaperones; I, Lipoid metabolism
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understanding of general and specific mechanisms of
thaumatin-mediated resistance and pathogenesis.
Among these 908 secretory proteins in P. helianthi,

the majority of them were unclassified due to rust fungi
are biotrophic species and require specific genes in their
life. The similar results were reported in wheat rust
fungus P. striiformis f. sp. tritici [64, 65].

Conclusion
In this study, various open source bioinformatics tools
were used to predict and analyze ES proteins from P.
helianthi transcriptome. Out of 35,286 ORFs of tran-
scriptome data, 908 (2.6%) were predicted as secretory
proteins and most were short proteins. A BLAST ana-
lysis was used to annotate the function of the ES pro-
teins and provided further evidence for some proteins as

Table 5 Hydrolases among predicted secreted proteins of
Puccinia helianthi

Classification Gene code Blastx InterPro

Peptidase KU994901 Cysteine peptidase

KU994902 Peptidase S1

KU994903 Peptidase S8/S53 domain

KU994904 Peptidase S8/S53 domain

KU994905 Peptidase S8/S53 domain

KU994906 Gamma-glutamyl transpeptidase

KU994907 Peptidase S1

KU994908 Peptidase S1

KU994909 Cysteine peptidase

KU994910 Peptidase C1A

KU994942 Peptidase S1

KU994952 Peptidase M36

KU994953 Peptidase S10

KU994954 Cysteine peptidase

KU994955 Peptidase S1

KU994982 Peptidase M28

KU994983 Peptidase S1

KU994984 Peptidase S8/S53 domain

KU994985 Cysteine peptidase

Glycoside hydrolase KU994943 Glycoside hydrolase

KU994944 Glycoside hydrolase, family 31

KU994945 Glycoside hydrolase, family 5

KU994946 Glycoside hydrolase, family 31

KU994947 Glycoside hydrolase, family 47

KU994948 Glycoside hydrolase, family 10

KU994949 Glycoside hydrolase, family 18

KU994950 Glycoside hydrolase, family 30

KU994951 Glycoside hydrolase, family 22

KU994956 Glycoside hydrolase, family 61

KU994957 Glycoside hydrolase, family 28

KU994958 Glycoside hydrolase, family 30

KU994959 Glycoside hydrolase

KU994960 Glycoside hydrolase, family 65

KU994971 Glycoside hydrolase, family 32

Esterase KU994921 Cholinesterase

KU994975 Cholinesterase

KU994976 Palmitoyl protein thioesterase

KU994977 Pectinesterase, catalytic

KU994978 Palmitoyl protein thioesterase

KU994979 Carboxylesterase, type B

KU994980 Calcineurin-like phosphoesterase
domain

Phosphatase KU994928 Histidine phosphatase superfamily

KU994929 Inorganic pyrophosphatase

Table 5 Hydrolases among predicted secreted proteins of
Puccinia helianthi (Continued)

KU994930 Survival protein SurE-like Phosphat-
ase/nucleotidase

KU994931 Histidine phosphatase superfamily

KU994932 Protein-tyrosine phosphatase

Nuclease KU994922 Ribonuclease H-like domain

KU994923 Deoxyribonuclease II

KU994924 Ribonuclease H-like domain

KU994925 Ribonuclease T2-like

Polysaccharide
deacetylase

KU994986 Polysaccharide deacetylase

KU994987 Polysaccharide deacetylase

KU994988 Polysaccharide deacetylase

KU994989 Polysaccharide deacetylase

Alpha/beta
hydrolase

KU994972 Alpha/beta hydrolase fold-1

KU994973 Alpha/Beta hydrolase fold

KU994974 Alpha/beta hydrolase fold-1

Glucanase KU994933 Glucanases superfamily

KU994934 Glucanases superfamily

Glucoamylase KU994926 Glucoamylase

Ceramidase KU994927 Neutral/alkaline nonlysosomal
ceramidase

Lipase KU994935 Lipase

Table 6 Pathogen Host Interaction database classification of
secretory proteins of Puccinia helianthi

Category Num of PHI Proportion (%)

Reduced virulence 21 48.84

Unaffected pathogenicity 13 30.23

Loss of pathogenicity 4 9.30

Effector (plant avirulence
determinant)

3 6.98

Mixed outcome 2 4.65
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candidates participating in the infection process of P.
helianthi. Blasting PHI yielded a total of 43 secretory
proteins that could be involved in pathogenicity and
three secretory proteins were predicted to be similar to
the effectors of P. sojae. Therefore, this investigation
provides a novel approach for identifying elicitors and
pathogenic factors. It also establishes a sound foundation
for understanding the structures and functions of the
pathogenic factors of P. helianthi. In conclusion, our
data can be used as a candidate gene resource for further
computational or wet lab research to unveil the molecu-
lar mechanisms underlying the interaction between sun-
flower and P. helianthi.
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Table 7 Functional classes of the secretory proteins of Puccinia
helianthi

PHI Category Gene Code Blastx NCBI Nr Blastx InterPro

KU994910 Hypothetical protein Peptidase S8/S53
domain

KU994911 Hypothetical protein

Reduced
virulence

KU994912 Putative polysaccharide
lyase family 1

KU994925 Hypothetical protein Ribonuclease T2-
like

KU994936 L-ascorbate oxidase Multicopper
oxidase

KU994937 Hypothetical protein Glucanosyl
transferase

KU994938 Hypothetical protein

KU994939 Hypothetical protein

KU994940 Predicted protein

KU994945 Hypothetical protein Glycoside hydrolase

KU994949 Chitinase Glycoside hydrolase

KU994961 Hypothetical protein

KU994962 Hypothetical protein Pectate lyase/Amb
allergen

KU994963 Aspartic protease

KU994964 Retrotransposable
element

KU994965 PR1 protein precursor Cysteine-rich
secretory protein

KU994966 Niemann-Pick C1
protein

KU994967 Hypothetical protein

KU994968 Pathogenesis-related
protein 1

KU994969 Hypothetical protein

KU994970 Hypothetical protein Thioredoxin

Unaffected
pathogenicity

KU994905 Probable serine
carboxypeptidase CPVL

Serine
carboxypeptidase

KU994913 Beta glucosidase
precursor

KU994914 Putative chaperone
protein

DnaJ domain

KU994915 Aspartic peptidase A1

KU994916 Beta glucosidase
precursor

KU994943 Hypothetical protein Glycoside hydrolase

KU994947 Hypothetical protein Glycoside hydrolase

KU994957 Predicted protein Glycoside hydrolase

KU994972 Gastric triacylglycerol
lipase-like

Alpha/beta
hydrolase fold-1

KU994974 Hypothetical protein Alpha/beta
hydrolase fold-1

KU994975 Esterase Cholinesterase

KU994976 Esterase 10 Cholinesterase

Table 7 Functional classes of the secretory proteins of Puccinia
helianthi (Continued)

KU994980 Esterase 9 Carboxylesterase

Loss of
pathogenicity

KU994917 Copper/zinc
superoxide dismutase

KU994918 Ras-like C3 botulinum
toxin substrate 1

Small GTPase
superfamily

KU994944 Hypothetical protein Glycoside hydrolase

KU994946 Hypothetical protein Glycoside hydrolase

Effector KU994907 Limulus factor D Peptidase S1

KU994919 Ovochymase-1

KU994955 Transmembrane
protease serine 9-like

Peptidase S1

Mixed
outcome

KU994920 Guanine nucleotide-
binding protein

WD40 repeat

KU994929 Inorganic
pyrophosphatase

Inorganic
pyrophosphatase
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