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Abstract: Since the Silk-road Economic belt initiatives were proposed, Xinjiang has provided a
vital strategic link between China and Central Asia and even Eurasia. However, owing to the
weak and vulnerable ecosystem in this arid region, even a slight climate change would probably
disrupt vegetation dynamics and land cover change. Thus, there is an urgent need to determine
the Normalized Difference Vegetation Index (NDVI) and Land-use/Land-cover (LULC) responses to
climate change. Here, the extreme-point symmetric mode decomposition (ESMD) method and linear
regression method (LRM) were applied to recognize the variation trends of the NDVI, temperature,
and precipitation between the growing season and other seasons. Combining the transfer matrix
of LULC, the Pearson correlation analysis was utilized to reveal the response of NDVI to climate
change and climate extremes. The results showed that: (1) Extreme temperature showed greater
variation than extreme precipitation. Both the ESMD and the LRM exhibited an increased volatility
trend for the NDVI, with the significant improvement regions mainly located in the margin of
basins. (2) Since climate change had a warming trend, the permanent snow has been reduced by
20,436 km2. The NDVI has a higher correlation to precipitation than temperature. Furthermore,
the humid trend could provide more suitable conditions for vegetation growth, but the warm trend
might prevent vegetation growth. Spatially, the response of the NDVI in North Xinjiang (NXC)
was more sensitive to precipitation than that in South Xinjiang (SXC). Seasonally, the NDVI has
a greater correlation to precipitation in spring and summer, but the opposite occurs in autumn.
(3) The response of the NDVI to extreme precipitation was stronger than the response to extreme
temperature. The reduction in diurnal temperature variation was beneficial to vegetation growth.
Therefore, continuous concentrated precipitation and higher night-time-temperatures could enhance
vegetation growth in Xinjiang. This study could enrich the understanding of the response of
land cover change and vegetation dynamics to climate extremes and provide scientific support for
eco-environment sustainable management in the arid regions.
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1. Introduction

Arid and semi-arid regions encompass nearly 40% of the Earth’s land surface, where about 20%
of the human population of the world live [1]. As one of the largest arid and semi-arid regions
in the Northern hemisphere, Central Asia is particularly influenced by drought [2–4]. Vegetation
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dynamics could reflect the changes in the ecological environment to some extent [5–7], and it might
be extremely sensitive to climate change in fragile eco-environment [8–10]. As a previous study has
found, the contribution of climate change to grassland degradation could reach up to 47.9% in the arid
and semi-arid regions of China [11]. Therefore, research on vegetation dynamics and its response to
climate change remains a vital strategic task in arid and semi-arid regions [12–16].

The Normalized Difference Vegetation Index (NDVI) has been regarded as a reliable index
to monitor vegetation dynamics [17–19]. Additionally, the NDVI product supported by the
Moderate-resolution Imaging Spectroradiometer (MODIS) has been used to widely prove the
effectiveness of vegetation data collection and analysis from regional to global scales [20–22].
Consequently, a considerable amount of research has been conducted to quantitatively analyze
the responses of vegetation activity and climate change, and great progress has been achieved in
this area [23]. Recent studies point out that precipitation is considered to be the vital limiting factor
in vegetation growth in Central Asia [8,24]. Furthermore, some studies have also suggested that
the temperature decrease in spring or autumn could limit vegetation growth [25–27]. However,
the responses of different vegetation types to climate change show great disparity, which undoubtedly
increases the difficulty of quantitative analysis [28–30].

Over the past few decades, some researchers have found a warmer and more humid pattern
displayed in the arid regions of Central Asia [24,31], but some studies have come to the opposite
conclusion [32,33]. Meanwhile, some studies have also proposed the presence of enhanced
vegetation greenness in Central Asia [28], and further studies have documented a significant spatial
heterogeneity [31,34] and seasonal diversity [25,35] in the vegetation greenness. Several studies have
tried to reveal the trends in climate indicators and NDVI based on linear trend regression [1,34].
However, this approach might be insufficient to reveal variations in nonlinear and non-stationary
trends, so Extreme-Point Symmetric Mode Decomposition (ESMD) was proposed, which has been
proven to be effective in revealing nonlinear trends such as those of climate and vegetation [36,37].

Previous studies have mainly focused on the fluctuation and trends of temperature and
precipitation. However, both the frequency or severity of climate extremes have the potential
to have widespread impacts on the natural ecology [38]. Particularly, the occurrence of climate
extremes might threaten vegetation growth, which has attracted widespread attention [39,40]. Related
studies show an intensifying trend in climate extremes in recent decades around the world, including
in Europe [41], North America [42], Central Asia [43], East Asia [44,45], and Oceania [46]. Nevertheless,
many unknowns remain regarding the correlation between vegetation dynamics and climate extremes.
Thus, as for arid and semi-arid regions, the response of vegetation dynamics to climate change should
give priority to climate extremes.

As the core area of the Silk Road Economic Belt, Xinjiang occupies a vital strategic position in
China’s economic development. However, the vegetation could be very sensitive to climate change
in such a weak ecological environment, which has attracted widespread attention from scientists,
governments, and the public [24]. Therefore, the goals of this study were to: (1) monitor the
spatiotemporal change of NDVI and Land-use/Land-cover (LULC); (2) analyze the effects on the NDVI
and LULC by the climate change; and (3) reveal the response of NDVI to climate extremes.

2. Material and Methods

2.1. Study Area

The study site was the Xinjiang Uygur Autonomous Region of China (Xinjiang, for short), located
on China’s northwest at 73.40◦–96.18◦ E and 34.25◦–48.10◦ N, see in Figure 1. The total land area
is 1.66 million km2, accounting for almost one-sixth of China’s land area. Owing to its deep inland
location on the border of Central Asia, Xinjiang is a typical arid region, with a long-term average
annual precipitation of 150 mm, only about 25% of the average level in China. There are two main
basins lying between three high mountains, with the order from north to south being Altay Mountains,
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Junggar Basin, Tianshan Mountains, Tarim Basin, Kunlun and A-erh-chin Mountains [47]. These high
mountains could block the entrance of water vapor into the large basins [31]. Tianshan mountain lies
in the central part of Xinjiang and divides it into North Xinjiang (NXC, for short) and South Xinjiang
(SXC, for short) [39].
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Figure 1. Location of the study area of Xinjiang (A) in China (B). The figure was mapping based on the
Standard Map NO.GS (2016)2923, which could be downloaded from the Ministry of Natural Resources
in China (http://bzdt.ch.mnr.gov.cn/). The elevation data was collected from Resource and Environment
Data Cloud Platform of China (http://www.resdc.cn/AchievementList1.aspx).

The vegetation is mainly distributed in the mountains and oases [17], while there is significant
spatial heterogeneity between NXC (Grassland and Desert Vegetation dominant) and South Xinjiang
(Alpine and Desert Vegetation dominant). Most vegetation stops growing in winter. So, we chose
May to September as the vegetation growing season, and divided it into Spring (May), Summer (from
June–August), and Autumn (September).

2.2. Data Collection and Processing

The data processing roadmap is shown in Figure 2i.

2.2.1. MODIS Time-Series Datasets

The MODIS-NDVI-16 day-1 km product (MOD13A2, with a spatial resolution of 1 km and
a temporal resolution of 16 days) could be downloaded in the National Aeronautics and Space
Administration (NASA, https://search.earthdata.nasa.gov). In total 1140 remote sensing images with
orbit numbers H23V04, H23V05, H24V04, H24V05, H25V04, and H25V05 and covering the period from
2000–2018 were downloaded. Then the data were spliced and the coordinate system was registered
to the World Geodetic System 1984 (WGS 84) in batches by the MODIS Reprojection Tool (MRT for
short, NASA, Washington, DC, USA). The images were clipped using the boundary vector file of the
study area. Furthermore, the NDVI value unit of the original data was 10−4, so they still needed to be
multiplied by 10−4.

http://bzdt.ch.mnr.gov.cn/
http://www.resdc.cn/AchievementList1.aspx
https://search.earthdata.nasa.gov
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The Monthly Maximum NDVI (MjNDVI i) could be obtained by the tools of Maximum Value
Composite in ENVI 5.3. The equation is shown in formula (1):

M jNDVIi = max(NDVIi j1, NDVIi j2) (1)

where NDVIij1 and NDVIij2 represent the NDVI in the first and second halves of month j in year i,
respectively; M jNDVIi denotes the maximum NDVI of month j in year i. The i represents 1 for the
year 2000, 2 for the year 2001, and so on, while j is 5 for May, 6 for June, and so on.

Furthermore, MjNDVI i was averaged to obtain the average seasonal NDVI (SkNDVIi, k = 1,2,3
represents spring, summer, and autumn respectively) and the average NDVI in the growing season
(GNDVIi). The i indicates the year from 2000–2018. Previous studies regarded areas of NDVI being
less than 0.1 as non-vegetation covered areas (NVCA) [17,39], which could be extracted by Mask using
ArcGIS 10.6 (Environmental Systems Research Institute, Redlands, CA, USA).

The continuously observed daily meteorological data in 2000–2018 were obtained from the
National Meteorological Data Center of China (http://data.cma.cn/). The climate indices in the year i
could be calculated based on daily data, including the yearly average temperature in spring (S1Temi),
Summer (S2Temi), Autumn (S3Temi) and the Growing Season (GTemi); and the yearly precipitation
in Spring (S1Prei), Summer (S2Prei), Autumn (S3Prei) and the Growing Season (GPrei). Then the
climate indices from 42 meteorological stations (MS) were interpolated into planar raster by Inverse
Distance Weighting (IDW). Notably, temperature could be affected by latitude, longitude, and altitude.
Therefore, the interpolation of temperature should be combined the IDW modify with Digital Elevation
Model (DEM) [48] by Equation (2): {

Th = T0 + A×H
Tdem = Ts −A×Hdem

(2)

where Th is the temperature modified to DEM = 0; T0 and H are the temperature and DEM of MS.
A is temperature drop rate (= 0.491 ◦C/100 m) [48]. Ts is the results of IDW of Th. Hdem is the DEM
raster data, which could be download from Resource and Environment Data Cloud Platform of China
(http://www.resdc.cn/AchievementList1.aspx). Tdem is the results of temperature interpolation by IDW
modified with DEM.

2.2.2. Land-Use/Land-Cover (LULC) Datasets

The LULC Dataset was collected from the Resource and Environment Data Cloud Platform (http:
//www.resdc.cn/data/), which was released by the Chinese Academy of Sciences. Then, we download
the LULC datasets in 2000 and 2018, and extracted the study area by Mask using ArcGIS 10.6.
The raster dataset had 25 types, with a spatial resolution of 1 km. For the actual situation in Xinjiang,
the LULC types were re-divided into twelve types, including Forest, Shrub, Water, Grassland (high
coverage), Grassland (moderated coverage), Grassland (low coverage), Permanent snow, Cultivated
land, Construction land, Sandy desert, Gobi desert, and Bare land.

2.3. Methods

The technology roadmap is shown in Figure 2ii,iii.

2.3.1. Inter-Annual Change Analysis and Mann–Kendall Test

The Extreme-point Symmetric Mode Decomposition (ESMD) is an adaptive signal decomposition
method developed by Hilbert-Huang transformation [37]. The data could be decomposed from high to
low frequency to generate a series of intrinsic mode functions together with an adaptive global mean
curve. [14]. The ESMD could separate the interannual and general climate trends [36]. The ESMD was
implemented with the Java-based ESMD4j v1.8 software (Qingdao University of Technology, Qingdao,
PRC). The main steps of the software: (1) Set the sampling interval equal to 1. (2) Select the minimum

http://data.cma.cn/
http://www.resdc.cn/AchievementList1.aspx
http://www.resdc.cn/data/
http://www.resdc.cn/data/
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number of residual mode extremum points and the maximum number (≤40) of iterations, and then
calculate the variance ratio to determine the optimal number of filters. (3) Decompose and calculate
the mode and generate the adaptive global average (ESMD trend). Besides the ESMD, the Linear
Regression Method (LRM) was used to analyze the trends of climate and NDVI [49].

The Mann–Kendall Test is a non-parametric method that is used to detect trends in a time series;
it can eliminate outliers and reduce the impact of missing data [13,20]. Therefore, it has been widely
used to test long time series trends [50].Int. J. Environ. Res. Public Health 2020, 17, x 5 of 25 
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Figure 2. Technical flow chart. (i) Data preprocessing, (ii) spatio-temporal characteristics of the NDVI
and climate change, and (iii) the effects on the NDVI and LULC by the climate change. Tem and Pre
denotes the temperature and precipitation, respectively. Sk includes S1, S2, S3, and S4, represents spring,
summer, autumn, and growing seasons, respectively. IDW is the Inverse Distance Weighting; ESMD is
the Extreme-point Symmetric Mode Decomposition; LRM is the Linear Regression Method.

For the sequence X = (x1, x2, . . . , xn ), the magnitude relation of xi and xj was first determined for
all dual values. Then the null hypothesis denotes the data in the sequence are randomly arranged,
with no significant trend. Otherwise, the alternative hypothesis denotes the sequence has a trend
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of increasing or decreasing. In this study, trends with p values less than 0.05 were considered to be
significant. The Mann–Kendall statistic S is given by Equation (3):

S =
n−1∑
i=1

n∑
j=i+1

sign(x j − xi) (3)

where n is the number of sequence samples, and xi and xj are time points i and j, respectively. sign(xj −

xi) is a sign function calculated by Equation (4):

sign(x j − xi) =


1 (x j − xi) > 0
0 (x j − xi) = 0
−1 (x j − xi) < 0

(4)

The results of the Mann–Kendall statistic Z approximately follow a standard normal distribution
and can be applied to test the significance of the trend. The Z value is given by Equation (5):

Z =


(S− 1)/

√
Var(S) i f S> 0

0 i f S= 0
(S + 1)/

√
Var(S) i f S< 0

(5)

where Var(S) is expressed by Equation (6).

Var(S) =
1

18

n(n− 1)(2n + 5) −
m∑

i=1

ti(ti − 1)(2ti + 5)

 (6)

where m is the number of tied groups, and ti is the number of observations in the mth group.
In a bilateral trend test for a given confidence level α, if |Z| < Z1-α/2, then the null hypothesis

is accepted, which indicates that the variation trend of the time series data is not significant at α.
Conversely, the null hypothesis is rejected, which indicates that there is a significant increasing (Z > 0)
or decreasing (Z < 0) trend at α.

2.3.2. Spatial Change Analysis

The NDVI’s slope (θslope) was the interannual variability of seasonally integrated NDVI over a
specific time period using least-squares line fitting [26,51]. The equation is shown in formula (7):

θslope =

n×
n∑

i=1
(i×NDVIiq) −

n∑
i=1

i×
n∑

i=1
NDVIiq

n×
n∑

i=1
i2 − (

n∑
i=1

i)
2 (7)

where i is 1 for the year 2000, 2 for the year 2001, and so on. n is the total years (n = 19). NDVIiq is the
NDVI of pixel q in year i, including the GNDVI, and SkNDVI. If θslope > 0, this indicates that NDVI
increased in 2000–2018. Otherwise, it indicates a decreasing trend.

Similarly, the yearly spatial change of temperature and precipitation could also be calculated with
the Equation (8):

Cslope =

n×
n∑

i=1
(i×Ciq) −

n∑
i=1

i×
n∑

i=1
Ciq

n×
n∑

i=1
i2 − (

n∑
i=1

i)
2 (8)
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where C denotes the interpolation result of temperature or precipitation by Inverse Distance Weighting
(IDW), including the GTem, GPre, SkTem, and SkPre. Ciq is the C of pixel q in year i. If Cslope > 0,
this indicates that climate indices increased in 2000–2018. Otherwise, it indicates a decreasing trend.

The F test was applied to test the trend’s significance. We referred to the critical value table
of F-distribution and calculated an F value equal to 4.38 at the level of α = 0.05. Combined with
the results of θslope and F tests, the trend of the NDVI could be divided into four types: improved
significantly (θslope > 0, p < 0.05), improved but not significantly (θslope > 0, p > 0.05), degraded but
not significantly(θslope < 0, p > 0.05), degraded significantly (θslope < 0, p < 0.05).

2.3.3. Climate Extremes

In total, twenty-seven core indices have been defined exactly by the Expert Team on Climate
Change Detection and Indices (ETCCDI) (http://etccdi.pacificclimate.org/) [20,44]. These indices
could reflect the different aspects of extreme climate in different regions [43,52]. As not all indices
were meaningful, some indices were eliminated and fifteen extreme climate indices were selected
for analysis in this study (see Table 1). The definitions could be seen in the report by the ETCCDI
(http://etccdi.pacificclimate.org/definition.shtml).

Table 1. Definitions of extreme climate indices used in this study.

Temperature Precipitation

Abbreviation Index Name Unit Abbreviation Index Name Unit

TMINmean Mean Minimum Temperature ◦C R10mm Number of heavy precipitation days d
DTR Diurnal temperature range ◦C CDD Consecutive dry days d
FD0 Frost days d CWD Consecutive wet days d
SU25 Summer days d SDII Simple daily intensity index mm·d−1

GSL Growing season length d R × 1day Maximum precipitation per day mm
TN90p Warm nights d PRCPTOT Wet day precipitation mm
WSDI Warm speel duration index d R95p Very wet day precipitation mm
CSDI Cold speel duration index d

The extreme climate indices for each year were calculated by RClimdex 1.0 (Climate Research
Branch of Meteorological Service of Canada, Downsview, ON, Canada), an R editor-based software.
Moreover, to ensure the credibility of the results, the data were strictly quality controlled by RClimdex
1.0 before calculating.

2.3.4. Pearson Correlation Coefficient

Each pixel was analyzed spatially to obtain the correlation between the GNDVI and climate
change, the GNDVI and extreme climate indices, respectively. The Pearson Correlation Coefficient (rxy)
was measured using formula (9):

rxy =

n∑
i=1

(xi − x)(yi − y)√
n∑

i=1
(xi − x)2

√
n∑

i=1
(yi − y)2

(9)

where xi and yi are the NDVI and climate index values in the growing season of the year i, respectively.
x and y are the long-time average annual value of the GNDVI and climate index values, respectively.
n is the time series length. The r values range from (−1)–1, and the larger the absolute value of r is,
the stronger the correlation.

Then, student’s t-tests (two-tailed) could be applied using SPSS Statistics 22 (IBM Corp., Armonk,
NY, USA) [5], so as to detect whether rxy was significant or not.

http://etccdi.pacificclimate.org/
http://etccdi.pacificclimate.org/definition.shtml
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3. Results

3.1. Spatiotemporal Distribution of Climate

3.1.1. Temperature

Figure 3A shows the average temperature in the growing season (GTem) of 2000–2018 in Xinjiang.
Owing to the large altitude span, the distribution shows the characteristics of low GTem in mountains
and high Gtem in basins, ranging from (−12.5 ◦C)–30.4 ◦C. Thereinto, the GTem were below 10 ◦C
in most areas of Tianshan, Kunlun and A-erh-chin Mountains. The area of GTem exceeding 20 ◦C in
Tarim Basin and Junggar Basin reached 89.26% and 64.25%, respectively.Int. J. Environ. Res. Public Health 2020, 17, x 8 of 25 
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2000–2018. The Figure was mapping based on the daily meteorological data in 2000–2018 from the
National Meteorological Data Center of China (http://data.cma.cn/).

The variation trends of temperature had different spatial pattern in different seasons, as presented
in Figure 4A1–A4. For growing seasons, a high proportion of the area where the GTem has increased,
accounted for about 70.93% of the total area of Xinjiang. The GTem of the Altai Mountains, the central
Tarim Basin, and the western Kunlun Mountains showed decreasing trends, while the Junggar
Basin, the Tianshan mountains, and the A-erh-chin Mountains showed increasing trends. Among
these, Urumqi, Turpan, and Kashi had obvious increases in GTem, with growth rates of 0.11, 0.10,
and 0.06 ◦C·a−1, respectively. In spring, the average temperature in spring (S1Tem) has decreased,
with higher decreasing trend in NXC but lower in SXC. In summer, the increasing trend of average
temperature in summer (S2Tem) in NXC was stronger than that in SXC. And the distribution of the
average temperature in autumn (S3Tem) trend was approximately consistent with that of the GTem.

Figure 4B1–B4 display the temporal variation of temperature in 2000–2018. Both the ESMD
and LRM showed increasing trends in the GTem. Furthermore, the ESMD observed that the GTem
variation fluctuates, with a trend of first increasing (in 2000–2007 with a rate of 0.047 ◦C·a−1) and then
decreasing (in 2008–2014, with a rate of −0.024 ◦C·a−1) and then increasing (in 2015–2018, with a rate
of 0.012 ◦C·a−1). As for different seasons, the S1Tem showed a significant decline trend with a rate
of 0.0553 ◦C·a−1 (p < 0.1), whereas the S2Tem and the S3Tem increased by 0.0245 ◦C·a−1 (p < 0.1) and
0.0139 ◦C·a−1, respectively.

http://data.cma.cn/
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Figure 4. Spatial-temporal change for temperature and precipitation in Xinjiang during 2000–2018.
(A,C) denote the spatial pattern for the change of temperature and precipitation, respectively. (B,D) are
the interannual variations and the trends of temperature and precipitation, respectively. 1~4 denotes
the in spring, summer, autumn, and the growing season, respectively.

3.1.2. Precipitation

The average precipitation in the growing season (GPre) of North Xinjiang (NXC) was higher
than that of South Xinjiang (SXC), as illustrated in Figure 3B. In SXC, the proportion of area with
GPre ≤ 100 mm accounted for about 87.65%, while the proportion of area with GPre≤ 50 mm accounted
for about 39.62%. By contrast, the GPre in NXC was mostly in the range of 100–150 mm. Moreover,
the GPre around Urumqi and Tianchi reached the highest (426.86 mm).

Figure 4C depicts the change of the precipitation spatial pattern in 2000–2018. The GPre in Kezhou,
Aksu, and Kashi increased significantly, reaching 0.6685, 0.6315, and 0.6173 mm·a−1, respectively.
The GPre of Urumqi in NXC showed a decreasing trend, with a rate of 0.3251 mm·a−1.

However, the spatial variation of precipitation are different in different seasons.

(a) The S1Pre in the vicinity of the Tianshan Mountains tended to increase, while other distribution
characteristics were similar to those in the growing season.

(b) The increasing trend of S2Pre in Xinjiang resembled that of GPre.
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(c) The area with an increasing trend in S3Pre in Xinjiang, NXC, and SXC was roughly the same,
with proportions of 81.62%, 82.93%, and 80.48%, respectively. Unlike other seasons, there was an
obviously high value for the increasing trend of S3Pre around the Altai Mountains (1.476 mm·a−1).

The interannual variation in precipitation for Xinjiang in 2000–2018 is shown in Figure 4D.
The GPre showed an increasing trend with a linear rate of 0.1871 mm·a−1. Moreover, the ESMD curve
showed that the trend of GPre was smooth with a slight decrease from 2000–2007 and an increase from
2008–2018 (with a rate of 0.3483 mm·a−1). As for different seasons, the average precipitation for each
year in Spring (S1Pre), Summer (S2Pre), and Autumn(S3Pre) indicated an increasing trend, among
which the S3Pre increased by 0.2690 mm·a−1 (p < 0.1). The trend rates of S1Pre and S2Pre were 0.2053
and 0.1538 mm·a−1, respectively.

3.1.3. Climate Extremes

Figure 5 shows the average value of the 15 extreme climate indices during 2000–2018. The A1–A8
were temperature extremes. Thereinto, the distribution of TMINmean, SU25, and GSL was consistent
with that of GTem, while the FD0 was opposite to that of GTem. The TMINmean has great spatial
differentiation in Xinjiang, with the highest value of 11.33 ◦C and lowest value of −29.36 ◦C. Besides the
high-altitude mountainous areas, the FD0 was mostly 120 d–180 d, with the frost period generally from
November–March of the next year. The SU25 of NXC was mostly 60 d–120 d, and only the Turpan and
Hami were more than 150 d. However, the SU25 varied greatly in SXC, ranging from 0 d–193 d with
greater values in the Tarim Basin and lower values in the high-altitude mountainous areas. The DTR
showed a large temperature difference between day and night in Xinjiang ranging from 9.04–18.31 ◦C,
with the DTR of SXC was higher than that of NXC. There was no obvious difference (<1 d) for TN90p.
Furthermore, it showed an east-west difference for the distribution of both the WSDI and the CSDI.

As for precipitation extremes (see B1–B7 in Figure 5), there was little difference between SDII
(6.07 mm·d−1) and CWD (4.69 d), indicating the overall drought in the study area. The results of CDD
indicated that SXC was drier than NXC, with higher than 100 d in most area of SXC and lower than
100 d in most area of NXC. Furthermore, the distribution of R10mm, R × 1day, PRCPTOT, and R95
was consistent with that of GPre. The results show that SXC had not only the lower precipitation but
also the lower rainfall intensity than NXC. The areas with high rainfall intensity were mainly located
around Urumqi.

Table 2 illustrates the variation in extreme indices of temperature was stronger than that of
precipitation. The Mann–Kendall test showed that the number of frost days (FD0) significantly
decreased (p < 0.05), the simple daily intensity index (SDII) significantly increased (p < 0.05), and the
number of warm nights (TN90p) significantly increased (p < 0.1). These three indices—FD0, SDII,
and TN90p—varied at rates of −4.221 d·(10a)−1, 0.315 mm·(d·10a)−1, and 0.744 d·(10a)−1, respectively.
Furthermore, the trends in the extreme precipitation indices of wet day precipitation (PRCPTOT) and
very wet day precipitation (R95p) also displayed quick but insignificant rates of increase, with rates of
13.909 mm·(10a)−1 and 7.318 mm·(10a)−1, respectively.
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Figure 5. Yearly average extreme climate indices in Xinjiang during 2000–2018. The meanings of the
abbreviation are as follows: Mean Minimum Temperature (TMINmean); Diurnal temperature range
(DTR); Frost day (FD0); Summer days (SU25); Growing season length (GSL); Warm nights (TN90p);
Warm speel duration index (WSDI); Cold speel duration index (CSDI); Number of heavy precipitation
days (R10mm); Consecutive dry days (CDD); Consecutive wet days (CWD); Simple daily intensity
index (SDII); Maximum 1-day precipitation (R × 1day); Wet day precipitation (PRCPTOT); Very wet
day precipitation (R95p).
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Table 2. The variation trends of the extreme climate indices.

Table Precipitation

Index Rate Unit Index Rate Unit

TMINmean 0.294 ◦C·(10a)−1 R10mm 0.592 d·(10a)−1

DTR −0.211 ◦C·(10a)−1 CDD 0.718 d·(10a)−1

FD0 −4.221 ** d·(10a)−1 CWD 0.013 d·(10a)−1

SU25 −0.578 d·(10a)−1 SDII 0.315 ** mm·(d·10a)−1

GSL 2.335 d·(10a)−1 R × 1day 2.254 mm·(10a)−1

TN90p 0.744 * d·(10a)−1 PRCPTOT 13.909 mm·(10a)−1

WSDI −0.205 d·(10a)−1 R95p 7.318 mm·(10a)−1

CSDI −0.891 d·(10a)−1

Note: significant at *—p < 0.1, and **—p < 0.05, respectively. The meanings of the abbreviations are the same as in
Figure 5.

3.2. Spatiotemporal Distribution of NDVI

Figure 6 reveal evident variations in average NDVI in the Growing Season (GNDVI) in Xinjiang
during 2000–2018, ranging from 0–0.83 with greater values in the north and lower values in the
southwest. Areas with high vegetation coverage generally exhibited an NDVI of over 0.6. However,
these areas only covered 2.61% of the total study area, which primarily found in Altay and Tianshan
Mountains, such as Yili, Bozhou, Altay, and Tarbagatay. Furthermore, the NDVI of less than 0.1 could
be regarded as the non-vegetation covered areas (NVCA), which accounted for 58.01% of the total area,
mainly located in Tarim Basin and east of Junggar Basin.
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Figure 7A,B presents the spatial map of NDVI variation trend and its significance (p < 0.05),
respectively. The part of the study area except NVCA was vegetation coverage area (VCA). Overall,
the tendency of NDVI were heterogeneous for the spatial patterns, but homogeneous for different
seasons. In NXC, the areas with significantly improved GNDVI were mainly distributed in the northern
margin of Tarim Basin and the southern margin of Junggar Basin, accounting for 29.90% and 33.54% of
the VCA. In addition, the proportion of significantly degraded areas of GNDVI accounted for 1.72% of
the VCA; these areas were scattered in the northern foothills of the Tianshan Mountains and at the
edge of the Altai Mountains. The degraded areas were mainly located in the transition zone between
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desert and oasis. Owing to the Taklimakan Desert located in the Tarim Basin, the VCA of SXC was low,
with area proportions of 29.84% for GNDVI. Even so, there was still a high proportion of improved
areas GNDVI (90.63%) in SXC. Among them, significant increases (p < 0.05) in GNDVI (60.47%) also
accounted for a high proportion of the area, which mainly distributed at the margin of Tarim Basin,
especially along the Tarim River.Int. J. Environ. Res. Public Health 2020, 17, x 13 of 25 
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Figure 7. Spatial-temporal change of NDVI in Xinjiang during 2000–2018. (A) and (B) are the variation
and its significance of NDVI. (C) denotes the interannual variations and the trends of NDVI. The NS
represents the correlation is not significant. The NVCA denotes the non-vegetation covered areas.

Figure 7C shows the temporal variation of NDVI in 2000–2018. Both LRM and ESMD displayed an
increasing trend of GNDVI, with linear slopes of 0.0014 a−1 (p < 0.01). Additionally, The ESMD curve
depicted an interannual growth trend was observed in all other years except for the slight decreases in
2006–2008 and 2013–2014. For different seasons, the average seasonal NDVI all increased and reached



Int. J. Environ. Res. Public Health 2020, 17, 4865 14 of 24

1% significance level. The ESMD curves exhibited increasing but fluctuant trends in S1NDVI, S2NDVI,
and S3NDVI, with the linear rates of 0.001, 0.0016, and 0.0012 a−1, respectively.

3.3. Spatiotemporal Distribution of LULC

Figure 8 and Table 3 shows the LULC of Xinjiang in 2000 (A) and 2018(B). Xinjiang had the highest
proportion of grassland, accounting for about 1/3 of the total area. Among them, the grassland coverage
of NXC (about 35%) was higher than that of SXC (about 26%). Low coverage grassland was mainly
distributed in SXC. Additionally, the total area of Sandy desert, Gobi desert and Bare land accounted
for about 2/3 of the total. Notably, the Sandy desert was mainly distributed in the Tarim Basin of SXC,
while the area of Gobi Desert was mainly distributed in the Junggar Basin of NXC.Int. J. Environ. Res. Public Health 2020, 17, x 14 of 25 
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moderated coverage, and low coverage, respectively.

Table 3. Statistics of the LULC in 2000 and 2018 (km2).

Area ID 1 2 3 4 5 6 7 8 9 10 11 12

Xinjiang
2000 59,419 20,941 17,260 114,276 116,699 246,208 9269 38,235 4295 404,838 294,385 309,218
2018 90,253 13,721 13,908 132,260 110,666 239,079 11,357 17,799 8621 405,168 294,932 297,279

Change +30,834 −7220 −3352 +17,984 −6033 −7129 +2088 −20,436 +4326 +330 +547 −11,939

NXC
2000 32,477 17,328 6812 65,756 50,903 79,386 3474 5954 2858 58,502 168,582 104,617
2018 47,628 10,758 3880 75,667 47,614 87,372 4382 2215 5663 50,985 147,471 113,014

Change +15,151 −6570 −2932 +9911 −3289 +7986 +908 −3739 +2805 −7517 −21,111 +8397

SXC
2000 26,930 3603 10,441 48,501 65,775 16,6794 5795 32,217 1437 346,335 125,753 204,813
2018 42,619 2961 10,022 56,550 63,036 15,1661 6975 15,556 2958 354,184 147,422 184,450

Change +15,689 −642 −419 +8049 −2739 −15133 +1180 −16,661 +1521 +7849 +21,669 −20,363

Note: The ID means: 1, Cultivated land; 2, Forest; 3, Shrub; 4, Grassland (HC); 5, Grassland (MC); 6, Grassland (LC);
7, Water; 8, Permanent snow; 9, Construction land; 10, Sandy desert; 11, Gobi desert; 12, Bare land.

Table 4 depicted the transfer matrix of LULC during 2000–2018. The area of Cultivated land
changed the most in Xinjiang, increasing by 30,834 km2 in 2000–2018, which indicated the rapid
development of agriculture in Xinjiang. The area of Construction land had doubled, which mainly
concentrated in NXC. Notably, the area of Permanent snow has been reduced by 20,436 km2 and
more than 80% of them were in SXC. The proportion of Permanent snow transferred into Bare land
and Grassland accounted for 71.5% and 28.0%, respectively. The Grassland (LC) was both the largest
area of transfer-in and transfer-out for all LULC types in Xinjiang and SXC. Furthermore, the area of
Grassland (HC) increased by 17,984 km2 with three main sources, including the transfer of Grassland
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(MC) and Grassland (LC), the transfer of Permanent snow and bare land from SXC, the transfer of
Forest from NXC. The Sandy Desert and Gobi Desert areas seemed to be stable in Xinjiang, but the
equilibrium is an illusion of due to the sharply decrease in SXC and great increase in NXC.

Table 4. Transfer matrix of LULC in 2000 and 2018 (km2).

Xinjiang Year 2000 Transfer
inYear ID 1 2 3 4 5 6 7 8 9 10 11 12

2018

1 48,122 677 2567 3764 7983 13,073 525 1928 6171 4323 1120 42,131
2 46 6160 797 4672 1183 376 136 32 2 136 70 111 7561
3 1262 1450 2564 1958 2201 2530 122 3 69 1347 221 181 11,344
4 899 9930 3307 69,926 22,949 7944 479 3557 71 1641 1027 10,530 62,334
5 1766 1178 2809 18210 37,463 26,150 413 1147 83 4786 2539 14,122 73,203
6 2672 574 2448 6677 28,962 102,422 493 1765 188 13,273 23,438 56,167 136,657
7 320 201 184 420 675 808 5991 9 13 1479 806 451 5366
8 4 1 72 350 327 13180 5 3860 4619
9 3170 41 146 134 244 1050 80 1657 555 1276 268 6964
10 300 130 1625 998 3719 34,455 455 78 35,7077 4034 2297 48,091
11 652 93 587 476 2531 26,291 465 54 165 13,822 222,393 27,403 72,539
12 210 503 225 6969 8439 30,782 110 18,488 41 4551 34,253 192,708 104,571

Transfer out 11,297 14,781 14,696 44,350 79,236 143,786 3278 25,055 2638 47,761 71,992 116,510

NXC Year 2000 Transfer
inYear ID 1 2 3 4 5 6 7 8 9 10 11 12

2018

1 26,023 309 859 1847 3530 7201 180 1097 3162 2597 823 21,605
2 36 5567 399 3853 612 87 79 2 2 33 32 56 5191
3 126 975 448 1078 480 443 29 1 9 50 120 121 3432
4 586 8657 2273 44,048 11,890 2817 189 427 49 522 449 3760 31,619
5 1273 818 1360 8113 20,770 10,347 129 62 66 833 1355 2488 26,844
6 1972 313 907 2518 10,861 39,154 157 74 144 3760 13,961 13,551 48,218
7 186 141 49 190 159 203 2491 3 10 534 266 150 1891
8 4 41 19 23 1469 659 746
9 1843 29 99 96 168 877 15 1250 190 854 242 4413
10 117 36 145 133 288 7213 120 69 41,209 1072 583 9776
11 217 41 150 101 297 5629 39 130 5873 124,909 10,085 22,562
12 98 438 123 3738 1829 5392 46 3916 32 2336 22,967 72,099 40,915

Transfer out 6454 11,761 6364 21,708 30,133 40,232 983 4485 1608 17,293 43,673 32,518

SXC Year 2000 Transfer
inYear ID 1 2 3 4 5 6 7 8 9 10 11 12

2018

1 22,094 368 1708 1917 4453 5871 345 831 3009 1726 297 20,525
2 10 592 397 819 571 289 57 30 103 38 55 2369
3 1134 475 2115 879 1720 2086 93 2 60 1297 101 60 7907
4 310 1265 1029 25,868 11,050 5125 290 3130 22 1118 578 6765 30,682
5 492 360 1449 10,093 16,688 15,803 284 1085 17 3953 1184 11,628 46,348
6 699 260 1541 4157 18,095 63,254 336 1690 44 9513 9477 42,595 88,407
7 134 60 135 230 516 605 3500 6 3 945 540 301 3475
8 1 31 331 302 11,688 5 3198 3868
9 1327 12 47 38 76 173 65 407 365 422 26 2551
10 183 94 1480 865 3431 27,242 335 9 315,869 2962 1714 38,315
11 435 52 437 375 2234 20,661 426 54 35 7948 97,452 17,313 49,970
12 112 65 102 3229 6610 25,383 64 14,532 9 2215 11,268 120,861 63,589

Transfer out 4836 3011 8326 22,633 49,087 103,540 2295 20,529 1030 30,466 28,301 83,952

Note: The meaning of the ID is same as Table 3.

3.4. Climate Changes Affects on NDVI and LULC

3.4.1. Climate Change influences on NDVI

The NDVI responded differently to temperature and precipitation for different seasons in
Xinjiang, as presented in Table 5. The GNDVI was positively correlated with temperature and
precipitation in Xinjiang. However, NDVI had a stronger response to precipitation in the growing
season, which indicates that the improvement of vegetation was mainly affected by the increase in
precipitation. Furthermore, the response of NDVI to precipitation was much higher than that of
temperature in spring and summer. The correlation between S1NDVI and temperature was very low
in spring. This means the increase in precipitation in spring and summer was beneficial to the growth
of vegetation. For autumn, the correlations between S3NDVI and temperature increased (p < 0.1).
Meanwhile, the response of S3NDVI to temperature was slightly higher than that of precipitation.
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Table 5. Pearson correlation coefficient between the NDVI and climate for different seasons in Xinjiang
from 2000–2018.

Index Temperature Precipitation

S1NDVI −0.082 0.538 ***
S2NDVI 0.276 * 0.747 ***
S3NDVI 0.321 * 0.278 *
GNDVI 0.082 0.797 ***

Note: significant at *—p < 0.1, **—p < 0.05, and ***—p < 0.01. The S1NDVI, S2NDVI, S3NDVI, and GNDVI denotes
the NDVI in spring, summer, autumn, and growing season.

Figure 9A illustrates that the GNDVI was insignificantly correlated to the inter-annual variability
of GTem in the majority of the study area, with the average coefficient of 0.082. The correlation
coefficients between GNDVI and GTem were negative in the majority of VCA and were significant
negative, especially in the VCA of SXC. Conversely, the regions with significant positive correlation
were mainly located in Tianshan, Hami and Aksu.Int. J. Environ. Res. Public Health 2020, 17, x 17 of 25 
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In the majority of the VCA, the GNDVI had significant and positive correlations to precipitation,
as presented in Figure 9B, but it had weak and negatively correlations to temperature, indicating that
the precipitation affected strongly on GNDVI than temperature during the past 19 years. Concretely,
the significant and positive correlations of GNDVI and precipitation was observed greatly in the
mountains and basins, such as in the Aksu, Hotan, Kashi, Hami, Bozhou, and Altay. Therefore,
the restrain of rising temperature on vegetation will weaken the promoting of increasing precipitation,
with the warming and wetting evolvement trend of the climate for Xinjiang in the future.

3.4.2. Climate Change influences on LULC

With the climate warming, the Permanent snow have melted in large area, resulting in an increase
of 14,628 km2 of Bare land, 77.5% of which was located in SXC. Furthermore, the area of grassland
increased by 5720 km2 due to the water nourishment of melting ice and snow. However, these areas
were mainly located in the mountainous region of high altitude, such as Tianshan and Kunlun
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Mountains. Due to the increase of precipitation, the desert ecosystems such as sandy land, Gobi and
bare land have also been improved, with a total of 12,863 km2 transferred into grassland. Moreover,
the desert ecosystem seems to have become more suitable for cultivation, with 10,452 km2 converted
into cultivated land.

3.4.3. Climate Extremes Influences on NDVI

Table 6 and Figure 10 show the correlation between GNDVI and climate extremes. As for the
temperature extremes, the DTR was significantly negatively correlated with NDVI (with a correlation
coefficient of 0.634), reaching a significance level of 0.01. Spatially, the DTR with higher negative
correlations were mainly located in NXC, indicating that an increase in the temperature difference
between day and night could have a bad effect on vegetation growth in NXC. Moreover, the TMINmean
was significantly positively correlated with NDVI, reaching a significance level of 0.1 with coefficients
of 0.429. These results indicate that night temperature is critical to vegetation growth in Xinjiang.
The correlations between the NDVI and the other five extreme temperature indices were insignificant.
Notably, the FD0 and TN90p showed negative correlations with NDVI, where the coefficient was
equal to −0.341 and 0.311, respectively. It could support the view that the decrease in the frost period
favored the growth of vegetation. The SU25 with higher negative correlations were mainly located
in the southern margin of Tarim Basin, illustrating that the longer time of summer could inhibit the
vegetation growth especially in SXC.

Table 6. Statistics of the correlations between the GNDVI and extreme climate indices in the vegetation
coverage area (VCA) of Xinjiang.

Type Extreme
Indices

Percentage (%) Pearson Correlation
CoefficientNC *** NC ** NC * NC PC PC * PC ** PC ***

Temperature

TMINmean 0.10 0.61 1.01 26.67 54.89 6.25 6.85 3.62 0.429 *
DTR 15.45 19.87 10.98 39.95 12.44 0.43 0.72 0.17 −0.634 ***
FD0 1.02 3.57 4.08 59.80 29.82 0.87 0.68 0.16 −0.341
SU25 1.28 4.13 4.23 52.18 35.22 1.45 1.17 0.33 −0.082
GSL 0.34 1.52 1.75 45.86 47.04 1.83 1.40 0.26 0.133

TN90p 0.11 0.57 0.97 32.70 51.80 5.23 5.76 2.85 0.311
WSDI 0.16 1.22 2.16 52.96 40.16 1.76 1.35 0.23 −0.037
CSDI 0.20 1.19 1.77 44.98 48.45 2.02 1.23 0.16 −0.187

Precipitation

R10mm 0.09 0.40 0.50 11.72 46.43 9.70 15.06 16.10 0.751 ***
CDD 7.25 10.11 7.11 53.44 21.20 0.50 0.33 0.06 −0.317
CWD 0.12 0.50 0.71 25.03 57.86 6.09 6.48 3.21 0.286
SDII 0.08 0.32 0.41 13.26 56.78 10.12 12.74 6.28 0.771 ***

R × 1day 0.12 0.39 0.44 13.37 51.50 10.77 14.08 9.33 0.758 ***
PRCPTOT 0.12 0.41 0.46 10.32 42.05 9.97 15.71 20.96 0.689 ***

R95p 0.06 0.31 0.40 12.64 48.10 11.47 16.07 10.95 0.721 ***

Note: significant at *—p < 0.1, **—p < 0.05, and ***—p < 0.01, respectively. PC and NC represent the positive and
negative correlations, respectively. The meanings of the abbreviations are the same as in Figure 7.

The GNDVI had a stronger correlation to extreme indices of precipitation than that of temperature.
Six extreme precipitation indices were significantly positively correlated with NDVI, of which five
indices (SDII, R10mm, R× 1day, R95p, and PRCPTOT) reached a significance level of 0.01. Among these,
the indices SDII was the most closely correlated with the NDVI, with correlation coefficients of 0.772.
Furthermore, the correlation coefficients between the NDVI and the indices of R × 1day, R10mm, R95p,
and PRCPTOT were 0.758, 0.751, 0.721, and 0.689, respectively. Spatially, these areas were mainly
located in the Tianshan mountain, the southern margin of Tarim Basin, and the western and eastern
margin of Junggar Basin.

These values suggest that the concentrated rainfall could be conducive to vegetation growth in
Xinjiang. One index (CWD) reached a significance level of 0.1 with a correlation coefficient of 0.267.
This indicates that a continuous humid environment is more suitable for vegetation growth in Xinjiang.
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4. Discussion

4.1. Response of NDVI and LULC to Climate Change

The variation in climate extremes was enhanced over the past 19 years, with the characteristics
of more concentrated precipitation and higher temperatures at night. These results confirm that
the climate gradually developed a warmer and more humid pattern in Xinjiang, which confirms
previous claims [24,39,53–55]. Similar studies have reported a significant wetting tendency in northern
Xinjiang [4,56], which is consistent with the trend observed in this study. However, unlike some studies
revealed a trend of dryness in Xinjiang from 2000–2015 [32]. This might be caused by differences in the
selection of research indicators and scales. Additionally, vegetation growth has improved significantly
in the past 19 years in Xinjiang. The observation of a vegetation increase in recent decades is consistent
with the results of the dynamic greening trend for vegetation in Eurasia, Central Asia, and Western
China in previous studies [27,28,56,57]. These variations have led to the optimistic expectation that the
fragile eco-environment in arid regions can be improved [24].

Spatially, both temperature and precipitation have tended to increase over the past 19 years, with
the variation being higher in NXC than in SXC, which is consistent with previous studies [36,55].
Furthermore, the temperature increase in summer was particularly noticeable in NXC, especially in
Urumqi, Turpan, and Hami. These urban areas might act as heat islands, exacerbating the warming
trend [53]. The precipitation trend in autumn tended to be an increase in the Altay Mountains and
a decline in Junggar Basin, which is consistent with previous research [24,36]. As a previous study
reported [11,55], the regions of vegetation showing obvious restoration were mainly distributed in the
Tianshan Mountains, Altay Mountains, and around the margins of Tarim Basin. A similar result was
also found in this paper. The vegetation degradation area was mainly located at the intersection of
desert and oasis, which might have been caused by the lack of water supply. A previous study found
that the NDVI decreased significantly in Taklimakan Desert of Tarim Basin [55].

The spatial patterns of the NDVI were positively affected by both temperature and precipitation
change. Spatially, NXC is more sensitive to precipitation than SXC. The little precipitation and strong
evaporation rate in Xinjiang could have large effects on vegetation growth [24]. Furthermore, in dry
conditions, vegetation might reduce the carbon supply to bacterial communities which, in turn, limits
the growth of vegetation [58–60]. These results confirm previous findings concerning the drought
risk in arid regions, which revealed that precipitation is the primary climatic driver for vegetation
changes [2,25,33].

The rising temperatures might enhance the vegetation growth of Xinjiang by two aspects. Firstly,
a properly increasing temperature might extend the growing season of vegetation. For example,
the response of the NDVI to temperature was slightly higher than that of precipitation in autumn.
This result agrees with previous work [12,35] and provides further evidence that precipitation and
temperature have different effects on vegetation growth in different seasons. Secondly, an increasing
temperature would accelerate the glacial ablation of the high mountains [54,55], and then the runoff

might promote the growth of vegetation. The results of the transfer matrix of LULC could vindicate
this judgment.

The response of NDVI to the extreme index of precipitation was stronger than that of temperature.
Meanwhile, the response of the NDVI to the climate extremes was stronger than the response to climate
change. Extreme drought might be more likely to decrease vegetation growth and even ecosystem
productivity and stability [8]. Furthermore, the NDVI variation in arid regions was eventually
determined by the precipitation increase, especially by precipitation extremes [39]. Therefore, extreme
precipitation could be regarded as a vital factor in the variation of NDVI in Xinjiang, especially for
continuous concentrated precipitation. As for temperature extremes, the results indicated that the mean
minimum temperature (TMINmean) and warm nights (TN90p) had significant positive correlations
with the NDVI, which is consistent with previous research [39,43,44,52]. Furthermore, we did find
that the diurnal temperature range (DTR) was significantly negatively correlated with the NDVI,
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especially in NXC. This illustrates that the significant enhancement of vegetation was consistent with
the significant increase in the night temperature in Xinjiang. Thus, higher night-time temperatures in
the study area could regulate and enhance vegetation growth by reducing the frost risk and increasing
vegetation respiration.

4.2. Suggestions, Limitaion, and Prospects

The vegetation in arid areas could be more sensitive to climate change, which might influence
the eco-environment in the countries and regions of the Belt and Road [4]. The work could enrich the
understanding of the effects of climate change on land cover change and vegetation dynamics, laying
the basis for its sustainable management. Consequently, the advantages and disadvantages of climate
change and its influence on vegetation should be fully comprehended by the local government.

(a) As for the advantages, climate change might create an environment that is more suitable for
specific types of vegetation. For example, the grassland showed the highest levels of improvement,
with these areas showing positive responses to an increase in precipitation. These findings could
support a scientific basis for the implementation and management of ecological restoration
programs to improve the fragile environment. The government could use the advantages of
vegetation growth from climate change to implement some ecological restoration strategies
(e.g., enhancing the protection of grassland especially during periods of increased precipitation).

(b) Regarding the disadvantages, an increase in temperature will accelerate the melting of glaciers on
high mountains, which could nurture and enhance the vegetation growth. However, it could
also exacerbate water shortages and increase the Bare land, which would threaten the fragile
local arid ecosystems. Thus, the local government should carry out effective measures to tackle
climate warming, such as increasing energy conservation and emission reduction efforts. Notably,
Xinjiang is the National Large-scale Coal Mining Base of China, where the carbon emissions of
coal consumption cannot be ignored. Therefore, the local government should actively optimize
the structure of energy utilization.

Because of the complexity of the vegetation and its response to climate change, there were still
some limitations in this study. Owing to the topographic relief, and the sparse MS which mainly in
or around cities, which could affect the accuracy of the results. Notably, the irrational anthropogenic
socioeconomic activity could disturb the growth of vegetation, such as the increment of Cultivated
land occupied the grassland of 19,483 km2. Thus, further research should be done to quantitatively
analyze the coupling mechanism between climate change, vegetation growth, and human activities.

5. Conclusions

This work proves and evidences the effect of climate change on land cover change and vegetation
dynamics, laying the basis for its sustainable management. Since climate change showed a warming
trend, the Permanent snow has been reduced by 20,436 km2. The NDVI exhibited an increased volatility
trend, with the significant improvement regions mainly located in the margin of basins. The humid
trend could provide more suitable conditions for vegetation growth and ecological restoration, but the
warmer might prevent vegetation growth. The response of NDVI to precipitation was stronger than
the response to temperature. Spatially, NXC was more sensitive to precipitation than SXC. Seasonally,
the response of NDVI to precipitation was higher than the temperature in spring and summer; but in
autumn, it was the opposite. Continuous concentrated precipitation could be considered as a vital
factor for vegetation dynamics in Xinjiang. Furthermore, the significant enhancement of vegetation
was consistent with the significant increase in night-time temperature. Therefore, the reduction in the
diurnal temperature range and higher night-time temperatures could enhance vegetation dynamics.
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