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Realization of Rectangular Artificial 
Spin Ice and Direct Observation of 
High Energy Topology
I. R. B. Ribeiro1,6, F. S. Nascimento2, S. O. Ferreira1, W. A. Moura-Melo1, C. A. R. Costa3,  
J. Borme   4, P. P. Freitas4, G. M. Wysin5, C. I. L. de Araujo   1 & A. R. Pereira1

In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming 
two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal 
and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios 
γ = a/b =  2, 3 and 4  are studied. Theoretical calculations of low-energy demagnetized configurations 
for these same parameters are also presented. Experimental data for demagnetized samples confirm 
most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does 
not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results 
also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular 
lattices with a critical ratio γ = γc =  3, supporting previous theoretical predictions.

Recently, the study of materials with frustrated interactions has received a lot of attention in an attempt to under-
stand new states of matter1–9. The main problem concerning the experimental investigation of the properties of 
these structures is to find natural materials (in two and three dimensions), which not only clearly exhibit frus-
tration but also provide reproducible results and adequate control for measurements. It is not such a simple task. 
An alternative path was provided by techniques of nanotechnology, in which artificial materials can be built with 
desirable properties and attributes in order to permit the materialization of a large variety of different sorts of 
geometrical frustration10,11. Especially, artificial spin ices in several different lattice geometries are important exam-
ples5,8,12–14. They are two-dimensional (2d) arrays of elongated magnetic nanoislands, each containing an effective 
magnetic moment or spin (see Fig. 1) that mimics natural three-dimensional (3d) spin ice materials1–3. However, 
such an artificial system in a 2d square lattice is not completely frustrated since the ice rule (in which two-spins 
must point-in and the other two must point-out in each vertex) is not degenerate (the two topologies that obey 
the ice rule have different energies5,6) and, therefore, the ice regime is not stabilized. Despite this, as in natural spin 
ices, artificial square ice (and even other kinds of artificial lattices) also supports quasiparticle excitations that are 
similar to magnetic monopoles6,14–17. Indeed, as shown by Castelnovo et al.2, excitations in natural spin ices behave 
like a magnetic monopole-antimonopole connected by a non-energetic but observable string (it is slightly different 
from the Dirac monopoles in which the string is also non-observable18). These objects and their strings were found 
by measurements from neutron-scattering experiments19–21. On the other hand, in general, monopole like excita-
tions are of different types in artificial ice materials. For instance, the 2d artificial square ice supports excitations in 
which the oppositely charged monopoles occur connected by observable and energetic strings (a kind of Nambu 
monopole-antimonopole pair16,22,23). Therefore, it would be interesting to imagine and construct 2d artificial lattices 
whose monopole pair excitations would have a string tension that tends to vanish in such a way that, opposite mag-
netic charges would be effectively interacting only by means of the usual Coulomb law. However, in two dimensions, 
there is still additional entropic effects, which may cause some difficulties for this picture as we will remark later.
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A recent theoretical proposal for vanishing the string tension was made to transform the square array into a 
rectangular one17. Inspired by this modified system, here we propose to realize an experimental study based on 
magnetic atomic force (MFM) measurements of the ground state and excited states of rectangular artificial spin 
ices (RASI). Denoting the horizontal and vertical lattice spacings of the rectangular array by a and b respectively 
(but always keeping the same dimensions for all magnetic bars), and defining a parameter (the aspect ratio) that 
controls the stretching of the lattice γ ≡ a/b, then, the theory17 predicts that the ground state suffers a transition at 

3γ =  (or equivalently at 1/ 3  by interchanging x and y axes, or make γ ≥ 1 to avoid this ambiguity). Figure 1 
shows an example of a fabricated rectangular array for 2γ = . In Fig. 1a,b, we present the sample topography 
and each island magnetic dipole (with topologies), respectively. In our investigation, we basically compare arrays 
with ratios γ < 3 and γ > 3 to the array having the critical value 3cγ γ= =  (from now, dubbed γc-array). 
For this comparison, we choose systems with lattice parameters having ratios equal to γ = 2 and γ = =4 2. 
Really, we clearly observe that such a deformation can tune the ratios of the interactions between neighboring 
elements resulting in different magnetic ordering of the system.

Before starting to discuss our work, it would be useful to describe earlier results about rectangular lattices. 
Indeed, theoretical calculations indicate that, for 1 3γ< < , the ground state (denoted GSQ) has residual mag-
netic charges (but not magnetic moments) in all vertices, alternating from positive to negative in neighboring 
vertices. Such an idea of charge excess in the vertex centers is simplified (as discussed below) since this theoretical 
approach used the dumbbell model in the context of a system containing magnets that really have a length. 
Therefore, forgetting this trouble for a while, the total magnetic charge is zero. On the other hand, for 3γ > , the 
ground state (denoted GSM) exhibits alternating residual magnetic moments (but not charges) in all vertices and, 
again, in this case, the total magnetic moment is zero. Exactly at the critical value γ γ= = 3c , these two differ-

Figure 1.  Artificial spin ice in a rectangular lattice. Consistent with other types of geometry (square, kagome 
etc), the ground state of a rectangular spin ice also obeys the ice rule in all vertices, which, in the present case, 
dictates that two spins must point-in and the other two must point-out. Excited states violate of the ice rule. The 
particular array shown here has the aspect ratio γ = =a b/ 2 . (a) Atomic force microscope topography of a 
typical sample for 2γ = . (b) Picture from the magnetic force microscope of single domain permalloy 
magnetic nanoislands (300 nm × 100 nm × 20 nm). Bright and dark ends of each elongated nanoisland indicate 
the opposite poles and give the direction of the magnetic moment of the islands. (c) The five possible topologies 
in this system. The circles in some vertices represent magnetic charges. We remind that the ground state GSQ is 
formed by the topology T0, while the ground state GSM is formed by topology T1.
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ent configurations GSQ and GSM have the same energy and, therefore, the ground state at this particular γc 
becomes degenerate, suggesting a residual entropy at absolute zero temperature similar to what happens in natu-
ral1,2 and (3d) artificial9,16,24 spin ice materials. As a consequence, at 3cγ = , the string tension connecating 
opposite magnetic charges tends to vanish and, in principle, the monopoles should become free to move. 
However, a description of free monopoles is not so simple in two dimensions. Really, in addition to the usual 
Coulomb interaction, there is an entropic effect that generates an attractive force between charges22,24, whose 
potential is proportional to the system temperature T. Its source comes from the fact that two monopoles should 
be attracted because there are more ways to arrange the surrounding dipoles in the lattice when they are close 
together (more space for disorder). This potential is given by TlnR, where R is the distance between a monopole 
and its antimonopole in a pair. Our experiments were accomplished at finite temperature and so, it is a huge chal-
lenge to find free monopole movement in these 2d arrays, even when the system parameters allow zero string 
tension. A possible way to avoid some protagonism of the entropic effect is to construct artificial spin ices in three 
dimensions. It consists of two sublattices of nanomagnets that are vertically separated by a small distance9,16,24–26 
(a height offset h). The ice regime is found for a particular value of h = hc. Such a material was already produced 
and its authors have demonstrated unambiguous signatures of a Coulomb phase and that the local excitations are 
free magnetic monopoles evolving in an extensively degenerate, divergence-free vacuum26. Nevertheless, in 2d, 
things work in a very unusual way and, besides the usual attractive 3d Coulomb potential (1/R), the entropic 
attractive 2d Coulomb potential (Logarithmically with R) is an additional trouble for monopole movements. 
Further, even for the degenerate γc-array, the two topologies T0 and T1 may coexist in the ground state and so, a 
purely Coulomb phase may be questioned; however, such a discussion is out of the scope of this paper.

Differently from the planar square lattice (which has four distinct topologies5 for the four spins meeting at each 
vertex), the rectangular lattice exhibits five topologies17: T0, T1, T2, T3, T4 (see Fig. 1c). The first two (T0 and T1) obey 
the ice rule (two-in, two-out) with their energies depending on the parameter γ. For γ< <1 3, the energy of T0 
is smaller than the energy of T1, while the contrary is valid for γ > 3 . It explains the ground states GSQ for 
1 3γ< <  and GSM for γ > 3. Figure 2 illustrates how the topology T0, even obeying the ice rule (with two-in, 
two-out), has a residual magnetic charge (Fig. 2a), while the same does not occur for the topology T1 (Fig. 2c). 
Moreover, we also show the configuration of the ground state GSQ with its residual magnetic charges (alternating) 
at every vertex (Fig. 2b) and the configuration of the ground state GSM, which has residual magnetic moments (also 
alternating) at every vertex (Fig. 2d). However, we have to mention (to avoid some confusion) that the charge shown 
in Fig. 2 was constructed by the magnetic moment divided by the vertex-vertex lattice spacing, as used in natural 
spin ices2, where the atomic magnets can be treated as point dipoles. Of course, in artificial spin ices, the nanoislands 
are not point dipoles since they have a finite length. The magnetic charge is confined to the end of the nanoisland 
and, therefore, in these circumstances, the magnetic charge is defined by the moment divided by the length of the 
nanoisland27 as usually found in the literature. Although the dumbbell picture used by Castelnovo2 et al. for natural 
spin ices cannot be simply transposed to the artificial spin ice (since it does not describe the system quantitatively), 
it was used in Fig. 2 only to show (qualitatively) some differences between artificial square and rectangular spin ices. 
Therefore, in real RASI, in the ground state GSQ, the schematic excess of magnetic charge along the vertices should 
not be spherically symmetric. Indeed, as it can be easily seen in Fig. 2a, such a hypothetical central charge distribu-
tion has a strong quadrupole moment. In the most part of the subsequent text, we use the term topology even for the 
excitations identified with monopoles (i.e., T2, T3 and T4) instead magnetic charges.

Results and Discussion
From the MFM measurements performed on the samples, we analyzed the distribution of topologies and total 
magnetization for three previously demagnetized RASI arrays studied (a b/ 2= , 3  and 4), with a closer view 
presented in Fig. 3. To accomplish that, we computationally mapped the imaged dipole configurations and 
assigned a value mx = ±1 or my = ±1 to each island moment, depending on the island magnetic orientation, as 
shown in Fig. 4. Table 1 summarizes the averaged experimental results, obtained after analysis. There is a very low 
total magnetization (in a range 0.03–0.10, close to zero), indicating a rather efficient demagnetization protocol. 
Additionally, the experimental data for the topology densities are very different from those expected for arrays 
with randomly oriented individual moments (n(T0)) = n(T4) = 12.5%) and (n(T1) = n(T2) = n(T3) = 25%); this is 
another indication that the demagnetization was successfully applied on the samples (for our purposes, the rele-
vant parameters used in the experimental process to demagnetize the arrays were suggested by our Monte Carlo 
simulations as explained below; see also the Methods Section). Curiously, a few number of T4 topology (which has 
the highest energy) emerges for large enough γ, i.e., for 3  and 4  RASI. It is not seen for 2γ = . However, the 
direct experimental observation of this topology has never been predicted by our Monte Carlo calculations. In 
terms of real lattices and nanoislands, one possible reason to explain the appearance of T4 topology in experi-
ments is the significant reduction of the energy scale between higher and lower energy of topologies (Fig. 1c).

For the ground state topologies (T0 and T1), we found that the density of the T1 topology, as a function of γ, has 
a minimum at γ γ= = 3c . The same can be said about the density of the T0 topology (but with values roughly 
four times smaller than the T1 topology). On the other hand, by taking into account the presence of 
monopole-antimonopole pairs in these systems (excitations above the ground state associated with T2 and T3 
topologies), we notice that their density (the sum of T2 and T3 densities) is greater for rectangular lattices with the 
critical aspect ratio (γ = γc) than that observed for others values of γ. These remarks can be seen in Table 1, which 
shows that the critical γc-arrays exhibit the maximum number of monopoles possible. Note the explicit correla-
tion between the smaller region of ground state and larger number of excitations when γ = 3 (i.e., the mono-
pole density and the ground state topologies as a function of γ would present a maximum and a minimum, 
respectively, at γ = γc).
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The experimental observations were taken at room temperature (however, it is not important since these per-
malloy arrangements are expected to be athermal). This suggests that the different numbers of monopole pairs 
observed for different values of γ results from a purely geometrical effect, reinforcing the fact that monopoles 
could be more spontaneously generated in γc-arrays. A simple argument could give some support to this picture: 
considering that the total energy of a pair depends also on the energy of the string connecting the monopole 
with its antimonopole6, then, a reasonable hypothesis for this geometrical influence on monopole number is that 
the string energy decreases as γ → γc, corroborating previous theoretical results17, which predict very low string 
tension for γc-arrays. Indeed, in Fig. 4, in a large section of a sample with γ = γc, one can clearly observe a great 
quantity of monopole-antimonopole pairs (most of them with a monopole separated from its antimonopole by a 
distance equal to a or b) and also a small quantity of monopoles almost isolated.

We also carried out Monte Carlo (MC) calculations using macro Ising spins for the island dipoles to compare 
with experiments. To be closer to the experimental situation described above, a demagnetization field is included 
in the simulations. This differs from the earlier calculations17, which do not consider external fields. Figure 5 
shows the topology densities after having applied the demagnetization procedure in the MC simulations and its 
comparison with the topology densities measured by MFM. The theory indicates that the final topologies depend 
significantly on α, which is the angle that the external magnetic field is applied in relation to the larger lattice 
spacing (horizontal or a-axis in Fig. 3). It is expected mainly for α ≈ π/4, which affects spins in both vertical and 
horizontal directions. On the other hand, for α < 0.15π (α > 0.35π) the energetic flow occurs only on horizontal 
(vertical) dipoles. Of course, such behavior is a consequence of the fact that, if the external field is too oblique in 

Figure 2.  Detailed view of the ice rule in the topologies T0 and T1 in a rectangular ice, illustrating (with the use 
of the dumbbell model) how residual magnetic charges may occur even in the two-in, two-out ice rule. (a) In 
the T0 topology, the vertical dipole pairs as well as the horizontal dipole pairs are pointing both in or both out 
along opposite directions. Since the vertical magnetic bars are closer than the horizontal ones in each vertex, 
the resulting density of south (north) pole of the vertical dipoles are larger than the density of north (south) 
pole of the horizontal dipoles, inducing a residual charge, whose strength is estimated as |Q| = 2(μ/b − μ/a), 
where μ is the magnetic moment of the nanoislands (positive or negative values are associated with the opposite 
poles). Here, the magnetic charges were transported to the vertex center rather than localized at ends of the 
bars only to show schematically the differences between square and rectangular spin ices. However, in real 
RASI, this apparent excess of magnetic charge at the vertex centers presents a strong quadrupole moment. (b) 
Configuration of the ground state GSQ (with alternated residual charges in the vertices). (c) In the topology T1, 
the vertical dipole pairs as well as the horizontal dipole pairs are pointing along parallel directions. It means that 
the density of south (north) pole cancels with the density of north (south) pole vertically as well as horizontally, 
resulting in zero magnetic charge. Therefore, for the T1 topology, there is only a residual dipole (pointing out 
along the diagonal direction) in every vertex. (d) Configuration of the ground state GSM (with alternated 
residual magnetic moments in the vertices).
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relation to the horizontal dipoles, the projection of this field along the perpendicular dipoles will not be sufficient 
to overcome the islands’ switching barriers hc

i, so the perpendicular dipoles will be frozen, i.e., they will maintain 
the initial configuration. We should remark that the MC simulations do not include the effects of thermal fluctu-
ations, which might explain why the T4 topology is not reproduced by them. Perhaps even minor thermally 
induced fluctuations would be enough to help to produce the doubly-charged poles. Initially, samples are magnet-
ized in a diagonal direction, which implies that the topology densities start with the values n(T1) = 1 and n(T0) = 
n(T2) = n(T3) = n(T4) = 0. In the range 0.15π < α < 0.35π, the energetic flow is more equally distributed through 
all the system. Really, Fig. 5a shows the vertex population as a function of α and one can easily see that, for all 

Figure 3.  MFM results of artificial spin ice in a rectangular lattice and representations of magnetic charges 
observed in each vertex with: (a,b) γ = 2; (c,d) 3γ = ; (e,f) 4γ = .
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arrays investigated, the T1 topology density has a minimum while the T0 topology density has a maximum around 
α ≈ π/4, which is the center of the interval [0.15π, 0.35π]. Furthermore, just at γ = γc, these two densities are 
nearly equal when α ≈ π/4. It is important to notice that, for α close to ~π/4, the demagnetization process tends 
to yield the systems to their ground states. For instance, when γ = 3, about 80% of the vertices obey the ice rule 
(equally distributed in topologies T0 and T1); for γ = 2, about 70% of the vertices are in topology T0, which is 
its ground state, while for γ = 4 there are about 60% of the vertices in its respective ground state topology (T1). 
In the last case, there is not an accentuated change of the number of T1 topology as a function of α. The results of 
Fig. 5a are very suggestive and they guided us to use a demagnetization angle α close to zero in our experiments 
as we really did. Actually, the MC simulations indicate that, in general, if one wants to observe a larger number of 
monopoles in the arrays, this experimental demagnetization protocol might be accomplished in small angles α. 
Following this suggestion, all experimental data presented in this work were obtained with α close to zero (see the 

Figure 4.  (a) Large area (100 μm2) MFM view of a 3cγ γ= =  sample and (b) magnetic moments and the 
topologies in each vertex, mapped computationally. Vertices without any circle are in the topology T1. Small 
white circles are residual charges (topology T0); white circles surrounded by a yellow circles are doubly-charged 
monopoles (T4 topology; here, one can see two of them, both in the four-in state). The other circles are single 
monopoles in topologies T2 and T3.

a/b T0 T1 T2 T3 T4

2 0.16911 0.45456 0.25472 0.11731 0.00430

3 0.09050 0.40643 0.38662 0.10651 0.00994

4 0.12656 0.43257 0.35819 0.08020 0.00248

Table 1.  Summary of the experimental results for magnetization and topologies density for =a b/ 2, 3 and 4.
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section about Methods; in principle, this angle was chosen to be zero, but some misalignment must occur due to 
the relatively large size of the samples). Reminding that the experiments were performed by using a small α, then, 
we must compare the experimental data with the MC results only for relatively small values of this angle. In fact, 
Fig. 5a shows a reasonable agreement between theory and experiments for α in the range [0, 0.20π]. Moreover, 
the best agreement occurs when α = 0.2π in the simulations, which is the maximum value of the interval, but 
relatively small (In the figure, the colored circles represent the experimental data and they were placed at α = 0.2π 
only as a guide to the eyes). Even for the best resemblance theory-experiment, our simulations were not able to 
exhibit the T4 topology and yet, the density of the T3 topology is also very small, arising only for large enough α. 
The results for the other three topologies are almost identical to the experimental data (blue, green and red circles 
representing the vertex population for T0, T1 an T2 topologies, respectively). At this point, we can say that the 
highest topologies, which have higher energies, are responsible for the main contrast between our theory and 
experiments. Maybe the system sizes used in our calculations are too small to get good statistics for the topologies 
of low probabilities. Figure 5b shows the theoretical behavior of vertex population for a range of lattice spacings 
with fixed α = 0.20π (top) and the experimental behavior for the three lattices investigated (for small α; bottom). 

Figure 5.  (a) Vertex population densities as functions of angle α between the demagnetizing field and the unitary 
cell along the x-axis for: (Top to bottom), 2γ = , γ = 3 and γ = 4. The MC simulations have a relatively 
good agreement with the experimental data for small α (0 ≤ α ≤ 0.2π). It is reasonable since the experiments were 
performed for α ≈ 0 (the exact value is not precise owing to the microstructure of the samples. We still notice that 
α = 0.2π is the best simulation result for comparison with the experimental data. Then, the colored circles, which 
represent the experimental points, are put around α = 0.2π only for guiding the eyes (dotted lines are also guide to 
eyes). (b) Vertex population densities as functions of γ for the demagnetizing field for experimental (top) and 
theoretical (bottom, with α = 0.2π) results. (c) Topology energies as functions of γ.
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In overall, the theoretical results for the ground state topologies (T0 and T1) are in good qualitative and quantita-
tive agreement with experimental data. However, theoretically, the T0 density goes slowly from approximately 
0.20 for 2γ =  to almost zero (for 4), while experimentally (Table 1 and top of Fig. 5b), this density varies from 
0.16 for 2γ = , decreasing to 0.09 for γ = 3  (similar to theoretical results) but, it turns to increase again to 
0.12 for 4γ = . Therefore, there is an important qualitative difference between our simulations and experiments 
in the region γ > 3. For the density of the T1 topology (green line), the MC simulations indicate that it becomes 
practically constant (around 0.60) as γ varies, while experimental data (see again the Table 1) remains almost 
constant with [n(T1)] varying near above 0.4. Furthermore, considering the monopole excitations (T2 and T3 
topologies), we observe a good quantitative agreement between the MC simulations and experiments (Fig. 5b and 
Table 1) only for T2-type monopole (red line). For T3 topology (cyan line), the simulations lead to a very low 
density as compared to experiments. Despite the differences pointed out here, we can say that, in general, there is 
an overall qualitative (and even quantitative) agreement between the simple Ising spin model for magnetic nano-
islands used in the simulations and our experimental data. These agreements become better in the region 

γ< <1 3 . Finally, we have also calculated the energy of the topologies as a function of γ (see Fig. 5c). The 
calculations indicate that, independently of γ, the energy for creating T3 monopoles is bigger than the energy for 
creating T2 monopoles. It may explain the lower presence of T3 excitations around the lattice in both theoretical 
and experimental results. In addition, the energy of doubly-charged monopoles (T4 topology) is the biggest one 
(as expected), but it decreases relatively rapidly as γ increases. Such behavior, to some extent, justifies the direct 
observation of these T4 excitations in experiments for γ large enough ( 3γ =  and 4 , see Table 1).

In summary, we have experimentally and theoretically investigated two-dimensional artificial spin ices in 
rectangular lattices. Theoretical demagnetization scheme has suggested that the number of monopoles in the 
arrays is more significant only when the angle α between the demagnetization field and the direction parallel to a 
(here, the x-axis) is small. Then, our experimental data were obtained for α ≈ 0 (however, misalignments during 
the experimental demagnetization protocol is expected, effectively increasing this angle). The topology densities 
of the experimental samples (numerically counted from the MFM measurements realized in arrays with 

=a b/ 2 , 3 , 4) were compared to the topology densities obtained theoretically by deadened sinusoidal 
external fields. The overall qualitative agreement between the simple theoretical model and experimental results 
is remarkable. A quantitative agreement is better achieved mainly when the demagnetizing field of the simula-
tions is applied at an angle close to α = 0.20π. Therefore, in general, we can say that the experimental results cor-
roborate the simple theory of Ising spin islands most used nowadays, but interestingly, topology T4 
(doubly-charged monopole), which has the highest energy, could be seen only in experiments for lattices with 
large enough γ. Concerning this fact, MC simulations are able to give, at least, a route for this experimental visu-
alization, showing that the energy of the T4 topology decreases considerably as γ increases (Fig. 5c). Of course, 
some disagreements between the theory developed here and experiments are to be expected in view of the 
exceedingly complex samples as compared to the simple theoretical approach. The behavior of the density of 
magnetic monopoles (topologies T2 and T3) is a purely geometrical effect, having a maximum at an intermediate 
array (γc-array). Such a phenomenon may be associated with the fact that the string tension tends to vanish as 
γ → γc, lending support to previous theoretical predictions17.

Methods
For the fabrication of Permalloy nanoislands, a multilayer with composition Si/Ta 3 nm/Ni80Fe20 20 nm/Ta 3 nm 
was previously prepared by sputtering from tantalum (seed and cap layer) and alloyed permalloy target, on silicon 
oxide substrate. Then, the samples were covered with a 85 nm layer of AR – N7520.18 negative tone photoresist 
and pattered by electron lithography at 100 kV of acceleration voltage. After development, the samples were 
etched by ion milling at 20° from normal incidence, using secondary ion mass spectroscopy to detect the end of 
the process. An ashing in oxygen plasma was subsequently performed to remove the photoresist. The nanoislands 
dimensions of l = 300 nm and w = 100 nm leads to saturation magnetization 780 × 103 Am−1, giving a magnetic 
moment μ = 4.68 × 10−16 Am2 per island. Then, for the y-axis lattice spacing b = 450 nm in our samples, the 
energy scale is D = μ0μ2/4πb3 = 2.4 × 10−19 J. The x-axis lattice constant a ranged from 636–900 nm in such a way 
that we have investigated, by magnetic force microscopy (MFM), RASI arrangements with aspect ratios a b/ 2= , 

3  and 4 . These systems were built on a area of 4 mm2 and the MFM measurements performed in 25 and 
100 μm2 area, which enabled topologies density analysis in arrays of up 12 × 22 unit cell (528 islands). To find low 
energy configurations of the arrays of nanoisland dipoles, an experimental demagnetization protocol was carried 
out with a commercial demagnetizer. In this process, the magnetic field is switched from positive to negative 
values in the sample plane at a frequency of 60 Hz, as the samples are moved away from the coil center. We meant 
to move the samples in a direction parallel to a (x-axis); however due to the microstructure size of the samples, 
some misalignment can be expected. After the demagnetization process, the MFM measurements were carried 
out in four different regions of the samples, in order to improve the statistics. We have also done some Monte 
Carlo numerical calculations of low energy configurations to compare with the experimental data. To optimize 
this procedure, we have tested two different demagnetization protocols12. In the first, the sample is subjected to a 
sinusoidal magnetic field modulated by an exponential decay h(t) = Hmax exp (−t) cos (2π60t), where Hmax repre-
sents the field to saturate the sample. In the second, the magnetic field strength was stepped down (Hmax − 0) in 
magnitude and switched in polarity with each step. However no substantial difference was found between the two 
protocols; so we adopted the first one to perform the experiments. In the simulations we have considered each 
magnetic nanoisland as a macro Ising spin. These spins are coupled via dipolar interactions. To obtain the evolu-
tion of the Ising spins under an external magnetic field, we have adopted the same procedure employed by 
Budrikis et al.28. In this consideration, one spin S

i→
 can be flipped if the total field acting on it satisfies 
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ˆ→
+

→
⋅ < −h h S h( )ext dip

i i
c
i, where S

iˆ  represents a unit vector along the spin direction, hext
→

 is the external field, 
→
hdip

i
 

is the dipolar magnetic field produced by all spins of the lattice at the position where spin i is placed and hc
i is the 

island’s switching barrier. A perfect system is represented by a constant barrier while disorder can be imple-
mented by taking hc

i from a Gaussian distribution with standard deviation σ. Here we consider disorder in the 
system to be absorbed into the dispersion of the switching barrier.
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