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Abstract

In this study, we used electrocorticographic (ECoG) signals to extract the onset of arm

movement as well as the velocity of the hand as a function of time. ECoG recordings were

obtained from three individuals while they performed reaching tasks in the left, right and for-

ward directions. The ECoG electrodes were placed over the motor cortex contralateral to

the moving arm. Movement onset was detected from gamma activity with near perfect accu-

racy (> 98%), and a multiple linear regression model was used to predict the trajectory of the

reaching task in three-dimensional space with an accuracy exceeding 85%. An adaptive

selection of frequency bands was used for movement classification and prediction. This

demonstrates the efficacy of developing a real-time brain-machine interface for arm move-

ments with as few as eight ECoG electrodes.

Introduction

A brain-machine interface (or BMI) uses brain signals as a means of controlling external

devices. In recent years, the scientific community has focused considerable efforts in develop-

ing BMI systems that would allow a person with an amputation or with a high-level spinal

cord injury to control complex prosthetic devices or multi-degree-of-freedom robotic arms

[1–5].To generate control commands for such a device, it is necessary to detect several control

parameters. These parameters can include: (i) movement onset; (ii) direction of movement;

(iii) desired end-position of the arm and/or hand; (iv) position over time; (v) velocity; and (vi)

grasping posture to be performed once hand reaches the object. This paper is concerned with

the rapid and accurate determination of movement onset and movement trajectory.

Ideally, these parameters are detected before movement initiation with sufficient lead-time

to execute the desired reach/grasp movement. One approach to detecting ‘discrete’ states like
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onset, direction or grasp posture is to identify templates of brain activity that can then be used

for classification, e.g. [6]. However, shortcomings of this approach include having to fix a pri-

ori the number of gestures used, as well as not being able to specify the parameterization of the

movement, e.g. the choice of speed or force [6–8]. Most of the studies employing template

matching are based on electroencephalographic signals (EEG).

Continuous parameters like hand position or velocity over time can be better addressed by

defining a functional relationship which maps brain activity to movement kinematics. Such

mappings can then be used to drive a prosthetic or robotic arm. A number of studies have

demonstrated successful control of robotic arms with up to 10 degrees of freedom [7–21]. Typ-

ically, these systems use single or ensemble neuron activities acquired via intra-cortically

implanted microelectrodes, and have evolved largely from the original work of Georgopoulos

et al. where they showed that movement direction can be reliably detected from single-unit

activity [9]. There are, however, important limitations associated with single unit BMI’s,

including the highly invasive nature of these recordings, as well as the need for constant system

calibration and tuning.

To address these issues, one way is to look at other recording paradigms. Electrocorticogra-

phy (ECoG) is a minimally invasive method for measuring brain activity compared to intracor-

tical methods because the electrodes do not penetrate brain tissue. ECoG uses macroelectrodes

placed just over (or under) the dura matter and the signals are considered to have larger band-

width and higher spatial resolution than EEG [13,19]. In particular, gamma activity (>30 Hz)

can be readily observed in ECoG recordings. This paper focuses on an ECoG-based approach

with the goal towards decoding movement onset and execution.

A number of studies have explored the neural correlates of movement planning. In an EEG

study, Kornhuber and Deecke [22] found the presence of a slow, negative potential as early as

1.5 seconds before execution of self-initiated movement. More recently, movement onsets

were found to be detectable from EEG using slow components 500 ms prior to movement

onset [23–25]. Slower oscillations in EEG recordings tend to be more informative than the

higher frequency components because faster oscillations suffer from low signal-to-noise ratio

and low spatial resolution. By contrast, ECoG recordings do not have these problems and one

can reliably observe the onset of beta and gamma activity over the motor cortex prior to the

commencement of movement [26,27]. Despite this, there have been far fewer attempts at

detecting movement onset from ECoG signals. For example, Grainmann et al. used changes in

beta or delta activity [8]. While their results were encouraging their method relies on template

matching delaying the detection process by about 1 second. More recently, Wang et al. used a

support vector machine classifier to detect the movement periods from spectral density of the

ECoG activity [27]. Classification was based on temporal and spatial patterns of activity

observed across multiple (50+) ECoG electrodes with extensive coverage of neocortical regions

making such a system not practical for clinical use.

As such, there remains many challenges in developing a truly functional ECoG-based BMI

system. The majority of studies discussed above use ECoG electrodes with a large number of

contacts, with researchers “handpicking” a subset of electrodes providing the most informative

inputs [13,14,28–30]. Moreover, few studies have been able to demonstrate decoding of com-

plete arm kinematics (both movement onset and velocity) from ECoG activity. Instead, the

focus is generally on singular aspects of movement detection like onset or direction only. Sev-

eral earlier studies have investigated continuous, short-ranged movements like joystick manip-

ulation using regression models of ECoG activity [12–14]. But it remains unclear if ECoG

signals can be used to predict upper limb kinematics with accuracies comparable to the ones

achieved using microelectrode recordings.

Reconstruction of arm trajectory from motor cortex
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The main objective of this study is therefore to develop an end-to-end ECoG-based BMI

system that can predict movement onset and trajectory for gross arm movements using a

small number of clinically realizable ECoG contacts implanted over the primary sensorimotor

cortex.

Materials and methods

Participants

Three participants from the Functional Neurosurgery Clinic at the Hospital das Clı́nicas of

the University of São Paulo, Brazil, were recruited for this study. Participants 1 and 3 were

men of 51 and 42 years of age respectively. Participant 2 was a 48 year-old woman. They were

implanted with ECoG electrodes over their primary cortex as part of the treatment for chronic

pain using direct cortical stimulation.

Electrocorticographic (ECoG) electrode implantation

All participants were implanted with epidural electrodes over their sensorimotor cortex as part

of a pain management system. The procedure was identical for all participants. A small crani-

otomy was done under local anesthesia and sedation. Once the bone flap was removed, specific

motor regions were identified either by using transdural electrical stimulation or through the

recording of motor evoked potentials [31]. Thereafter, two paddle leads were implanted in the

epidural space (Lamitrode 3240 St. Jude Medical Inc., U.S.A.), perpendicular to the motor

strip over the regions where contractions were evoked or motor evoked potential recorded

(see Fig 1). Each paddle consisted of a single row of four platinum discs embedded in a silicon

membrane. The electrode contact was 4 mm in diameter and the center-to-center distance

between adjacent contacts was 10 mm.

The four electrode contacts of the first strip were numbered 0–3 (distal to proximal) relative

to the electrode connector. Contacts 0–1 (the first and second contacts of the first strip) were

located over the primary motor cortex. The functional location of Contact 1 was confirmed by

electrically stimulating the cortex (monopolar pulses with frequency 50 Hz, pulse width

100 μs, and amplitude 3–10 μA) and observing the resulting finger or wrist movements on the

contralateral upper limb. Contacts 2–3 were situated with partial coverage over the primary

sensory cortex. The second strip was similarly labelled 4–7 (distal to proximal) relative to the

connector. This strip was placed parallel to the first strip such that Contact 5 (the second con-

tact of the second strip) was positioned over the primary motor cortex. Contact 4 was over the

motor cortex and 6 over the primary sensory cortex. Contact location was identical for all sub-

jects. Fig 1 shows the location of the implanted electrodes for Participant 2 by cross-referenc-

ing a MRI image taken prior to electrode implantation with a CT image taken after the

surgery.

The participants had the electrode leads externalized for 6 days following the implantation

to allow a neurologist to select optimal stimulation parameters (polarity, amplitude, frequency,

duration) before the entire system, including the stimulator, was internalized permanently.

We conducted our study during the time period in which the leads were still externalized. The

study was approved by the University of Sao Paulo Research Ethics Board, and all participants

provided signed informed consent prior to taking part in the experiments.

ECoG, EEG, and EMG recording methodologies

In addition to ECoG measurements, electroencephalography (EEG) signals were recorded at

the C3, C4, Cz, Fz, and Fp1 locations of the 10–20 electrode placement system. The purpose of
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recording EEG activity was to identify and reject trials contaminated with eye or facial/head

movement artifacts. In addition, electromyography (EMG) signals were obtained from the

wrist flexors, wrist extensors, biceps, and triceps muscles. The electromyography signals were

bandpass filtered between 20–500 Hz. These signals were used to determine movement onset

time.

All signals (EEG, ECoG and EMG signals) were recorded using a 16-channel biosignal

acquisition device (g.USBamp, g.tec, Austria) with sampling frequency of 1200 Hz. The signals

were referenced to the ear lobes and grounded to the clavicle. The recording device had a

built-in 8th order digital Butterworth anti-aliasing filter with pass-band frequency range of 0.1

to 500 Hz. To detect movement onset, the activity of the motor cortex was recorded from two

ECoG contacts in a bipolar arrangement. For this, we chose Contact 1 as the signal source of

relevance for our experiments because it was situated directly above the wrist region (verified

using electrical stimulation). Contact 0 was chosen as the reference electrode since it was adja-

cent to Contact 1, and also located above the primary motor cortex (Fig 1).

Fig 1. A) Location of implanted ECoG contacts shown for Participant 2. Location of ECoG electrodes was identical for all participants. Contacts for the

first strip were labeled 0–3 from distal to proximal relative to the electrode connector, and contacts of the second strip were similarly indexed 4–7. The

functional location of Contact 1 was confirmed by electrically stimulating the cortex and observing finger or wrist movements of the contralateral upper limb.

B) Movements performed by the participants of the study: reaching a target placed 30 cm to the middle, right, and left of the individual’s midline.

https://doi.org/10.1371/journal.pone.0182542.g001
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Kinematics recordings

The upper limb movements were recorded using a three-dimensional electromagnetic motion

capture system (Fastrack, Polhemus Inc, U.S.A.) and a custom-made data acquisition software

written in C. The sensor was placed on the index finger. The three-dimensional position of the

sensor was recorded with a sampling frequency of 40 Hz and was time stamped. The upper

limb kinematics were recorded and synchronized using the same computer that captured the

ECoG, EEG and EMG data. An example of recorded signals is shown in Fig 2.

Experimental trial

We defined an experimental trial as the period beginning 4 seconds prior to and ending 8 sec-

onds after the onset of the reaching task. The trials were aligned with respect to the movement

onset, identified by the onset of muscle activity when it exceeded 3 standard deviations of the

baseline value. Trials contaminated with eye blinks were identified through visual inspection

of the activity in the Fp1 and Fz electrodes and excluded from further analysis.

Experimental protocol

The participants performed reaching tasks with the arm contralateral to the site of electrode

implantation while sitting in a chair. The experimental task involved the participants reach-

ing to targets on the left (RTL), middle (RTM) and right (RTR) placed at the level of their

chest between 30–40 cm with respect to the sagittal plane. All targets lie within comfortable

reach for all participants. They were asked to fixate their gaze on the middle target during

movements.

At the beginning of the task the participants had their hand resting on a pillow placed on

their lap (i.e. resting position) which was verified that the arm/hand were relaxed by the

absence of EMG activity. The participants received an auditory cue (‘GO‘ signal) to start reach-

ing towards the pre-specified target. After reaching the target successfully, the participants

were instructed to wait a few seconds before returning their hand to the initial/resting place.

Following this, there was a rest period of randomized duration (6–8 s) before the participants

receive a new ‘GO‘ signal to perform the next task. This sequence was repeated until the end of

the session when each task was repeated at least 40 times.

Analysis

We present our analysis in two main sections. First, we identify changes in the spectral density

of the ECoG recordings attributed to the movement and use them to identify the movement

onset. Second, we show that the activity of the motor cortex can be used to reconstruct the tra-

jectory of the moving arm.

Identifying movement onset. A generalized decrease in band power during voluntary

movement is known as an event-related desynchronization (ERD) and, conversely, an increase

in band power is known as an event-related synchronization (ERS) [32]. These two responses

are measured with respect to a chosen baseline when no movement-related activities are

expected (i.e. at rest). ERD and ERS can be observed in specific frequency bands including

delta (1–4 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (> 30 Hz). For example, the beta

activity is suppressed during movement planning and execution [17,26,32–34], and this

decrease of power has been used successfully to detect the onset of movement [6,8]. While it is

not uncommon for the entire alpha, beta, or gamma bands to show changes during voluntary

movement, usually a narrower set of spectral components specific to each individual shows the

greatest response.

Reconstruction of arm trajectory from motor cortex
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Trials were extracted from ECoG recordings for offline analysis and were analyzed in the

time-frequency domain. A spectrogram, consisting of a windowed short-time Fourier trans-

form of the signal, was used to determine the frequency content changes in power as a function

of time. The ECoG signals were windowed in segments of 0.5 s using a Hamming window. A
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Fig 2. Example of recordings. A) Traces showing raw ECoG signals and EMG recorded during a reaching task for Participant 3. B) Arm velocity in three-

dimensions during the task.

https://doi.org/10.1371/journal.pone.0182542.g002
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Fourier transform was then computed for the segment resulting in a spectrum with a resolu-

tion of 1 Hz. The window was then shifted forward by 10 ms, and the procedure was repeated

until the end of the trial was reached. The resulting spectrogram consisted of a matrix where

each column represents the power spectrum of a windowed signal, and each row of this matrix

represents the time series of power of the signal at a particular frequency. Event-related

changes (ERD/ERS) were calculated by normalizing each row using the power of the baseline

signal for that frequency. Baseline is defined as 500ms window of ECoG activity prior to the

initiation of movement (between -2 and -1.5 seconds). Baseline values were compared statisti-

cally (Kolmogorov-Smirnov test) with the values recorded after the ‘GO‘ cue and during the

movement to identify significant differences in power.

Once the spectrograms were generated, we selected frequency sub-bands specific to each

participant to detect the onset of movement. We did this by first inspecting the entire fre-

quency content of the ECoG signals in 1 Hz bands and identifying the spectral components

with maximum ERD/ERS. The amplitude of these components falls sharply around their

peaks (see results for more details). Therefore, we focused on frequency bands specific to each

individual to maximize detection of movement onsets. Four-hertz bands, centered at the fre-

quency with maximum ERD/ERS activity, were monitored to assess their suitability for detect-

ing movement onsets (see Table 1). For each trial, we calculated the power in the 200 ms

windows with 50 ms overlap. The windows were labelled as “movement” and “no-movement”

through visual inspection of muscle activity. We then used the first 10 trials of the experiment

to train a linear classifier to detect the onset of movement. The classifier associated the ampli-

tude of bandpass activities with the movement state. We then applied the classifier to the entire

(continuous) ECoG recordings. The detection accuracy of the classifier was evaluated using

the so-called F1-score [35], which is a normalized measure quantifying classification accuracy

in cases where one outcome (i.e. idling) is more probable than a second outcome (i.e. move-

ment). The F1-score has a value between 0 and 1, where 1 denotes perfect classification, and is

defined as

F1 ¼
2TP

2TPþ FPþ FN
ð1Þ

where TP, FP, and FN are the true positive, false positive, and false negatives rates respectively.

Reconstructing velocity with multiple linear regression. We used multiple linear regres-

sion (MLR) to model the relationship between neural and kinematic data. To do this, we

assumed that the arm velocity can be reconstructed from the amplitude of activities of low fre-

quency, beta, and gamma bands. MLR models have been used previously to estimate kinemat-

ics from brain activities recorded using EEG [36], MEG [37–39], and ECoG [40,41]. The input

to our MLR model is a vector containing the sampled time points of the cortical activity mea-

sured at each contact which we denote as E(t) and the output is 3D arm velocity, K(t). More

specifically, E(t) is a vector containing the raw unfiltered ECoG activity (8 channels), together

Table 1. Frequencies where maximum ERD/ERS were observed in the gamma and beta bands. Peaks identified by frequencies at which maximum per-

centile changes were observed relative to pre-movement baseline level. Bandwidth defined as the width of frequency band where ERS/ERD was above 50%

of its peak value.

Participant α-β peak

(Hz)

max α-β -ERD

(%)

α-β bandwidth (Hz) γ peak

(Hz)

max γ-ERS (%) γ bandwidth (Hz)

1 22 87 10 155 281 19

2 24 54 20 64 247 8

3 22 52 22 77 114 14

https://doi.org/10.1371/journal.pone.0182542.t001
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with the amplitude of the ECoG activity filtered separately for both the alpha-beta (8 channels)

and the gamma band (8 channels). The amplitudes for alpha-beta and gamma activity were

extracted using an envelope detector together with a low-pass filter set with a cutoff of 5 Hz. In

total, E(t) is a vector of length 24. The relationship between cortical activity and velocity is

given by the equation:

KðtÞ ¼ bþ EðtÞβþ ZðtÞ ð2Þ

where both b and the matrix of regression coefficients β are constants estimated by the method

of least-squares from our experimental data. The final term in the equation η(t) represents the

residual errors.

Although Eq (2) describes the process by which hand velocity can be reconstructed from

ECoG activity, it does not take into consideration two important physiological characteristics

of the motor system. The first is the delay between the cortical activity (motor command) and

the corresponding motor output (movement). This lag represents the transmission delay

between the cortical motoneuron activation and observable EMG/kinematic activities, and

consists of conduction time in the corticospinal tract, relay in the spinal cord, conduction time

of motor axons and the neuromuscular junction [42–45]. We incorporated the delay into the

linear model as a fitting parameter.

The second modification required for Eq (2) relates to the ERD/ERS activity in the beta and

gamma frequency bands. These events are reliable indicators of the starting and stopping of

arm movements [8,27]. Inclusion of these parameters makes it possible to “gate” (i.e. turn on

or off) the predicted output K(t). Specifically, since gamma band activity appears to be well

correlated to the absence or presence of movement (see results, [46,47]), increased gamma

energy can be used as an indication of movement period. Gating by gamma activity was incor-

porated through a threshold function, h(t), with Eq (2) rewritten as

KðtÞ ¼ bþ
Pt1

u¼t0
hðt � uÞEðt � uÞβðuÞ þ ZðtÞ ð3Þ

where u is a positive time lag between the cortical activity and the motor output. The thresh-

olding function h(t) incorporates the movement onset classifier with gamma activity (detailed

earlier) implemented as a Heaviside function. Accuracy of estimated arm velocity was evalu-

ated for each participant through a leave-one-out, a cross-validation method: arm velocity of a

single trial was estimated using the remaining trials as a training set. We calculated the Pearson

correlation between the estimated and actual limb velocity for each permutation.

Results

Detection of movement onset

The power in both the low-frequency (< 2 Hz) and gamma (>30 Hz) frequency bands were

elevated during the movement phase. Correspondingly the alpha-beta frequency band (8–30

Hz) was found to decrease (Fig 3). Changes in all three bands were statistically significant for

all participants (p < 0.01, Kolmogorov-Smirnov test). The ERD/ERS results are shown in

Table 1 where it is evident that the centre frequency and the magnitude of power changes are

different for each participant. In all cases however, we observed that the changes in power in

the gamma frequency range were higher (> +100%) than either those registered in the alpha-

beta or low-frequency bands. Moreover, the frequency bands over which maximal ERD/ERS

was found were different for each participant. This is the reason why we focused on a narrow-

band of frequencies in the gamma band which showed maximum ERD/ERS activity for detec-

tion of movement onset.
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The results also show a clear relationship between duration of ERS/ERD and movement

duration. In Fig 4A–4C, the duration of gamma activity was plotted against duration of EMG

activity. A high degree of linear correlation between the two variables can be observed as

shown by the regression line. Repeating the analysis with the intercept fixed at zero yields lines

with near unity slope and only a slightly decreased goodness of fit (R-squared) (Table 2). This

suggests two important observations: (a) the recorded ECoG signals are not simply evoked

responses, and are likely to be correlated to control and signaling within the motor system;

and (b) gamma activity provides a convenient marker to monitor the commencement and ces-

sation of movement activity.

Similar fits using alpha-beta ERD and low-frequency ERS show similar trends with overall

poorer fit. In particular, the R-squared values using ERD in the beta frequency range were

found to be consistently lower for all participants. Results for the low frequency (<2 Hz) com-

ponent departed from linearity suggesting either issues with reliability or a more complex

underlying relationship.

The high degree of correlation between movement duration and gamma band activity sug-

gests that ECoG activity can also be useful in detecting movement onset and termination. To

do this, we have used linear discriminant analysis using activity from low-frequency (delta),

beta and gamma bands. After training and testing with the classifier, results show that gamma

activity is the best indicator of movement initiation confirming the results we obtained

through regression analysis. Fig 5A displays gamma power during 50 consecutive trials per-

formed by Participant 3. As expected, gamma power is elevated consistently during each reach

task.

Moreover, movement onsets were detected with a near-perfect F1-score. Table 3 shows

F1-scores obtained for all participants and Fig 5B displays one example of the EMG activity

recorded during the experimental trials for Participant 3 along with the predicted onset times.

The figure shows repeated trials of the hand reaching towards the target followed by return to

the rest position. Predicted movement onsets are shown by the dashed red lines.

F
re

q
u

en
cy

 (
H

z)

−1 0 1 2 3 4 5
0

50

100

150

200

250

300

−1 0 1 2 3 4 5
0

0.05

0.1

Time (s)

E
M

G
 e

n
ve

lo
p

 (
m

v) −1 0 1 2 3 4 5
0

50

100

150

200

250

300

−1 0 1 2 3 4 5
0

0.5

1

Time (s)

 

 

−1 0 1 2 3 4 5
0

50

100

150

200

250

300

−1 0 1 2 3 4 5
0

0.01

0.02

Time (s)

−5

0

5

10A B C

Fig 3. Changes in spectral density of ECoG contact located over primary motor cortex derived from activity of Contact 1. Changes shown in dB

with accompanying EMG responses. (A) Response of Participant 1 shows ERS in gamma band (center frequency 158 Hz) and slow oscillations (0–2 Hz) as

well as ERD in alpha-beta band (10–30 Hz). Time required for participants to reach target and to return to initial position was approximately 2 seconds.

Vertical black lines indicate frequency bands where ERS/ERD was reduced by 50% of its peak value (3 dB drop). (B) Results for Participant 2 and (C)

Participant 3.

https://doi.org/10.1371/journal.pone.0182542.g003
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Choice of frequency bandwidths

The frequencies for maximum changes in movement-related activity (ERS/ERD) were differ-

ent for each participant. Moreover, we observed that peak activity lie in a comparatively nar-

row range, with activity falling sharply around its peak (Fig 3 and Table 2). As such, we

tailored the frequency band to be specific to each individual. This helped increase sensitivity to

detection of movement onsets. To illustrate the effect of bandwidth on detection, we plotted

discrimination performance as a function of bandwidth. Bandwidth was increased in 2 Hz

increments and the band power calculated in the time domain after filtering with a 3rd order

Butterworth filter. The ratio between movement (0–1 sec) and pre-movement (-1 to 0 sec)
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Fig 4. Duration of activity plotted versus EMG activity for Participants 1–3 together with regression lines for gamma band activity (A-C) and beta band

activity (D-F).

https://doi.org/10.1371/journal.pone.0182542.g004
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activity was calculated. A large ratio indicates better discriminability, whereas values close to 1

represent little to no discriminability. Fig 6 shows the ratio plotted in dB as a function of band-

width. The ratio between the movement and pre-movement gamma power decreases mono-

tonically and approaches 1 with increasing values of bandwidth.

Reconstruction of velocity from cortical response

Eq (3) postulates that movement velocity can be derived from the amplitude of ECoG activity.

The equation parameters are the delay between kinematics and ECoG (t0), model order (t1-t0),

and the coefficients (β). We used a model with degree of 6, i.e. t1-t0 = 5ms, to avoid over-fitting

Table 2. Parameters for regression lines relating duration of EMG with length of ERD/ERS during movement. Regression lines also calculated with

intercept constrained to zero.

Participant Frequency

Band

Slope

(with 95% confidence bounds)

Intercept

(with 95% confidence bounds)

R-squared

1 γ (ERS) 0.76 (0.66, 0.86) 0.22 (0.08, 0.36) 0.56

2 γ (ERS) 0.85 (0.73, 0.97) 0.23 (0.064, 0.40) 0.77

3 γ (ERS) 0.95 (0.80, 1.10) 0.048 (-0.08, 0.18) 0.61

1 γ (ERS) 0.97 (0.95, 1.00) 0 0.43

2 γ (ERS) 1.00 (0.96, 1.05) 0 0.74

3 γ (ERS) 1.01 (0.97, 1.05) 0 0.62

1 β (ERD) 0.72 (0.45, 0.99) 0.58 (0.26, 0.89) 0.33

2 β (ERD) 0.58 (0.28, 0.88) 0.86 (0.39, 1.33) 0.22

3 β (ERD) 0.86 (0.56, 1.17) 0.63 (0.28, 0.99) 0.56

1 β (ERD) 1.2 (1.13, 1.27) 0 0.13

2 β (ERD) 1.12 (1.03, 1.21) 0 0.02

3 β (ERD) 1.44 (1.35, 1.53) 0 0.44

https://doi.org/10.1371/journal.pone.0182542.t002

Gamma power

-2 0 2 4 6
Time (s)

10

20

30

40

50

60

T
ri

al
 #

0 10 20 30 4 0
Time (s)

0

1

2

3

4

5

6

7

8

9

E
M

G
 p

o
w

er
 (

V
2 )

10-9
A B

50

Fig 5. Data of Participant 3. (A) Gamma power (70–90 Hz) during 50 consecutive trials. EMG onsets are aligned at t = 0. Each trial contains both reaching

and retrieval movements. (B) Time course of muscle activity and detected movement onsets. Four typical movement cycles are shown. The solid line shows

power as calculated from biceps muscle activity (i.e. the square of the EMG signal) and red vertical dashed lines represent detected movement onsets.

https://doi.org/10.1371/journal.pone.0182542.g005
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and maintaining a sufficient number of lags. The delay between ECoG activity and the arm

movement was found by varying t0 iteratively starting from a value of 100 ms—a figure

reported as the latency between cortical motoneuron activity and emergence of EMG [42–45]

—in steps of 5 ms until the highest accuracy was achieved. At each iteration, we measured the

accuracy of the multilinear regression model using a leave-one-out method, calculating the

correlation between the predicted and actual arm movements.

Predicted velocity was measured for each target separately. The average correlation between

the predicted and actual velocities ranged between 78–95%. Table 3 details the accuracy for

each participant. Typical reconstructed velocity profiles are shown in Fig 7 for Participant 3,

where we see good agreement in the arm trajectories. Inspection of the coefficients suggests

that the arm velocity is well predicted from the slow and gamma oscillations, but not from the

alpha-beta activity. Most of the error appears after the arm has reached the target, when the

Table 3. Movement detection through linear discriminant analysis and average correlation coefficient between actual and reconstructed kine-

matic path for reaching to right (RTR), middle (RTM), and (RTL), as well as average correlation.

Participant Detection rate Detection latency Reconstruction Accuracy

F1-score RTL RTM RTR Average

1 0.99 20±5 ms 0.93±0.06 0.95±0.05 0.97±0.04 0.95

2 0.99 30±8 ms 0.82±0.14 0.91±0.1 0.93±0.09 0.88

3 0.98 25±6 ms 0.73±0.19 0.84±0.12 0.82±0.14 0.80

https://doi.org/10.1371/journal.pone.0182542.t003

Fig 6. Effect of bandwidth used to calculate the band power for Participant 3. Ratio between movement

(0-1sec) and pre-movement (-1 to 0sec) gamma power plotted as a function of bandwidth. Both mean and

MSE are shown (solid and dotted lines respectively). The ratio declines monotonically and approaches 1

indicating poor discrimination between movement and rest when using large bandwidths.

https://doi.org/10.1371/journal.pone.0182542.g006
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participant is holding his/her hand in the air at the end of the trial. During this period, EMG

activity was observed in all of the electrodes on the arm. The residual neural activity after

movement cessation is likely to be attributed to maintaining the arm/hand posture against

gravity.

We also looked at further generalizing our findings. First, we explored the possibility of

using a model created using reaching to the right movements to reconstruct reaching to the

left. The following steps were taken. First, the MLR model was trained using all of the trials

corresponding to reaching to the right. Next, we used this model to process reaching to the

left. The average correlation between the recorded value of the arm speed and the predicted

values was 81%, which is very close to the accuracy obtained when the MLR model was devel-

oped and tested using reaching to left trials only (83%). In other words, the MLR model is not

necessarily specific to the direction of reach.

Encouraged by this, we also generated results in the case where all of the trials are pooled

together irrespective of reach direction. This is expected to yield the poorest results due to the

fact that any systematic variations between the different reach directions will be averaged out.

Again utilizing leave-one-out analysis (i.e. training on the entire data set irrespective of direc-

tion before testing a single trial), we found correlations of 81%, 74%, and 70% for participants

1, 2, and 3. Thus, for higher accuracy we would recommend, instead of utilizing a single model

for all directions, to do direction discrimination and keeping a separate model for direction.

Discussion

Significance and comparison with previous studies

In this paper, we presented a method for detecting onset of movement with near perfect accu-

racy using ECoG recordings obtained from the primary motor cortex. This performance is

higher than accuracies reported in earlier studies [7,8,27] despite using very few epidural

ECoG contacts located over the sensorimotor cortex. The high prediction accuracies were

achieved after defining frequency bands specific to each individual by selecting regions which

showed the highest level of change during movement. Inspection of the model suggests that

gamma activity is the best indicator of movement onset as this frequency band shows the
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Fig 7. Arm velocity predicted by the multiple linear regression model. Prediction (solid line) and actual velocity (dotted line) over two different trials of

reaching right (x-axis component) for Participant 3.

https://doi.org/10.1371/journal.pone.0182542.g007
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largest difference between movement and rest activity. In addition to movement onset, we

showed that it is possible to reconstruct upper limb velocity during reaching tasks. Our

approach used a multilinear regression model to reconstruct the movement speed from ECoG

activity. The average correlation between the actual and predicted arm velocity exceeded 80%.

Although we explored reaching to only a limited number of targets, we believe that these

results can be generalized to other reaching directions based on directional tuning of cortical

activity [13,17,19,26,27,33,48,49]. Inspection of the model coefficients showed that upper limb

velocity was best reconstructed from both the upper gamma band activity (60–100 Hz) and

slow oscillations (<2 Hz). Prediction was much poorer using low gamma or the alpha-beta

bands (12–60 Hz). This conclusion is consistent with some earlier studies [13,14,19,20,27].

In our study, movement classifiers were determined on a per subject basis by searching out

bands where the most significant movement-related ECoG activity was observed. This is con-

trasted with the use of preset frequency bands determined without the consideration of cross-

subject variability [13,41]. Measuring ERS’s/ERD’s over wide predefined bands reduces the

discriminability of movement-related changes (Figs 3 and 6). To deal with this issue, some

studies have divided the spectrum into a sequence of bands of fixed width [14,50]. For exam-

ple, Pisthol et al. [14] studied the relationship between ECoG amplitude and arm kinematics

by evaluating activity with bandwidth of 5 to 95 Hz in steps of 10 Hz. We introduced a more

modest approach in this paper by using a 4 Hz band centered at the frequencies where the

highest movement-related activities were found. This approach reduced the number of input

parameters of the model and simplified the fitting process. Individualized selection of fre-

quency bands increased the accuracy of our models both in terms of movement detection and

reconstruction of arm kinematics. While our results were generated from electrodes located

over the motor as well as the sensory cortex, the correlation between predicted and measured

velocities did not changed appreciably when only the electrodes located over the motor cortex

were used (p>0.05, Ranksum test).

Despite recording ECoG activity with only eight contacts, the prediction accuracy achieved

exceeded those obtained by earlier studies with wider electrode coverage of cortical areas [13,14,16,

17]. Schalk et al. [13] investigated circular tracking movements with a relatively restricted range.

Their study yielded an average correlation of approximately 50% for arm trajectory. Pistohl et al.

[14] extended the investigations to less restricted, target-directed, full two dimensional joystick

movements. They showed that arm trajectory can be predicted from the low frequency compo-

nents of ECoG signals with 43% correlation on average. Pistohl et al. also concluded that using the

energy of other frequency bands (e.g. 40–80 Hz) does not significantly improve the prediction of

the hand position [14]. Moreover, the same group found an average delay of approximately 90 ms

in brain activity from the onset of movement. This value is similar to the delay we found in our

analysis between the initiation of the cortical activity and movement onset.

The reconstruction of hand kinematics in our study had a similar performance to kinemat-

ics obtained from intra-cortical microelectrode recordings [11,12]. Wu et al. used a Kalman fil-

ter to decode two-dimensional trajectories from 42 single neuronal units [11]. They obtained

an average correlation coefficient of 88% for hand position, similar to the prediction accuracy

we obtained from only 8 ECoG contacts (85%). However, recording from single neuronal

units continues to be a difficult task in humans due to the potential risks associated with the

implantation procedure and system maintenance.

System feasibility

The electrodes used in this study are commercially available and routinely implanted in neuro-

logical patients. They have been clinically validated for their stability and reliability. The
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current configuration has a number of advantages when compared to other intracranial brain

recording techniques: 1) the ECoG electrodes do not penetrate the cortical surface thereby

reducing the potential risk for tissue damage; 2) ECoG reflects population activities offering a

better prospect for long-term recording stability when compared to single unit recordings; and

3) ECoG requires neither a high sampling rate nor spike detection/sorting capabilities; hence,

the overall computational requirements are considerably reduced. We reconstructed the arm

movement using 8 ECoG contacts with only two contacts placed on the motor cortex. Using a

small number of contacts simplifies the system and results in less computational cost as well as

shorter setup time. Moreover, the model used in this study is a simple linear model that

requires little computational resources to estimate arm velocity. Such computations can be car-

ried out on low-power processors. We believe that this setup is appropriate for real-time and

clinical application for the development of an ECoG-based BMI system.

Encoding of jerk in ECoG activity

An organizational principle for motor control has been proposed following the observation

that arm movements tend to follow a path or trajectory that minimizes jerk [51,52]. Given the

start and end points of the movement as well as its duration, a trajectory of minimal jerk can

be found by minimizing

Zte

ts

j J!ðtÞj2dt

where J!ðtÞ is the first derivative of acceleration, and ts and te are movement start and end

times respectively. To our knowledge, no study has examined jerk minimization in the context

of brain recordings. If the motor system does in fact obey such a principle, one would expect

jerk to be reflected in the neural response underlying a reach task. One possibility is that neural

activity encodes jerk and not velocity as was assumed in the multilinear model presented

earlier.

What we found is that the results of our study do not reject the possibility that the nervous

system encodes jerk. We draw this conclusion from the fact that arm velocity was found to be

well predicted by the ECoG response. Since the velocity function is a bell-shape curve, two

derivatives of this trajectory (for jerk) will yield another bell-like curve. Thus velocity, and jerk,

can both be well-predicted from a multilinear ECoG model. To pursue this matter further—to

better tease apart whether jerk or velocity is encoded—one would require a more complex

motor task for which the velocity and jerk trajectories do not overlap.

Study limitations

There were several limitations to the work presented in this study. First, the number of partici-

pants was small. This was due to the fact that only a limited number of individuals undergo

implantation of ECoG electrodes specifically targeting the motor cortex each year. Direct stim-

ulation of the motor cortex is not a routine intervention for treatment of pain thereby limiting

the number of potential participants for this study. Second, there were a number of unique

challenges with subject recruitment including: (1) that the measurements could only be per-

formed in patients whose electrode contacts were externalized (with not many patients belong-

ing in this group), (2) the contacts were externalized for a short period of time following

surgery, and (3) some patients may not have felt well enough to participate in the research

study after surgery. Third, the placement and choice of number of ECoG contacts in our study
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were dictated by clinical requirements unrelated to the purpose of this study. Indeed, the elec-

trode placement may not have been optimal as coverage over the premotor cortex was missing.

Activity from the premotor cortex has been found to be indicative of movement onset and

direction [27].

Conclusions

We have detailed a system which allows for high accuracy detection of movement onset and

kinematic reconstruction of upper arm movement using a clinically realizable electrocortico-

graphic-based system with only eight contacts placed over the sensory-motor cortex. Our

results indicate that changes in gamma activity are the most reliable indicator of movement

onset. Both low frequency (< 2 Hz) and gamma band cortical activities were used to develop a

linear model which, in turn, allowed the reconstruction of arm velocity during reach tasks

with accuracy exceeding 85%. Our approach differs from that of earlier studies due to the

adaptive selection of frequency bands for use with movement classification and prediction on

an individual subject basis.
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