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Abstract

The importance of accounting for social and behavioural processes when studying public

health emergencies has been well-recognised. For infectious disease outbreaks in particu-

lar, several methods of incorporating individual behaviour have been put forward, but very

few are based on established psychological frameworks. In this paper, we develop a deci-

sion framework based on the COM-B model of behaviour change to investigate the impact

of individual decision-making on public health outcomes. We demonstrate the application of

our decision framework in a proof-of-concept case study based on the 2009 A(H1N1) influ-

enza pandemic in the UK. The National Pandemic Flu Service (NPFS) was set up in

England during the pandemic as a means to provide antiviral (AV) treatment to clinically ill

patients with influenza-like illness, via telephone calls or internet screening, thereby averting

the need to see a doctor. The evaluated patients based on a clinical algorithm and autho-

rised AV drugs for collection via community collection points. We applied our behavioural

framework to evaluate the influence of human behaviour on AV collection rates, and subse-

quently to identify interventions that could help improve AV collection rates. Our model was

validated against empirically collected pandemic data from 2009 in the UK. We also per-

formed a sensitivity analysis to identify potentially effective interventions by varying model

parameters. Using our behavioural framework in a proof-of-concept case study, we found

that interventions geared towards increasing people’s ‘Capability’ and ‘Opportunity’ are

likely to result in increased AV collection, potentially resulting in fewer influenza-related hos-

pitalisations and deaths. We note that important behavioural data from public health emer-

gencies are largely scarce. Insights obtained from models such as ours can, not only be

very useful in designing healthcare interventions, but also inform future data collection.
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Introduction

Human behaviour is a key driver of infectious disease, and there has been a growing recogni-

tion of the importance of incorporating behaviour in epidemic models[1–3]. Over the past

decade, different approaches to coupling behavioural and epidemic models have been pro-

posed including game theoretic models to establish baseline equilibria[1], belief-based models

where model agents make decisions based on a priori beliefs, and simple extensions to SIR

(Susceptible-Infected-Recovered) models[2, 3]. In computer science and multi-agent systems

communities, frameworks such as the Belief-Desire-Intention (BDI) model and layered soft-

ware frameworks are extensively used to model human decision-making[4].

An effective behavioural model will allow individuals within a simulation to dynamically

alter their behaviour in response to an unfolding infectious disease outbreak using decision

algorithms to guide their behaviour[5, 6]. The importance of ensuring that decision algorithms

are based on established sociological and psychological frameworks has been recognised[7, 8],

but few attempts have been made to formalise such frameworks for use in epidemiological

models [1, 2, 6, 8, 9]. Moreover, for a behavioural model to be useful to public health practi-

tioners, it will also have to satisfy the requirement of relatively easy parametrisation of the

model. One decision framework that fulfils both these criteria is the mathematical interpreta-

tion of the health belief model (HBM) as proposed by Durham and Casman[6].

According to the HBM, health-related behaviour is a result of four main constructs: per-

ceived severity, perceived susceptibility, perceived barriers to action, and perceived benefits of

the behaviour. HBM is primarily a cognitively oriented theory of behaviour change that is

known to have its limitations[9, 10]. With a view to improve intervention design and health-

care policy, and to overcome limitations of previously proposed health behaviour theories, the

COM-B (Capability Opportunity Motivation- Behaviour) framework was developed in 2011

[11]. The COM-B framework posits that behaviour change arises from the interaction of the

three essential components (C, O and M), and for an intervention to successfully bring about

behaviour change, one or more of the three interacting components will have to be altered.

One of the biggest advantages of the COM-B framework is that it is intervention oriented, i.e.

its constructs are linked to a set of interventions and healthcare policies. The linking of theory

to intervention design is in line with recommendations given by the Medical Research Council

of the UK (MRC) for intervention design, and this facilitates easy evaluation of the impact of

various interventions on behaviour change[12].

In this paper, we develop a simple decision framework based on the COM-B model of

behaviour change. We illustrate its application in a proof-of-concept case study where we

explore potential interventions that could help improve collection rates for antiviral (AV)

medications during an influenza pandemic. We would like to make it clear at the outset that

the goal of this paper is not to produce precise predictions about the real world. We seek to put

forth a conceptual framework that can then be used to understand important drivers of

health-related behaviour and gain insights into potential interventions.

Materials and methods

The 2009 A(H1N1) influenza pandemic and the National Pandemic Flu

Service

On the 24th of April 2009, the first two cases of 2009 A(H1N1) influenza pandemic in the UK

were confirmed, and by the 13th of June, 1000 cases had been reported[13]. In response to the

rapidly increasing number of patients with confirmed pandemic influenza, the National Pan-

demic Flu Service (NPFS) was launched in England on 23 July 2009 to divert pressure away
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from primary care services for low-risk adult patients with uncomplicated influenza. The

NPFS was a telephone and internet-based service that helped dispense AV medications to

symptomatic patients with influenza-like illness (ILI). Patients with symptomatic ILI who had

an illness duration of<7 days were issued with a unique reference code that would allow them

to collect AV drugs from their nearest antiviral collection point (ACP)[13, 14]. The NPFS

functioned until 11th February 2010. A review of the NPFS revealed that 35.8% of the people

who were authorised AV drugs did not collect them[14]. The AV drug that was dispensed

through the NPFS was oseltamivir which is known to reduce the risk of hospitalisation and

death in patients with influenza, especially when given within 48 hours of symptom onset [15–

18]. It is conceivable that the non-collection of the medication by over one third of the AV-

authorised patients could have had a notable impact on public health outcomes during the

2009 influenza pandemic in England. It is therefore important to understand drivers of health-

seeking behaviour and identify interventions that will improve AV collection rates, and conse-

quently reduce the impact of a future pandemics.

In 2015, a qualitative study was undertaken in which people were interviewed about their

experience with AV medications and vaccinations during the 2009 influenza pandemic. A list

of factors that are likely to influence a person’s uptake of vaccines under each component of

the COM-B framework was identified[19]. We have adapted this list to inform our decision

framework (Table 1). We use this list to guide the links between drivers of behaviour and

behaviour change in our model.

Our model’s structure is defined by two components–the decision framework and the dis-

ease states. In this section, we will describe the two components of our framework in the con-

text of our case study.

The decision framework

Formalising a behavioural theory involves expressing the influence of a set of variables, using

the logic of a particular behavioural theory, to produce an estimate of the likelihood of a behav-

iour. This often means weighting constructs of a behavioural theory and combining them

mathematically. A few different ways of achieving this combination of constructs have been

reported in literature including additive models[8], multiplicative models[20], and logistic

regression models[21]. We build on the work done by Durham and Casman[6], and use a

logistic model to express our decision framework owing to its binary classification of the

COM-B constructs, the ease of parametrising from public health literature and its terse repre-

sentation of behaviour probability.

In the logistic expression of the COM-B model, each construct of the model (C, O and M)

is classified as being in either a ‘high’ state or a ‘low’ state. The odds ratios (OR) of the behav-

iour when being in a particular state (‘high’ or ‘low’) are obtained either from literature or

from analysing data. These values are then combined using the formula below to obtain a

probability (p) of behaviour (b).

p bð Þ ¼
OR0 �

Q
ORxi

i

1þ ðOR0 �
Q
ORxi

i Þ
; i ¼ 1; 2; 3 ð1Þ

In Eq (1), i corresponds to each of the three constructs of the COM-B model–C, O and M

respectively. ORi represents the odds ratio of the behaviour when one of the COM-B con-

structs in the ‘high’ state (relative to the ‘low’ state). For example, if we assume that AV autho-

risations to people with ‘high’ capability (to collect AV drugs) are 3.1 times as likely to result in

collections when compared to those with ‘low’ capability, the OR1 in Eq (1) would be 3.1.

Once we have obtained OR estimates for the O and M constructs, they can be combined using
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Eq (1) to get a probability estimate for AV collection. OR0 is a constant that we will derive

from fitting the model to data. It describes p(b) when C, O and M are in the ‘low’ state. Solving

the logistic equation above will give us a value between 0 and 1. Agents with a p(b) value of

�0.5 will engage in a particular behaviour (collect AV drugs).

During an ongoing pandemic, people are likely to fluctuate between states of ‘high’ and

‘low’ capability, opportunity and motivation respectively depending on the state of the disease

around them and also on the behaviour of their peers. Hence, it is essential that agents in the

simulation are able to update their C, O and M scores dynamically. Using the information pre-

sented in Table 1, we formulate decision rules for the updating of the COM-B constructs.

1) Capability. Using the COM-B behaviour model, Rubinstein et al. (2015) identified that

a person’s capability to engage in the thought process necessary to enact a particular behaviour

(collect AV drugs) is influenced by awareness of the disease rates of the ongoing outbreak[19].

The capability of a person to make a particular decision is more likely to be influenced by local

disease activity in their immediate networks, rather than global-level prevalence estimates.

Indeed, the importance of local awareness during an outbreak has been reported before[22].

Even within local networks, disease activity is a combination of new infections occurring each

day, and the total number (cumulative) of infections that have occurred in a local network

over the course of the outbreak. Therefore, in the context of our case study, an agent’s capabil-

ity to collect authorised AV drugs would depend on its level of awareness of local disease activ-

ity, both incident cases and prevalent cases. However, it is unlikely all individuals would

actively seek out information on disease rates during a pandemic. Further, there is evidence to

suggest the possibility of a cognitive discounting of earlier hazards in favour of more recent

events[23].

In our decision framework, we propose to incorporate the effects of awareness of disease

activity using both the cumulative as well as daily incidence of influenza cases. We model the

biases that can affect an agent’s perception of local disease rates by using a weighted discount

rate (δ) which can take any value between 0 and 1 (Eq 2).

c ¼
Xt� 2

i¼0
d
i
� It� i� 1 ð2Þ

Capability C is represented as the weighted sum of the number of new influenza cases I at

time t, discounted at the rate δ. This approach to calculating discounted cumulative incidence

is consistent with previous behaviour models[6, 8]. Once an agent has determined its Capabil-

ity score, it then compares it with a threshold α to determine if it is in the ‘high’ or ‘low’ state

of Capability (Eq 3).

C ¼
high; c > a

low; else
ð3Þ

(

Table 1. Adapted list of factors that can influence antiviral drug uptake from [18].

Capability Opportunity Motivation

Psychological:
Knowledge of the disease (Awareness of disease and

transmission rates)

Physical:
Not salient

Physical:
Access to treatments

Social:
Social influences (seeing that others are

being treated)

Automatic:
Fear of infection and consequences (Physical and

emotional proximity)

Reflective:
Optimistic bias

https://doi.org/10.1371/journal.pone.0223946.t001
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2) Opportunity

According to the COM-B model, the opportunity to engage in a particular behaviour repre-

sents all of the factors that influence the behaviour but are outside the control of the individual

[11]. Rubinstein et al. (2015) identified ‘access to treatments’ and ‘seeing other being treated’

as affecting an individual’s opportunity to engage in behaviour change (Table 1). An ecological

study performed in the UK also reported that the likelihood of AV collection significantly

reduced with increasing distance to an ACP[24]. For our case study, we model ‘Opportunity’

as a function of the distance to an ACP and seeing others in their community who have col-

lected AVs (Cn), with the distance to an ACP having an inverse association with ‘Opportunity’

(i.e. a decreasing likelihood of AV collection with an increasing distance to an ACP). Agents in

our simulation then compare their respective ‘Opportunity’ scores (O) to a threshold η to

determine if they are in a state of ‘low’ or ‘high’ opportunity (Eq 4). There is also evidence for

the association between socioeconomic depravation (SED) and access to influenza treatment

[24, 25]. We do not explicitly include this in our current study due to the lack of available data.

However, a measure of SED, such as the English Index of Multiple depravation (IMD) [26],

could easily be incorporated into the Opportunity score as a multiplicative factor.

O ¼
high; ð

Cn

Distance
Þ > Z

low; else
ð4Þ

8
<

:

3) Motivation. ‘Motivation’ includes the mental processes that direct behaviour beyond

conscious decision-making[11]. According to the COM-B model, ‘motivation’ is comprised of

an automatic and a reflective component. In the study by Rubinstein et al. (2015), fear from

proximity (physical and emotional) to the pandemic, and beliefs about consequences of being

ill from pandemic influenza was identified as the automatic component of motivation that

influenced people’s decision to take AV drugs (Table 1). The belief amongst some people that,

because they followed an active lifestyle, they would make an easy recovery from pandemic

influenza without needing to take AV treatment was found to be the reflective component of

motivation[19]. In our decision framework, we used the case hospitalisation risk (CHR) as an

indicator of physical and emotional proximity to severe outcomes from the disease, and we

will use a variable, OB, to account for optimistic bias. OB can take any value between 0 and 1

with higher values indicating an increased optimistic bias. Each agent’s motivation (M) will be

evaluated against a threshold θ to determine if they were associated with a ‘high’ or ‘low’ state

of motivation (Eq 5).

M ¼
high; ð

No:hosptialisations
No:illnesses

Þ=OB > y

low; else
ð5Þ

8
<

:

The epidemic model

We use a simple epidemic ABM to simulate a hypothetical influenza pandemic during which

agents make a decision to collect authorised AV drugs or not. At any given point during the

simulation, an individual agent is in one of four disease states–Susceptible, Exposed, Infected,

or Recovered. An infected agent would, in turn, infect a susceptible agent in its local network,

and transitions between disease states were determined by specified transmission parameters.

For our case study, we assume that only agents who have been infected (i.e. in the ‘Infected’
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state) can be authorised AV drugs. Once an infected agent has been authorised AV drugs, the

decision framework described in the previous section is triggered, and the agent then makes

the decision to collect the authorised AV, or not, based on its capability, opportunity and moti-

vation at that particular point in time.

Model parametrisation and experimentation

Using the model structure described above, we simulated 10,000 agents and one ACP, keeping

with the population-to-ACP ratio that was seen in England during the 2009 A(H1N1) influ-

enza pandemic[14]. To simulate neighbourhoods within a town or a city, we implemented a

spatially structured model where the agent space was divided in to nine equally sized regions

and, at start-up, agents were randomly assigned to one of the nine regions. A distance-base

network was used, and two agents were connected if the distance between them was lesser

than a defined maximum distance. Epidemic parameters relate mainly to the 2009 influenza

pandemic, and most were chosen from literature (Table 2); the probability of transmission was

calibrated to match the duration of the second peak of the 2009 influenza pandemic in the UK.

We assumed that AV treatment did not have an impact on transmission. Once an agent

entered the ‘Infected’ state, an NPFS call would be made, and based on data from the 2009,

75% of NPFS calls would result in an AV authorisation[27]. Once an AV authorisation was

made to an infected agent, the decision module is triggered and the agent then makes the deci-

sion to collect treatment based on the decision rules described in earlier section of this paper

using information from their respective local environments.

Given that several behavioural parameters were unavailable from literature, we specified

four parameters as calibration parameters–the three behavioural thresholds (α, η and θ), and

the probability of AV collection when C, O and M are in the ‘low’ state (OR0 from Eq 1).

Given the high dimensionality of the model parameters, an exhaustive search of the parameter

space was not feasible. Therefore, we followed a three-step model calibration method based on

the Werker-Brenner calibration approach[34, 35]. We first used existing empirical data for

parameters, where they were available. For the four behavioural parameters where no data

Table 2. Input parameters for the agent-based model.

Parameter Value

Probability
distribution

Source

Contact rate, Mean (SD) 11.74 (7.67)

Normal
[28]

Duration of illness, Median (IQR) in days 6.5 (5 to 8)

Triangular
[29]

Probability of infection, Range 0.015 to 0.020

Uniform
Calibrated

Latency period, Mean (SD) in days 1.6 (0.26)

Normal
[30]

Case hospitalisation risk 0.2% [31]

Likelihood of AV collection for ‘high’ Capability vs. ‘Low’, OR

(95% CI)

2.80 (2.52 to 3.08)

Triangular
[32]

Likelihood of AV collection for ‘high’ Motivation vs. ‘Low’, OR

(95% CI)

2.71 (2.08 to 3.53)

Triangular
[33]

Likelihood of AV ‘high’ Opportunity vs. ‘Low’, OR (95% CI) 4 (3 to 5)

Triangular
Assumed based on

[24]

SD: Standard deviation; IQR: Interquartile range; OR: Odds ratio; CI: Confidence Intervals

https://doi.org/10.1371/journal.pone.0223946.t002

A novel framework for evaluating the impact of individual decision-making on public health outcomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0223946 October 17, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0223946.t002
https://doi.org/10.1371/journal.pone.0223946


were available, we specified wide ranges after investigating preliminary model runs. We then

performed 1,000 model realisations to narrow down parameter ranges by comparing the

model output to empirical data and using an 80% confidence limit (error percent: 0.5%);

parameter sets that produced output that fell outside this range were discarded. We then used

subjective judgement to refine the obtained parameter ranges (abduction) and then performed

another set of 1,000 calibration runs to further narrow the plausible parameter space. For our

calibration, we used empirical time series data from the 2009 A(H1N1) influenza pandemic on

the weekly proportion of NPFS-based AV authorisations that resulted in collections[31].

Given that the NPFS was unavailable for the first half of the first peak of the 2009 influenza

pandemic, we calibrated our model to the second wave of the pandemic (from 31 August 2009

to 11 February 2010–23 weeks and 4 days) to ensure that we had data on an entire epidemic

curve.

Model parameters were varied over a probability distribution to induce agent heterogeneity

(Tables 2 and 3). We performed a 5,000 iteration Monte Carlo uncertainty analysis by simulta-

neously varying all model parameters over the identified plausible ranges to analyse the impact

of heterogeneity on our model output. Finally, we performed a set of sensitivity analyses by

examining the model output when α, η and θ were varied by 50%, and when δ was varied from

0 to 1 in increments of 0.1. For the threshold variables, we also looked at a hypothetical sce-

nario where α, η and θ were set at 0 (i.e. there were no barriers to capability, opportunity, or

motivation).

Results

Using our COM-B decision framework, our model was able to approximate the dynamics of

the number of AV collections relative to the NPFS-related ILI consultations (Fig 1). The peak

of the pandemic was observed on day 50 in the empirical data, whereas our model predicted

that it would occur on day 43. A second smaller peak that occurred on day 80 was consistent

our model output. Although the absolute numbers between the model output and the empiri-

cal data are not directly comparable, the relative differences and the dynamics between them

were similar. Between day 40 and day 100 of the outbreak, the mean model output (over 1,000

iterations) suggested that between 58 and 63% of ILI consultations (that resulted in NPFS

authorisations) led to AV collections. This proportion for the corresponding time period in

the empirical data was observed to be slightly higher at 62 to 68%. Our final calibration param-

eter ranges are presented in Table 3.

Results from our Monte Carlo analysis where we varied all parameters across specified

ranges over 5,000 random seeds are presented in Fig 2.

Our sensitivity analyses showed that the capability threshold, α, had the biggest impact on

the model output. Reducing the α value by 50% of the best-fit value increased AV collection by

almost 36%, and a 50% increase in the best-fit value of α was associated with a reduction in AV

collections by about 40%. Similar associations were found with varying the discount rate δ, by

50%. Decreasing the best-fit value for the opportunity threshold η was seen to be associated

Table 3. Final calibration parameter ranges.

Parameter Range

α 183 to 185

η 0.15 to 0.20

θ 0.20 to 0.25

OR0 0.1 to 0.3

https://doi.org/10.1371/journal.pone.0223946.t003
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with a 16% increase in antiviral collections. However, an increase in the best-fit η by 50% did

not make a significant difference to AV collections. Varying the motivation threshold was also

not seen to have an impact on total AV collections. Setting the α, η and θ threshold values at 0

was associated with significant increases in AV collection (Fig 3).

Discussion

The main contribution of this paper is the development of a novel decision framework, based

on an empirically identified set of constructs [19]. Our decision framework is novel in that, to

the best of our knowledge, it is the first implementation of the COM-B model of behaviour

change in an epidemic ABM. Our behavioural-epidemic model seeks to use the COM-B

model to demonstrate how incorporating the elements of capability, opportunity, and motiva-

tion into epidemic models can generate important insights into how interventions could be

developed to improve AV collection rates (and therefore treatment rates) for future pandem-

ics. The proof-of-concept implementation of our decision framework is based on the UK

National Pandemic Flu Service which operated in 2009 and sought to divert pressure away

from primary care services. Using this approach 1.2 million treatment courses of antivirals

Fig 1. A comparison of AV treatment collection rates relative to ILI consultations (based on NPFS authorisations)

between the model output and empirical data from 2009. For the model output, the solid lines represent the mean

model outputs and the shaded regions represent the range of the middle 80% of model output over 1,000 iterations.

https://doi.org/10.1371/journal.pone.0223946.g001

Fig 2. A 2D histogram showing output from a 5,000 iteration Monte Carlo uncertainty analysis.

https://doi.org/10.1371/journal.pone.0223946.g002
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drugs were dispensed[36]. It is intended that this system will be used again in the future[37],

and other countries are now considering similar models[38].

Our model slightly underestimated the proportion collecting authorised AV drugs in the

middle part of the outbreak when compared to data observed from 2009. Although, the

dynamics, for the most part, were consistent with empirical data. The sensitivity of the model

to the capability threshold α suggests that a person’s awareness of an ongoing epidemic can

greatly influence how capable they are of making healthcare decisions. The discounting rate δ
was also seen to have had a significant impact on AV collection rate. This is not surprising as

the capability threshold α is a function of δ. The model is not sensitive to changes in the moti-

vation threshold θ is because we have assumed a constant CHR in our model.

The benefit of using the COM-B model is that capability, opportunity and motivation have

already been mapped to a set of interventions that are likely to influence that particular con-

struct[11]. High threshold values for α, η and θ can be seen as barriers to AV collection, and

low threshold values as facilitators. An educational media campaign during an ongoing pan-

demic could contribute to an increase in a person’s awareness of the pandemic (thereby

increasing capability) and simultaneously also reduce optimistic bias (increasing motivation).

We model optimistic bias by randomly assigning levels of this bias across the population. This

could be improved in future work by first identifying specific population groups that are likely

to have increased levels of optimistic bias and then accounting for this in the ABM. Increasing

the number of ACPs (environmental restructuring) could reduce the opportunity threshold

(by reducing the distance to the ACP, improving access to treatment), and also improve moti-

vation. Findings from our exploratory analysis reinforce the findings of the qualitative study

by Rubinstein et al. that effective interventions to increase AV uptake are likely to be multidi-

mensional[19]. In deciding the most suitable intervention to increase AV collection rates, the

government will need to consider the cost-effectiveness of each potential intervention.

Fig 3. Sensitivity analyses: Impact of varying α, η, θ and δ on AV collection.

https://doi.org/10.1371/journal.pone.0223946.g003
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The structure of our decision framework is rooted in the work done by Durham and Cas-

man[6], however, our framework differs from theirs in a number of important ways. Agents in

our simulation make decisions based on information from their local networks, unlike the

global approach followed by Durham and Casman, and we do not de-couple the epidemic and

the behavioural components of the model as has been done in some previous work[6, 39]. But

most importantly, what our framework adds to existing evidence is, the drivers of C, O and M

that influence behaviour are based on an empirically validated framework that has already

been linked to policy, whereas the main limitation of decision frameworks based on the HBM

is that links between potential drivers of behaviour change and health beliefs are poorly under-

stood[6]. Another behaviour model based on the HBM used parameters such as attitude,

norms, and worry to obtain a behaviour score; however, the authors note that their model out-

put fit poorly with empirical data[8]. The difficulty in validating and fitting behaviour models

to empirical data has been noted by others as well [40, 41]. A systematic review of published

studies reported that only 15% of studies involving behaviour change models in epidemiology

performed any type of validation with empirical data [3]. This systematic review further noted

that most behavioural models used were theoretical models that were developed independently

from empirical data. We have followed a more practical approach and attempted to validate

our simulation model. Validation of a simulation model requires validation of the underlying

conceptual model as well as the simulation output [42]. The conceptual model that we have

used is based the COM-B model of behaviour change that is widely used within public health

and is recommended by leading research organisations [12]. We validate our simulation out-

put against NPFS data from the 2009 influenza pandemic in the UK, noting that the dynamics

observed in our simulation output was similar to what was observed in 2009.

One important consequence of a lack of suitable behaviour data is that multiple model

parameters may have to be calibrated to ensure that model output is consistent with empirical

data. Previous behaviour models have calibrated up to six input parameters [6, 8]. We have

tried to minimise the number of parameters calibrated by only calibrating the four essential

behavioural parameters. However, we varied the calibrated parameters over a range in a set of

sensitivity analyses to evaluate their impact on the model output. This is one way of validating

a model with calibrated parameters [42, 43]. Our paper also demonstrates one of the early epi-

demiological applications of the Werker-Brenner calibration approach [34, 35], which is par-

ticularly well-suited to using existing knowledge in guiding calibration of parameters with

wide uncertainty. The sensitivity analyses produced results that were qualitatively and quanti-

tatively consistent with what would be expected empirically (i.e. a reduction in behavioural

thresholds improved the likelihood of behaviour change). Nevertheless, our exploratory study

could be used to guide collection of behavioural data in the future. OR0 can be easily estimated

by analysing public health survey data. The three behavioural thresholds can be estimated sta-

tistically from behavioural data collected over a period of time.

This study is not without limitations or simplifying assumptions. We assumed that AV

treatment was not used for prophylaxis and was only given to patients with clinical illness.

This is in line with what was observed during the treatment-only phase of the pandemic in

2009 during which the NPFS operated[31]. We also assumed that AV treatment does not have

an impact on transmission. There is evidence to suggest that the population-level impact of

AV treatment on transmission is likely to be quite small[44]. We do not account for varying

contact rates by agent location (workplace, school, or home), the impact of other pandemic

influenza mitigation measures, or the impact of transport disruptions. All modelling endeav-

ours require a compromise between striving for an accurate representation of reality and

computational feasibility. We have deliberately implemented a relatively simple epidemic
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model on a small population, as the network effects in our decision framework make model-

ling larger populations computationally expensive.

We fully recognise that our decision framework is not a perfect representation of the

COM-B behaviour change model, and indeed, the COM-B behaviour change model may not

be a perfect representation of behaviour change. We base the COM-B constructs for our

proof-of-concept implementation on the empirically identified set of factors by Rubinstein

et al., but we are aware that there may be other factors driving healthcare-seeking behaviour

that we have not accounted for in our model. Influences such as ‘fear’ are not straightforward

to incorporate into an ABM, but we have used what we think are sensible proxies to model the

influence of factors that are hard to represent (such as fear) in a dynamic model. We would

again like to stress that our current study is not suited to make forecasts, rather, it is intended

to serve as a tool to help explore the impact of various factors potentially driving healthcare

behaviour in a dynamic model.

Conclusions

Our decision framework demonstrates how the COM-B behaviour change model can be

incorporated into an ABM to study the effectiveness of healthcare interventions. This is, to the

best of our knowledge, the first attempt at formalising the COM-B model for use in an ABM.

Our decision framework lends itself quite well to easy parameterisation from surveys or other

public health data. We recommend that for future applications of our framework, the associa-

tions between individual factors driving behaviour change and the COM-B constructs first be

empirically identified through a qualitative study, and then the simulation model ideally be

informed by behaviour data collected specifically for the case study of interest. Capability,

opportunity and motivation are also likely to dynamically influence each other. For example,

increasing a person’s awareness of a disease (capability) could also influence their optimistic

bias (motivation). Future applications of our framework could explore the dynamic interac-

tions between the COM-B constructs. Finally, we have assumed a crisp implementation of

behaviour probability (behaviour threshold of�50% probability). In reality, however, deci-

sions are frequently made under conditions of uncertainty and imprecision. Using fuzzy deci-

sion rules [45] to guide agent behaviour could be a direction for future research to improve

upon our current framework.

Supporting information

S1 File. The model described in the manuscript has been provided as a set of Java files in

the supporting information.
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