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Abstract: For an airborne passive radar with contaminated reference signals, the clutter caused
by multipath (MP) signals involved in the reference channel (MP clutter) corrupts the covariance
estimation in space-time adaptive processing (STAP). In order to overcome the severe STAP per-
formance degradation caused by impure reference signals and off-grid effects, a novel MP clutter
suppression method based on local search is proposed for airborne passive radar. In the proposed
method, the global dictionary is constructed based on the sparse measurement model of MP clutter,
and the global atoms that are most relevant to the residual are selected. Then, the local dictionary
is designed iteratively, and local searches are performed to match real MP clutter points. Finally,
the off-grid effects are mitigated, and the MP clutter is suppressed from all matched atoms. A range
of simulations is conducted in order to demonstrate the effectiveness of the proposed method.

Keywords: passive radar; airborne radar; clutter suppression; off-grid effect; reference signal

1. Introduction

Passive radars, which utilize existing commercial sources as emitters of opportunity,
offer advantages of low cost and strong survivability than compared to active radars [1,2].
Airborne passive radars apply passive radar technology on an airborne platform, providing the
additional benefits of reduced terrain masking effect and improved detection abilities [3–6].
However, the motion of the platform causing ground clutter has angle and Doppler fre-
quencies in airborne passive radars, which makes it challenging for conventional one-
dimensional methods to separate targets from clutter.

Space-time adaptive processing (STAP) is a key tool for clutter suppression in airborne
passive radar [7,8], where the reference signal is exploited for covariance matrix estimation.
However, the traditional STAP requires a large number of independent and identically dis-
tributed training snapshots. It is difficult to collect the sufficient samples in heterogeneous
environments. In addition, the high complexity in the computation of the high-dimensional
covariance matrix inversion restricts the applicability of STAP. Many suboptimal STAP
algorithms have been proposed to address these issues. Reduced-dimension STAP [9–11]
and reduced-rank STAP [12,13] can reduce the number of required snapshots to twice of the
reduced dimension or twice of the clutter rank. The training data selectors [14] can improve
the target detection ability in heterogeneous environments with dense outliers. Recently,
knowledge-aided STAP has demonstrated enhanced detection performances with minor
training support by exploiting the prior knowledge [15–17]. Lately, Sparse representation
technology has been widely considered in various fields [18,19], which encourages research
on sparse-aware STAP. Sparse-aware STAP reconstructs the clutter covariance matrix by
using sparse representation techniques, improving suppression capability and offering
high-resolution imagery in a deficient-training-sample situation [20–22]. Assuming that
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the reference signal is pure, the aforementioned STAP algorithms can provide the desirable
suppression performance in the airborne passive radar. However, such condition is hard to
meet in the real environments. A contaminated reference signal results in a clutter snapshot
consisting of two parts: one is the matched result of scatterers echoing with the direct-path
(DP) signal, i.e., DP clutter; and the other is with multipath (MP) signals contaminated in
the reference channel, i.e., MP clutter. As a result, targets located at the MP clutter area
are suppressed and cancels DP clutter and MP clutter simultaneously when using the
aforementioned STAP algorithms.

The cascaded method (CM), which performs the MP clutter suppression before STAP
cancels DP clutter, can provide an alternative method for target detection in airborne pas-
sive radars with contaminated reference signals. Several MP clutter suppression methods
have been developed [23–25]. In the modified blind equalization method, by exploiting the
prior knowledge of the Doppler frequency of the DP signal, MP signals are restrained, and
the reference channel is equalized [23]. However, the precise prior knowledge is often diffi-
cult to obtain in practice, and errors in prior information disturb the equalization quality
for this method. Sparse reconstruction algorithms (SRA) for MP clutter suppression have
been proposed in [24,25], where a range-Doppler dictionary is designed, a cost function
with a sparse constraint is derived, and SRAs, such as L1-based recursive least squares,
L1-based least mean square, and L1-based exponentially forgetting window least mean
square (L1-EFWLMS), are used to solve the optimization problem. However, a gap between
MP clutter patches and the predefined range-Doppler grids, which is also called the off-grid
problem, is hardly avoided in these methods. Under such circumstances, the estimation
performance of MP clutter degrades significantly. To the best of our knowledge, very little
studies have been performed to overcome the off-grid problem in MP clutter suppression
for airborne passive radar. The off-grid issue also arises in other applications such as
sparse-aware STAP [26,27] and direction-of-arrival [28–30]. However, most methods are
either ad hoc [31] or computationally intensive or both, and they cannot be directly applied
in MP clutter suppression for airborne passive radar.

This paper focus on the off-grid problem in MP clutter suppression for airborne
passive radar. In the proposed suppression method, the off-grid effects are mitigated
by performing a global search and several local searches in each iteration. The global
search is similar to the estimation method in SRA, while selected atoms are closer to the
real location of MP clutter than SRA because of the additional local search steps. The
procedures of CM based on the proposed algorithm are summarized as follows. First, the
global range-Doppler dictionary is designed under the framework of the existing SRA
from which the global atoms that are most relevant to the residuals are selected. Second, an
iterative local search is performed around the selected atoms to match the real MP clutter
points. Then, the above operation is repeated until the predetermined criterion is satisfied,
and MP clutter is suppressed from all matched atoms. Finally, the DP clutter is suppressed
by the traditional STAP. Compared with the existing SRA, the proposed algorithm exhibits
better detection performance in the presence of off-grid problem.

The remainder of this paper is organized as follows. In Section 2, based on the
geometry of airborne passive radar systems, the signal model and problem statement
are presented. In Section 3, the proposed MP clutter suppression method for off-grid
effects mitigation is detailed, and CMs based on the proposed algorithm are summarized.
Subsequently, the effectiveness of the proposed approaches is verified by using a range of
simulations in Section 4. Finally, relevant conclusions are presented in Section 5.

Notation: In this paper, the symbols � and ⊗ denote the Hadamard product and the
Kronecker product, respectively. The operations of transposition and conjugate transpo-
sition are denoted by (·)T and (·)H , respectively. 1A×B is the A× B matrix of which all
elements are 1, the operator Re{·} selects the real part of the argument, and E{·} denotes
the expected value operation. Additionally, ‖ · ‖1 and ‖ · ‖2 denote the l1-norm and l2-norm
operations, respectively.
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2. Signal Model

Without loss of generality, the system under consideration is the airborne passive
radar where a ground-based non-cooperative source is utilized as the transmitter of op-
portunity. The bistatic geometry of the airborne passive radar system is shown in Figure 1.
The reference signal is received by the reference antenna, which is directed toward the
direction of the transmitter, and a uniform linear array consisting of N elements receives
the measurement signal. The reference signal is contaminated by NT MP signals, and the
time bins of DP and MP signals are ld and lp, p = 1, 2, . . . , NT, respectively. During the
coherent processing interval, the received reference signal and measurement signals are
segmented into M equivalent pulses, with a pulse repetition interval of Tr. After matched
filtering for the radar returns from M pulses and N channels by using reference signal, the
received data are stored as an L×M× N data-cube where L is the total number of range
cells. By stacking a slice of the data cube, which corresponds to the received data at one
range cell, an MN × 1 vector termed as a space-time snapshot is formed.
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Neglecting the effect of range ambiguities, the clutter patches contributing to the
clutter snapshot at a given range cell are located only on one iso-range clutter ring [7].
Considering a contaminated reference signal, the clutter snapshot consists of two parts [24].
The first part is DP clutter. The DP clutter snapshot xdc,l at range cell l is obtained when the
scatterer echoes with time bin (l + ld) are passed through the matched filtering with the DP
signal. Therefore, xdc,l can be written as follows [24]:

xdc,l =
Nc

∑
i=1

ξl+ld,iv(ωd,i, ϑi) =
Nc

∑
i=1

ξl+ld,ivs(ϑi)⊗ vt(ωd,i) (1)

where Nc denotes the number of independent clutter patches; ξl+ld,i denotes the complex
amplitude of the i-th clutter patch for which its time bin is (l + ld); ϑi and ωd,i are its spatial
frequency and relative (relative to the Doppler frequency of DP signal) Doppler frequency,
respectively; ωd,i = ωi − ωd where ωi and ωd are the normalized Doppler frequencies
of the i-th clutter patch and DP signal, respectively; v(ωd,i, ϑi) is the MN × 1 space-time
steering vector with normalized Doppler frequency ωd,i and the spatial frequency ϑi;
and vs(ϑ) and vt(ω) are the temporal and spatial steering vector, respectively, which are
expressed as the following.

vs(ϑ) = [1, exp(j2πϑ), · · · , exp(j2π(N − 1)ϑ)]T (2)

vt(ω) = [1, exp(j2πω), · · · , exp(j2π(M− 1)ω)]T (3)
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The second part is MP clutter. Correspondingly, when scatterer echoes with time bin
(l + lp) are passed through the matched filtering with the p-th (p = 1, 2, . . . , NT) MP signal,
the p-th MP clutter snapshot of the l-th range cell can be expressed as the following:

xpc,l = εp

Nc

∑
i=1

ξl+lp ,iv
(
ωp,i, ϑi

)
= εpxdc,l+(lp−ld) � g

(
ωp −ωd

)
(4)

where εp is the relative (relative to the amplitude of DP signal) complex amplitude of the
p-th MP signal [24]; ξl+lp ,i denotes the complex amplitude of the i-th clutter patch for which
its time bin is (l + lp); ωp,i is the relative (relative to the Doppler frequency of the p-th MP
signal) Doppler frequency; ωp,i = ωi −ωp where ωi and ωp are the normalized Doppler
frequency of the i-th clutter patch and the p-th MP signal, respectively; and the modified
space-time steering vector is g

(
ωp −ωd

)
= 1N×1 ⊗ vt

(
ωp −ωd

)
.

Therefore, the received clutter-plus-noise snapshot for the l-th range cell is modeled
as the following:

xl = xdc,l +
NT

∑
p=1

xpc,l + xn (5)

where the noise vector xn is assumed to be Gaussian and spatially and temporally white.
Since the three components in Equation (5) are assumed to be mutually uncorrelated [24],
the space-time covariance matrix is given by the following:

Rx = E
[
xlx

H
l

]
= Rd +

NT

∑
p=1

Rp + Rn (6)

where Rd = E
[
xdc,lxH

dc,l

]
, Rp = E

[
xpc,lxH

pc,l

]
, and Rn = E

[
xnxH

n
]

denote DP clutter, the
p-th MP clutter, and thermal noise covariance matrix, respectively. Under the principle of
linearly constrained minimum variance, the optimal STAP weight is given by the following:

wx = µR−1
x v(ωt, ϑt) (7)

where µ is the normalized constant; ωt and ϑt are the normalized Doppler frequency
and spatial frequency of the hypothetic target, respectively; v(ωt, ϑt) = vs(ϑt)⊗ vt(ωt) is
its space-time steering vector. In practice, the unknown covariance matrix Rx is usually
estimated from L1 training samples, i.e., R̂x = 1/L1∑L1+1

i=1,i 6=l xixH
i .

The above analyses show that MP clutter exists in the received snapshots when
the reference signal is contaminated by the MP signals. As a result, the background
interference is disturbed, and the estimated covariance matrix is corrupted [24]. In order to
achieve the target detection, both MP clutter and DP clutter need to be canceled. However,
directly using STAP requires more degrees of freedom than suppressing DP clutter alone.
Additionally, targets that fall within the MP clutter area will also be suppressed as well
in STAP.

CM, which cancels MP clutter prior to the DP clutter suppression by STAP, can
overcome these issues. The existing CMs use SRAs for MP clutter estimation [24,25], where
the range-Doppler dictionary is exploited to estimate MP clutter and eliminate its influence
on STAP performance. However, a bias between the real MP clutter and the predefined
discrete range-Doppler grids is hardly avoided in practice, which results in an imprecise
estimation of MP clutter and a performance degradation on target detection. Therefore,
it is crucial to develop a MP clutter suppression method for off-grid effects mitigation in
airborne passive radar.

3. The Proposed CM for MP Clutter Suppression and Off-Grid Effects Mitigation

In this section, we provide a brief introduction to the existing CMs, describe the
proposed MP clutter suppression method for off-grid effects mitigation, and detail the CM
based on the proposed algorithm.
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3.1. Review of the Exiting CMs

The existing CMs can effectively suppress the MP clutter and DP clutter in the absence
of off-grid effects. It is concluded from [24] that MP clutter is related to two factors, which
include the received space-time snapshots and the modified space-time steering vectors.
Thus, the Doppler frequency plane is uniformly discretized into Q grid points. Let ωq
and g

(
ωq
)
= 1N×1 ⊗ vt

(
ωq
)

(q = 1, 2, . . . , Q) be the discretizing Doppler frequency and
the corresponding modified space-time steering vector, respectively. Assuming that MP
clutter can be represented by D snapshots, the MP clutter snapshot at range cell l shown in
Equation (4) can be rewritten as follows [24]:

NT

∑
p=1

xpc,l = Slα (8)

where α denotes the DQ× 1 profile with nonzero elements representing the MP clutter;
the MN × DQ range-Doppler dictionary is Sl =

[
SD,l �G1, SD,l �G2, . . . , SD,l �GQ

]
; the

MN × D range dictionary matrix is constructed by the snapshots from range cell l + 1
to l + D, i.e.,SD,l = [xl+1, xl+2, . . . , xl+D]; and the modified space-time steering matrix is
Gq = 11×D ⊗ g

(
ωq
)
= 1N×D ⊗ vt

(
ωq
)
, q = 1, 2, . . . , Q. Since there is a degree of the

sparsity in the profile α [24], the above equation is also called the sparse measurement
model of MP clutter in what follows.

Under the assumption that MP clutter is perfectly located at the discretized range-
Doppler grids, the MP clutter suppression problem can be transformed into the following
optimization problem [24]:

min
α

J1(α) = min
α

E
{
‖xl − Slα‖2

2

}
+ 2κ‖α‖1 + 2Re{ςα} (9)

where κ is a sparse constant parameter, ς = σ211×MNΦ, σ2 is the noise power per element,
and the MN × DQ matrix Φ =

[
G1, G2, . . . , GQ

]
.

Let the gradient term of the above equation with respect to α∗ be zero, we can obtain
the following:

α = R−1
S

(
rSx − κsign(α) + ςH

)
(10)

where the cross-correlation vector is rSx = E
[
SH

l xl

]
; the covariance matrix RS = E

[
SH

l Sl

]
;

and sign(·) is a component-wise function.
Since α exists on both sides of Equation (10), it is not an explicit expression for α. To

obtain a solution, SRAs are used to address the above optimization problem. As a result,
the MP clutter is estimated effectively under the condition that MP clutter is perfectly
located on the discretizing grid points. When this assumption is violated, the MP clutter
suppression performance will degrade, which restricts the applicability of the existing
algorithms presented in [24,25]. Therefore, it is necessary to derive a novel MP clutter
suppression method to eliminate off-grid effects.

3.2. The Proposed CM for Clutter Suppression and Off-Grid Effects Mitigation

In this subsection, we derive a MP clutter suppression algorithm for off-grid effects
mitigation. Then, the CM based on the proposed algorithm is described, and the overall
procedure of the proposed approach is summarized.

Based on the above development, the question that arises now is how to eliminate
the mismatch between the range-Doppler atoms and the real MP clutter. To overcome this
issue, the MP clutter estimation method based on local search is proposed. In the proposed
algorithm, the range-Doppler atom is selected iteratively, and a global search and several
local searches are performed in each iteration. For the sake of simplicity, let symbol (t) be
the t-th iteration, and let symbols (t, 0) and (t, k)(k = 1, 2, . . .) be the global search and the
k-th local search of the t-th iteration, respectively.

First, the Doppler frequency plane is uniformly discretized into Q grid points with a
relatively large Doppler frequency interval ∆ω, such as the method presented in [24,25].
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Thus, the global dictionary Sl is obtained with the modified snapshot dl,γ being the γ-th
(γ= 1, 2, . . . , DQ) global atom, given by the following.

Sl =
[
xl+1 � g(ω1), . . . , xl+D � g(ω1), . . . , xl+1 � g

(
ωQ
)
, . . . , xl+D � g

(
ωQ
)]

=
[
dl,1, . . . , dl,D, . . . , dl,(Q−1)D+1, . . . , dl,DQ

] (11)

Then, we can obtain global responses by computing the inner product via the matrix-
vector multiplication, which is similar to the orthogonal matching pursuit algorithm [16].
Thus, the global response aγ(t, 0) of the γ-th (γ = 1, 2, . . . , DQ) global atom at the t-th
iteration is given by the following:

aγ(t, 0) = E
[
dH

l,γhl(t)
]

(12)

where hl(t) denotes the residual vector of the l-th range cell at the t-th iteration, which is
initialized as hl(1) = xl ; and E

[
dH

l,γhl(t)
]

is estimated by the L2 training samples in practice,

i.e., aγ(t, 0) = 1/L2∑L2
i=1 dH

i,γhi(t). Consequently, the global index at the t-th iteration is
picked up by the following.

γ(t, 0) = arg max
γ∈{1,2,...,DQ}

[aγ(t, 0)] (13)

The corresponding atom is defined as the optimal global atom at the t-th iteration,
i.e., dl,γ(t,0). The range cell and normalized Doppler frequency of the optimal global atom
dl,γ(t,0) are expressed as τ(t) and ω(t, 0), respectively.

After the global search, several local searches are performed. The local range-Doppler
dictionary is designed with the optimal global atom, as shown in Figure 2.
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In the first local search of the t-th iteration, we exploit the optimal global atom to
construct the local dictionary. With the optimal global atom as the center, three local
atoms are obtained around the Doppler frequency dimension where the Doppler frequency
interval is ∆ω/2. Thus, we can obtain the first local dictionary of the t-th iteration Sl(t, 1),
given by the following:

Sl(t, 1) =
[
xl+τ(t) � g

(
ω(t, 0)− ∆ω

2

)
, xl+τ(t) � g(ω(t, 0)), xl+τ(t) � g

(
ω(t, 0) + ∆ω

2

)]
= [dl,1(t, 1), dl,2(t, 1), dl,3(t, 1)]

(14)

where dl,η(t, k)(η = 1, 2, 3) denotes the η-th local atom in the k-th local search of the t-th
iteration. Correspondingly, the local response of dl,η(t, 1)(η = 1, 2, 3) is calculated by
the following.

aη(t, 1) =
1
L2

L2

∑
i=1

dH
i,η(t, 1)hi(t) (15)

Subsequently, the local atoms with the largest and the second largest response in
Equation (15) are selected, which is used as edges in the second local search. Based on
that, three atoms are obtained to construct the second local dictionary with the Doppler
frequency interval ∆ω/4, as shown in Figure 2. Then, the local response is computed again,
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and the selected local atoms are updated; the above operation is repeated. Consequently,
by using the two selected local atoms in the (k−1)-th local search as edges, the k-th local
dictionary Sl(t, k) = [dl,1(t, k), dl,2(t, k), dl,3(t, k)] is constructed with the Doppler frequency
interval ∆ω/2k. Therefore, the ηth(η = 1, 2, 3) local response aη(t, k) at the k-th local search
of the t-th iteration is calculated by the following.

aη(t, k) =
1
L2

L2

∑
i=1

dH
i,η(t, k)hi(t) (16)

The above operation is repeated until the gain in response of the k-th local search,
defined as max

{
aη(t, k)− aη(t, k− 1)

}
, is less than the local threshold δη . Assuming that

Kt denotes the index of the last local search of the t-th iteration, the optimal atom d̂l(t) is
obtained by selecting the index corresponding to the largest response aη(t, Kt) (η = 1, 2, 3),
given by the following: {

η(t, Kt) = arg max
η∈{1,2,3}

(
aη(t, Kt)

)
d̂l(t) = dl,η(t,Kt)(t, Kt)

(17)

and the normalized Doppler frequency of the t-th optimal atom d̂l(t) is expressed as ω̂(t).
The t-th iteration has been completed now. Then, the MP clutter profile is updated,

and the residual vector is calculated. Let Ŝl be the optimal dictionary assembled by the
selected columns of Sl(t, Kt), and Ŝl is initialized as Ŝl(0) = o. Thus, Ŝl at the t-th iteration
is updated by the following:

Ŝl(t) =
[
Ŝl(t− 1), d̂l(t)

]
(18)

and the MP clutter profile at the t-th iteration is given by the following:

α̂(t) = R−1
Ŝ

(t)
[
rŜx(t) + ς̂H(t)

]
(19)

where ς̂(t) = σ211×MNΦ̂(t),Φ̂(t) =
[
Φ̂(t− 1), g(ω̂(t))

]
in which Φ̂ is initialized as

Φ̂(0) = Ø; the covariance matrix RŜ(t) and the cross-correlation vector rŜx(t) at the t-th
iteration are as follows.

RŜ(t) =
1
L2

L2

∑
i=1

ŜH
i (t)Ŝi(t) (20)

rŜx(t) =
1
L2

L2

∑
i=1

ŜH
i (t)xi (21)

Moreover, the residual vector of the l-th range cell is updated by the following.

hl(t + 1) = xl − Ŝl(t)α̂(t) (22)

The iteration terminates when a certain criterion is satisfied. For example, the gain
in signal-to-interference-plus-noise-ratio (SINR) loss of the t-th iteration, which is defined
as I(t) − I(t− 1) where I(t) denotes the SINR loss of the t-th iteration, is smaller than
a predetermined iteration threshold δ. In this paper, the gain performances are used as
the stopping criterion in local search and iteration. The reason is that the convergence
can be determined by using a simple method: if aη(t, k) ≈ aη(t, k− 1) or I(t) ≈ I(t− 1),
the algorithm will converge. This method is also adopted in [32,33]. Here, the gain
performance in SINR loss or response denotes the change of I(t) or aη(t, k) from I(t− 1)
or aη(t, k− 1). Then, the user should impose a threshold in the programming, which
can be determined by considering the computational complexity and the MP estimation
performance. Consequently, the local search or iteration will terminate if the gain value is
smaller than the threshold.

Based on the above development, the estimated MP clutter profile α̂ and sub-dictionary
Ŝl are obtained.

Now, the proposed cascaded suppression method with off-grid effects mitigation in
airborne passive radar can be described as the following two-step suppression process.

First, the proposed algorithm is used for MP clutter suppression. By using the derived
Ŝl and α̂, the output snapshot at the l-th range cell is calculated by the following.
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yl = xl − Ŝl α̂ (23)

Then, DP clutter is canceled by the existing STAP algorithm. The scalar output of the
proposed CM is given by the following:

zl = wH
y yl = wH

y
(
xl − Ŝl α̂

)
(24)

where wy is the STAP weight vector.
The overall procedure of CM based on the proposed algorithm is presented in Algo-

rithm 1.

Algorithm 1: The proposed CM for off-grid effects mitigation
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3.3. Analyses of Computational Complexity

In this subsection, we discuss the computational complexity of the proposed method in
terms of the number of additions and multiplications. In the t-th iteration, L2MNDQ multi-
plications and L2DQ(MN − 1) additions are required to compute γ(t, 0) in the global search;
3MNKt(L2 + 1) multiplications and 3L2Kt(MN − 1) additions are required to compute
η(t, Kt) in local search;

(
t3)+ t2(MNL2 + 1) + MN(tL2 + t + 1) multiplications and

(
t3)+

t2(MNL2 − L2 + 1) + t(MN − 1)(L2 + 1) additions are required to compute α̂(t); and tMN
multiplications and tMN additions are required to compute hl(t + 1). Therefore, in the
t-th iteration of proposed CM,

(
t3)+ t2 + MNL2

(
3Kt + DQ + t2 + t

)
+ MN(3Kt + 2t + 1)
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multiplications and
(
t3)+ L2(MN − 1)

(
DQ + 3Kt + t2 + t

)
+ t(t + 2MN − 1) additions

are required. Although the added local search step slightly increases computational com-
plexity, the proposed algorithm selects more accurate atoms than compared to merely
applying the global searches in the presence of off-grids effects, which will be verified in
the next section.

4. Simulations and Performance Analyses

In this section, simulation experiments are provided to validate the theorical derivation
and demonstrate the performance of the proposed method. In the simulation, a digital
video broadcasting transmitter is utilized as the illustrator of opportunity in the airborne
passive system. In this paper, a Gaussian random signal is used as an approximate model
for the transmitted signal [24]. Some important simulation parameters are listed in Table 1.
In the simulation, the noise power is normalized, and the direct-path signal to noise ratio
(DNR) is set to 60dB [34]. In the reference signal, the normalized Doppler frequency of DP
signal is 0.5, which corresponds to Doppler frequency 200 Hz. There are three MP signals
in the reference signal. Their relative (relative to the time bin of the DP signal) time bins
are three, four, and nine, respectively. The corresponding normalized Doppler frequencies
are −0.25, −0.18, and −0.33, respectively. The corresponding MP signal to DP signal ratios
(MDRs) are set to −18 dB, −18 dB, and −25 dB, respectively. We set Q = 11, and zero
vectors are used to initial the MP clutter suppression weight vector. All presented results
are averaged over 100 independent Monte Carlo runs.

Table 1. Important simulation parameters.

Parameter Value

Number of elements 10
Number of equivalent pulses in a CIT 10

Main beam look direction Side-looking
Equivalent PRF 400 Hz
Channel spacing λ/2
Platform velocity 100 m/s

Target range cell index 1000
Target Doppler frequency −100 Hz

4.1. Setting of the Number of Snapshots in Range Dictionary

In the first experiment, we examine the SINR loss performance of the proposed method
against the number of snapshots in range dictionary (the value of D). Simulation results are
shown in Figure 3. It can be observed that the SINR loss performance would degrade when
the value of D is too small. This is because the atoms in the proposed global dictionary
cannot match the real MP clutter accurately, which results in the error of the estimation
of MP clutter. On the other hand, when D is set to a large value (D > 9), the SINR loss
performance will not improve much. Additionally, the larger the value of D, the larger the
global dictionary dimension will be and, in turn, the higher the computational complexity.
Therefore, the number of snapshots should be as few as possible but should still ensure
estimation performance, which means D is selected to obtain a trade-off between the SINR
loss performance and the computational complexity. Based on the simulation result, we set
D = 9 in the following simulations.
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4.2. Setting of the Iteration Threshold

Figure 4 provides the gain performance in SINR loss of the proposed method against
the iteration number. It is observed from Figure 4 that the gain in SINR loss becomes
closer to zero with the increment of iteration number. This phenomenon can be explained
as follows: when the iteration number is set to a small value, more important atoms are
selected to estimate MP clutter with the increased iteration number, which results in the
improvement in SINR loss performance; however, if the iteration number exceeds six,
atoms that correspond to insignificant MP clutter component would be incorporated into
the estimated dictionary. In this case, the SINR loss performance is not improved much
but at the cost of a higher computational cost. Therefore, the iteration threshold δ can
provide a trade-off between SINR loss performance and computational complexity. Based
on the above analyses and simulation results, we set the iteration threshold for the iteration
stopping criterion as 0.1 in the following simulations, which is denoted by the horizontal
dotted line in Figure 4. Consequently, the iteration terminates when the iteration number
equals six.
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4.3. Setting of the Local Threshold

The third experiment is set up to examine the local search performance of each iteration.
In each iteration, the local search terminates when the gain in response is less than the local
threshold. Figure 5 provides the gain performances in response against the number of local
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searches. As can be observed from Figure 5, as the number of local searches increases, the
gain in response is closer to zero in each iteration, which means the selected atom is closer
to the MP clutter component. However, when the number of local searches is set to a large
value, the response performance will not improve much, and in turn the computational
complexity is high. Therefore, setting a suitable local threshold is important in order to
obtain a trade-off between the response performance and computational cost. Based on the
simulation results, the local threshold δη is set to 0.0001 in the following simulations (the
horizontal dotted line in Figure 5 indicates the local threshold). Consequently, the numbers
of local search in six iterations are seven, seven, six, six, seven, and six, respectively.
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4.4. Distribution of Selected Atoms in the Range-Doppler Plane

In the fourth experiment, the distribution of selected atoms obtained via the proposed
algorithm is compared with the real atoms related to MP clutter component. Here, MP
clutter component consists of the true MP clutter and their derived ghost MP clutter defined
as sub-MP clutter in [24]. Since the MDRs of true MP signals are −18 dB, −18 dB, and
−25 dB, respectively, and the corresponding time bins-normalized Doppler frequencies are
[3, 0.25], [4, 0.18], and [9, 0.33], respectively, the time bins-normalized Doppler frequencies
of three significant ghost MP clutter are [6, 0.5], [7, 0.43] and [8, 0.36], respectively. The
range cells and normalized Doppler frequencies of the real atoms in six iterations are listed
in Table 2.

Table 2. Parameters of the real atoms in 6 iterations.

True and Ghost MP Clutter Ture 1 Ture 2 True 3 Ghost 1 Ghost 2 Ghost 3

Time bin 3 4 9 6 7 8
Normalized Doppler frequency −0.25 −0.18 −0.33 0.5 −0.43 −0.36

Figure 6 provides the distribution of the selected atoms in the range-Doppler plane of
the proposed method. The square denotes the real location of the atoms. From Figure 6, it
is observed that the atoms selected by the global searches deviate from the real location
severely, while those obtained from the proposed method are close to the real location. This
verifies that the additional local search steps of the proposed method can obtain a more
accurate estimate performance of the MP clutter than merely applying the global searches.
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4.5. Comparison with the Existing CM

In the fifth experiment, the performances of the proposed method are compared with
those obtained from the existing method. As existing CMs based on SRAs exploit the
same measurement model and optimization problem, the performance degradation caused
by the off-grid problem is almost identical in all existing CMs. Additionally, compared
with other two exiting CMs, the CM using L1-EFWLMS can achieve a trade-off between
the computational complexity and SINR loss performance. Therefore, for a fair and
clear comparison, the existing CM using L1-EFWLMS is selected for comparison, and its
performances are discussed in what follows. For the CM using L1-EFWLMS, the Doppler
frequency plane is discretized into 11 grids, the length of the sliding-window is 4, and the
value of the parameter D is set to 9. It is observed that there is a bias between the real MP
clutter and the predefined discrete range-Doppler grids, which means that the off-grid
issues exist in the CM using L1-EFWLMS. In the following simulations, we denote the CM
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using L1-EFWLMS as the existing CM for simplicity. The number of training snapshots
used to estimate the clutter covariance matrix is 200 for all aforementioned methods.

Figure 7 shows the clutter power spectra corresponding to STAP, the existing CM, and
the proposed CM. Since no MP clutter suppression algorithm is utilized in STAP, the power
spectrum exhibits the distributions of DP clutter and MP clutter for STAP, as indicated
by the Figure 7a. Conversely, the proposed CM and the existing CM have an extremely
low power in MP clutter area; however, they maintain a similar power as STAP in the DP
clutter area. Thus, the clutter power spectra of these two CMs exhibit slight expansions. It
verifies that the proposed algorithm can suppress the MP clutter and eliminate its influence
on STAP effectively.
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Then, we illuminate the SINR loss performances of different methods along the main
beam direction. The simulation results are presented in Figure 8. The Doppler frequencies
span from −200 to 200 Hz. As can be observed from Figure 8, STAP has nulls in both MP
clutter area (corresponds to the Doppler frequencies of 72 Hz, 100 Hz, and 132 Hz) and
DP clutter area (corresponds to the Doppler frequencies of 200 Hz and −200 Hz), which
indicates that the detection performance of STAP deteriorates for a target located in the MP
clutter area. Additionally, for the existing CM and the proposed CM, nulls in DP clutter
area are similar to STAP while satisfactory SINR loss performance is obtained in the MP
clutter area. This indicates that these two CMs can achieve MP clutter suppression before
STAP and improve detection ability. Particularly, the proposed CM exhibits an enhanced
SINR loss performance than the existing CM. The superiority of the proposed CM lies in the
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fact that it can eliminate the influence of the off-grid issues and provide more accurate MP
clutter estimation than the exiting CM due to the additional local search steps. This verifies
that the proposed off-grid algorithm can obtain better MP clutter suppression performance
than the exiting CM in the presence of off-grid problem.
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Next, we focus on the target detection performance of the proposed CM. The sim-
ulation results are depicted in Figure 9. There is a target in the 1000th range cell with a
relative (relative to the Doppler frequency of the DP signal) Doppler frequency of 100Hz.
Snapshots from 990th to 1010th range cells are filtered by STAP, the existing CM, and the
proposed CM. As it can be observed, STAP no longer performs properly since the target is
located the MP clutter area, which is coincident with the conclusions presented in Figure 8.
Additionally, the proposed CM can provide more desirable detection performance than the
exiting CM. Thus, the simulation results verify the effectiveness of the proposed CM in the
presence of the off-grid problem.
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In the sixth experiment, the SINR loss performances and target detection results
of the proposed CM are compared with that of the existing CM in different MDR sce-
narios. Figure 10 depicts the simulation results considering two MDR cases, which is
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MDR = −25 dB and MDR = −30 dB. Other simulation parameters are the same as the fifth
experiment. It is observed that the proposed CM features a better SINR loss performance
than the existing CM in both cases. This verifies that, considering the off-grids effects, the
proposed CM can suppress MP clutter effectively, even in different MDRs.
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In Figure 11, the corresponding target detection results are presented. Similar to
Figure 10, the proposed CM features a better performance in target detection than the
existing CM in both cases. This verifies that a bias between the MP clutter and the discretiz-
ing grid points results in performance degradation in the existing CM; however, the local
search steps of the proposed CM can effectively eliminate its effect in these two cases.
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In the seventh experiment, we make a quantitative comparison between two CMs with
different MDR values. The SINR loss value at the target Doppler frequency is summarized
in Table 3. Three MP signals with the same MDR are considered. MDR value is set
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to −15 dB, −20 dB, −25 dB, −30 dB, −35 dB, and −40 dB, respectively. The Doppler
frequencies of the MP signals are assumed to follow a uniform distribution. Notably, the
Doppler frequencies of the MP signals follow a uniform distribution within [−0.5, 0.5].
Other simulation parameters are the same as the fifth experiment. It is clear that, regardless
of the MDR value, the proposed CM outperforms the existing CM in the presence of
off-grid issues.

Table 3. The SINR loss value at the target Doppler frequency with different MDR values.

MDR Value (dB) −15 −20 −25 −30 −35 −40

Existing CM (dB) −4.961 −4.721 −4.725 −4.624 −4.542 −4.519
Proposed CM (dB) −3.946 −4.077 −3.801 −3.925 −3.981 −3.930

The last experiment is set up to examine the SINR loss performances of different
methods against the number of MP signals. The number of MP signals is set to 1, 2,
3,..., and 12, respectively. The Doppler frequencies and MDRs of the MP signals are
both assumed to follow a uniform distribution. Notably, the Doppler frequencies and
MDRs of the MP signals follow a uniform distribution within [−0.5, 0.5] and [–40, 25],
respectively. Simulation results are presented in Figure 12. It is observed that the proposed
CM always exhibits a better SINR loss performance than the existing CM when the number
of MP signals varies. It is concluded from the above-mentioned simulation results that
the proposed CM can address the off-grid problem effectively and obtain the desirable
performances, regardless of the number of MP signals and the MDR values.
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5. Conclusions

In this study, a novel MP clutter suppression method with off-grid effects mitigation
is proposed in airborne passive radars with contaminated reference signals. The proposed
algorithm exploits the sparse measurement model in order to construct the global dictionary
and select the global atoms, to design the local dictionary in order to match the real MP
clutter points, and to suppress MP clutter from all matched atoms. Due to the additional
local search steps, the proposed algorithm achieves better suppression performance than
compared to the existing SRA in the presence of the off-grid problem. The performances
of the proposed algorithm are tested and compared with those of SRA. The results show
that, considering the off-grid effects, CM based on the proposed algorithm outperforms
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CM based on SRA in the SINR loss performance, regardless of the number of MP signals
and the MDR values.

In the future, we will extend our model to incorporate more realistic physical effects,
such as channel mismatch, coherent jammers or noise-like jammers [35–37], and useful
signal and interference mismatch [38].
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