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ABSTRACT: Achiral [2]catenanes composed of rings with inequivalent sides may adopt chiral co-conformations. Their
stereochemistry depends on the relative orientation of the interlocked rings and can be controlled by sterics or an external stimulus
(e.g, a chemical stimulus). Herein, we have exploited this stereodynamic property to amplify a mechanically chiral (P)-catenane
upon binding to (R)-1,1’-binaphthyl 2,2'-disulfonate, with a diastereomeric excess of 85%. The chirality of the [2]catenane was
ascertained in the solid state by single crystal X-ray diffraction and in solution by NMR and CD spectroscopies. This study
establishes a robust basis for the development of a new synthetic approach to access enantioenriched mechanically chiral

[2]catenanes.

he enantioselective synthesis of chiral mechanically

interlocked molecules (MIMs)'™* has made spectacular
progress in recent years, enabling the development of
sophisticated molecular machines with functional applications
in stereoselective catalysis,5 sensing,6 and chiroptical switching.7
These applications rely on the ability of MIM:s to express their
chirality in different ways when the relative position of the
interlocked components changes, an unusual property that is not
accessible with traditional covalent systems. Despite major
synthetic achievements, the production of chiral MIMs generally
remains tedious and requires elaborate multistep syntheses,
involving the independent synthesis of several low symmetry
components.‘%’dr New strategies that can provide access to
complex chiral molecular machines in a simple, cost-effective
manner are therefore needed.

A potential way to address the above-mentioned limitations
lies in the work of Puddephatt et al.® and Marinetti, Sauvage, and
co-workers’ who have shown that combining two rings with
inequivalent faces produces a pair of axially chiral enantiomers
(Figure 1a). These enantiomers are configurationally stable and
cannot interconvert without breaking a covalent bond. Their
stereochemistry is comparable to that of axially chiral allenes,
with one notable difference: the axial chirality of the [2]catenane
arises exclusively from the presence of the mechanical bond
connecting the rings, a phenomenon referred to as mechanically
axial chirality.'® This observation implies that chiral MIMs can
be produced by combining components that are identical,
achiral, and nondirectional. Each of these features evidently
reduces the synthetic cost of the final compound. However,
examples of such [2]catenanes are scarce. In addition, the
control of mechanically axial chirality is highly challenging and
has never been achieved: to date, only racemates have been
obtained.

We now present a simple alternative approach to access
enantioenriched mechanically axially chiral [2]catenanes. Figure
1b shows a [2]catenane composed of rings with inequivalent
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Figure 1. Two situations in which mechanically axial chirality may be
encountered. (a) The stereochemistry of [2]catenanes composed of
rings with inequivalent faces (previous work) is similar to that of axially
chiral allenes. (b) The stereochemistry of [2]catenanes composed of
rings with inequivalent sides (contribution of this study) is closer to
atropisomerism. 1
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sides, rather than inequivalent faces. Such [2]catenanes are
commonly found in the literature.'”"> They are generally
considered to be achiral because they possess a mirror plane
when the mirror planes of the individual rings are brought to
coincide. Yet, moving the rings on either side of the mirror plane
generates axially chiral co-conformations.'*"> These co-
conformations may be either left-handed (M) or right-handed
(P), depending on the relative orientation of the rings. In
contrast with the situation presented in Figure 1a, the motion of
the rings now results in the interconversion of the enantiomeric
co-conformers.'®"” This behavior is somewhat reminiscent of
atropisomerism.'' If the motion of the rings is unconstrained,
which is typically the case in previous reports, the individual co-
conformers interconvert too rapidly to be detected and the
[2]catenane displays no sign of chirality. Here we show that the
chiral co-conformers can become observable when the motion
of the rings is hindered. More importantly, we show that the
dynamic nature of this system can be exploited to easily amplify a
single enantiomer in response to a chemical stimulus.'®

A sterically hindered [2]catenane composed of rings with
inequivalent sides was assembled following a dynamic
combinatorial approach (Figure 2)."” In water, amphiphilic

” 2 CF4C05”
C@ H,O pH 5
o] 70°C

j:f\ﬁj\/ﬁ\
HoNHN > NHNH,

2]catenane 3

14 min

(M)-3 (P)3

Figure 2. (a) Synthesis of [2]catenane 3 from dialdehyde 1 (in gray)
and dihydrazide 2 (in green). The HPLC chromatogram shows the
purity of the crude mixture at the end of the reaction. (b) Crystal
structure of the enantiomers (M)-3 and (P)-3. The acylhydrazone
linkages are colored in yellow. Hydrogens are omitted for clarity.

building blocks frequently self-assemble into catenanes to
minimize the overall hydrophobic surface area in contact with
the environment.'**° Quinolinium-based dialdehyde 1 (1 mM)
and dihydrazide 2 (1 mM) were solubilized in water at pH S.
The solution was stirred overnight at 70 °C, allowing for the
reversible formation of acylhydrazone linkages between the
building blocks. On the following day, HPLC analysis disclosed
the near-quantitative conversion of the starting materials into
[2]catenane 3, which was isolated by semipreparative HPLC as a
trifluoroacetate salt (3-4CF;CO,) in 83% yield.

Tandem mass spectrometry (Figure $4)*' rapidly confirmed
that [2]catenane 3 was composed of two identical macrocycles,
each resulting from the condensation of one dialdehyde 1 (in
gray) and one dihydrazide 2 (in green).

Attempts to obtain single crystals of 3-4CF;CO, from
aqueous solutions were unsuccessful. Fortunately, slow vapor
diffusion of isopropyl ether in a concentrated acetonitrile
solution of the hexafluorophosphate salt 3-4PF (prepared by
following an anion exchange protocol described in the SI),
yielded single crystals suitable for X-ray diffraction. [2]Catenane
3 is a particularly compact structure. The optimum packing of
the aromatic units results in a decrease of solvent accessible
surface area of ca. 37% compared to that of two non-interlocked
macrocycles, explaining the high yield of the [2]catenane
assembly. The cavity of the individual rings is narrow, oblong,
and delimited by large aromatic walls. Steric demands impose
considerable constraint on the relative orientation of the rings,
which can only be interlocked if the quinoliniums stack as
depicted in Figure 2b. The [2]catenane is thus locked into a
well-expressed axially chiral state. Of all the possible co-
conformers, only the enantiomers (M)-3 and (P)-3 are present
and alternate in the three dimensions of the crystal lattice
(Figure 3).

Figure 3. Crystal packing showing the alternation between (M)-3 (in
red) and (P)-3 (in blue). Hydrogens and counterions are omitted for
clarity.

The 'H NMR spectrum of 3-4CF,CO, in D,0O (Figure 4a)
comprises sharp, well-dispersed resonances, and it does not
significantly change between 278 and 338 K (Figure SS). These
features confirm that [2]catenane 3 has little conformational
freedom. The spectrum is consistent with the C,-symmetrical
structure observed in the solid state. The two rings are
equivalent, and all the protons of an individual ring are
inequivalent.

The protons of the inner quinoliniums, buried in the stack, are
substantially upfield-shifted compared to those of the outer
quinoliniums. Moreover, the methylene protons are diaster-
eotopic. In conclusion, the [2]catenane also exists as a racemic
mixture of (M)-3 and (P)-3 in solution. The spectrum shows no
evidence of any other co-conformers.
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Figure 4. (a) "H NMR spectrum (D,0, 500 MHz, 298 K) of [2]catenane 3 highlighting the signals corresponding to the inner quinolinium (@), outer
quinolinium (O), naphthalene (M) and phenylene (A) protons. Diastereotopic methylene protons are labeled with a star (). The cartoon
representations show that the enantiomerization results in an exchange between inequivalent quinolinium protons (@ < O). (b) Corresponding
exchange cross-peaks are observable in the NOESY spectrum (338 K, dg = 300 ms). The full interpretation of the NMR spectra can be found in the SI.
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Figure 5. Amplification of the diastereomeric complex (P)-3:(R)-4. (a) "H NMR titration of (R)-4 to a solution of [2]catenane 3 (1.13 mM, D,0/
CD;CN 1:1, 500 MHz, 298 K). (b) Representation of the equilibria involved in the diastereoselective amplification. (c) Evolution of the
diastereomeric excess in the course of the titration.

The enantiomers (M)-3 and (P)-3 may interconvert through Nevertheless, the presence of exchange cross-peaks between
either mechanism of ring pirouetting or ring circumrotation.” pairs of inequivalent quinolinium protons in the 2D NOESY
In any case, the enantiomerization results in the exchange of the spectrum (Figure 4b) allowed for the determination of the
inner and outer quinoliniums (Figure 4a). Their inequivalence enantiomerization rate constants between 313 and 338 K.** The
implies that the process is slow on the NMR time scale. Eyring plot generated the enthalpy (AH* = +61 kJ-mol™") and
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entropy (AS* = —83 J-mol™-K™") of activation and the energy
barrier (AG¥ 5 ¢ = +85 kJ-mol™?).

The barrier to interconversion is high enough to enable the
NMR resolution of the (M)- and (P)-enantiomers. Indeed,
addition of 0.07 equiv of potassium disulfonate**** (R)-4 to the
racemic solution of 3-4CF,CO, (1.13 mM, D,0/CD,CN 1:1)*°
resulted in the separation of each signal of the [2]catenane into
two signals at 8, and &, (Figures Sa and S16).

As the quantity of disulfonate (R)-4 added increased, the
signals at 8, and p further separated and their relative intensity
noticeably changed. This phenomenon indicates that (R)-4
preferentially binds one of the two enantiomers and shifts the
equilibrium toward the formation of the most stable
diastereomeric complex. The integration of the separated signals
provided a direct measurement of the diastereomeric excess,
which increased with [(R)-4]/[3] until it reached a maximum
value, de,,,, = 85% (Figure Sc).

DEFT calculations revealed that the amplified diastereomeric
complex was (P)-3-(R)-4 (Figure 6). The [2]catenane possesses

Figure 6. BP86-D3/def2-TZVP optimized geometry of the diastereo-
meric complex (P)-3-(R)-4.

a binding site where (R)-4 can nest and form four short and
directional hydrogen bonds with the acylhydrazone NHs.
Disulfonate (R)-4 binds both enantiomers, but fits better in
the binding site of (P)-3 than in that of (M)-3 (Figure S24).
Since (P)-3-(R)-4 is virtually the only species observable in the
spectrum at the end of the titration, it was fully characterized by
'H and *C NMR (Figures S17—520).

If (M)-3 and (P)-3 bind (R)-4 with association constants K,
and Kj, respectively (Figure Sb), the diastereomeric excess at
saturation is determined by the ratio k = K,/K,, which
represents the selectivity of the anion for one of the two co-
conformational states. The value k = 12.3 calculated from de_,,
indicates that K is an order of magnitude superior to Kj; and
corresponds to a difference of stability AG3yg¢ = 6.2 kJ-mol™
between the two diastereomeric complexes. In principle, both
Ky and Kp can be obtained by fitting the plot de = f([(R)-4]/
[3]). The derivatization of the corresponding equations is
detailed in the SI. However, the early saturation of the titration
curve prevented the accurate determination of the individual
association constants. It was only possible to conclude from this
first experiment that K,; and Kp were greater than 10* M.

The diastereoselective amplification was confirmed by
circular dichroism (Figure 7). As expected, the racemic

A (nm)
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Figure 7. (bottom) UV—visible spectra of [2]catenane 3 and (R)-4
(H,O/CH,CN 1:1). (top) ICD spectra of 3 (38 uM, H,0/CH,CN
1:1) in the presence of 0—15 equiv of (R)-4. Inset: ICD amplitude at
364 nm as a function of the number of equivalents of (R)-4.

[2]catenane 3-4CF;CO, (38 uM) exhibited no CD signal in
H,0/CH,CN 1:1. Upon addition of disulfonate (R)-4, an
induced CD (ICD) signal appeared, consisting of a strong
negative Cotton effect at 303 nm and a weaker negative Cotton
effect at 364 nm. The intensity of the ICD increased with the
number of equivalents of (R)-4 until it reached a maximum at
[(R)-4]/[3] =~ 10. This maximum intensity corresponds to the
diastereomeric excess de,, = 85% previously measured by
NMR, as this value is independent of the range of concentration
at which the titration is performed. Taking this information into
account, the ICD intensity could be converted into a
diastereomeric excess at any stage of the titration (Figure 7,
inset). This time, fitting the titration curve successfully afforded
the association constants Kp = 2.6 X 10° M ™! and K;; = 2.1 X 10*
M

In conclusion, we have described a simple approach to access
mechanically chiral [2]catenanes in enantioenriched form. This
approach relies on the ability of [2]catenanes composed of rings
with inequivalent sides to adopt achiral and chiral co-
conformations in dynamic exchange. If the relative orientation
of the rings can be controlled by an external stimulus, it is
possible to reversibly switch the [2]catenane between achiral,
(M), and (P) states.'® Here we have exploited this property to
bias the population of co-conformers in favor of a (P)-catenane.
The stereodynamic nature of this system is its most distinctive
feature. However, we anticipate that increasing the steric bulk of
the rings will slow down the enantiomerization rate enough to
enable the isolation of the enantioenriched [2]catenane in a

https://doi.org/10.1021/jacs.1c06557
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configurationally stable form. These results demonstrate a
promising route to the construction of new chiral molecular
devices for advanced applications in catalysis, molecular
recognition, and material sciences.
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