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Purpose: To investigate the brain information flow pattern in patients with early mild

cognitive impairment (EMCI) and explore its potential ability of differentiation and

prediction for EMCI.

Methods: In this study, 49 patients with EMCI and 40 age- and sex-matched healthy

controls (HCs) with available resting-state functional MRI images and neurological

measures [including the neuropsychological evaluation and cerebrospinal fluid (CSF)

biomarkers] were included from the Alzheimer’s Disease Neuroimaging Initiative.

Functional MRI measures including preferred information flow direction between brain

regions and preferred information flow index of each brain region parcellated by

the Atlas of Intrinsic Connectivity of Homotopic Areas (AICHA) were calculated by

using non-parametric multiplicative regression-Granger causality analysis (NPMR-GCA).

Edge- and node-wise Student’s t-test was conducted for between-group comparison.

Support vector classification was performed to differentiate EMCI from HC. The least

absolute shrinkage and selection operator (lasso) regression were used to evaluate the

predictive ability of information flow measures for the neurological state.

Results: Compared to HC, disturbed preferred information flow directions between

brain regions involving default mode network (DMN), executive control network (ECN),

somatomotor network (SMN), and visual network (VN) were observed in patients with

EMCI. An altered preferred information flow index in several brain regions (including the

thalamus, posterior cingulate, and precentral gyrus) was also observed. Classification

accuracy of 80% for differentiating patients with EMCI from HC was achieved by using

the preferred information flow directions. The preferred information flow directions have

a good ability to predict memory and executive function, level of amyloid β, tau protein,

and phosphorylated tau protein with the high Pearson’s correlation coefficients (r > 0.7)

between predictive and actual neurological measures.

Conclusion: Patients with EMCI were presented with a disturbed brain information

flow pattern, which could help clinicians to identify patients with EMCI and assess their

neurological state.

Keywords: resting state functional MRI, information flow, support vector classification, support vector regression,

early mild cognitive impairment
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INTRODUCTION

Early mild cognitive impairment (EMCI) has been considered as
the mildest neuropsychological impairment (including memory
and cognitive deficit) state preceding Alzheimer’s disease (AD)
(1). The clinical manifestations of EMCI include mild loss
of motor functions, speech difficulties, memory concerns, and
decreased ability to read and write, which could be observed
in the normal elderly population as well, making it difficult
for clinical diagnosis (2–5). Cognitive assessments, serologic
tests, cerebrospinal fluid (CSF) biomarkers, and genotypes
contribute to early identification of EMCI and assessment of
neurological state (6–9). However, cognitive assessments were
time-consuming. Serologic tests and CSF examination were
invasive and not available for all the potential patients with
EMCI in clinical practice (10). Therefore, noninvasive objective
biomarkers were warranted to accurately differentiate EMCI
from normal elders and assess the neurological state (e.g.,
cognitive state and CSF biomarker levels).

Resting-state functional MRI (rs-fMRI) was first described
by Biswal et al. in (11). Since then, it has been widely applied
in healthy populations and patients with various neurologic,
neurosurgical, and psychiatric disorders. Compared to task-
based fMRI, rs-fMRI does not require subjects to perform any
specific task and could reflect intrinsic relationships between
the brain regions or brain networks in greater detail in
neurodegenerative disorders (12). In fact, the task-based fMRI
was more targeted to relationships between the brain functional
areas and specific cognitive tasks (e.g., dorsal and ventral
attention network activation in a short-term memory task,
occipital and frontal gyrus activation in visuospatial memory
task) (13, 14), while the low-frequency oscillations of the rs-fMRI
signal were more associated with the spontaneous neural activity
and can be used to depict the underlying intrinsic whole-brain
functional connectivity, which accounts for various cognitive
information processing in neurodegenerative disorders (12).
rs-fMRI has been widely applied for non-invasively detecting
brain functional alterations associated with the underlying
pathogenies (e.g., amyloid aggregates) and cognitive decline in

patients with MCI and AD (10, 15, 16). Accumulated evidence
demonstrated that rs-fMRI could characterize the underlying
functional alterations preceding observed structural changes
in the early stage of AD (1, 10). Voxel- or region-based

functional connectivity analyses have been proposed to disclose
the underlying functional patterns in MCI, which depicts the
information flow across spatially separated brain areas. Both the

functional deficits and compensations were reported in patients
with MCI, indicating a complex underlying mechanism in MCI
(17). Even though the underlying information flow patterns

regarding the hippocampus, prefrontal, and temporal cortex
could identify EMCI from later MCI and AD (1, 18–20), the
underlying brain information flow pattern in patients with EMCI
was still undetermined.

Evidence demonstrated that effective connectivity
(directed connectivity) characterizing the information flow
patterns in MCI and AD was superior to conventional
functional connectivity (nondirected connectivity) by using

correlation-based methods (e.g., Pearson’s correlation, partial
correlation, coherence analysis). Granger causality analysis
(GCA), especially linear GCA, has been widely applied to
investigate underlying directed information flow in MCI and AD
(15, 21). However, it was argued that the functional interactions
between brain areas were not linear and might be misinterpreted
by linear regression (22–24). Non-parametric multiplicative
regression-GCA (NPMR-GCA) was a non-parametric method
to reflect the non-linear interaction of signals by presenting
the interaction in high-dimensional embedded linear space,
which seemed superior to conventional GCA in interpreting the
non-linear functional interaction of brain areas (25, 26).

Therefore, in this study, we aimed to investigate the brain
information flow pattern in patients with EMCI by using NPMR-
GCA and explored its clinical significance including differential
diagnosis and neurological state assessment.

METHODS

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) Data Acquisition
The MRI images in this study were obtained from the ADNI
database (http://adni.loni.usc.edu/, data in work were acquired
from ADNI-1, ADNI-GO, and ADNI-2). The ADNI was
launched in 2004 funded by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), and supported by many pharmaceutical
companies and foundations. The primary goal was to
investigate the progression of early AD and MCI by various
measurements including neuropsychological assessments, MRI
and PET imaging, and other biological markers (e.g., CSF
biomarkers) (27, 28).

High-resolution three-dimensional (3D) T1 and rs-fMRI
images of 49 patients with EMCI and 40 age- and sex-matched
healthy controls (HCs) were included in this study. The inclusion
criteria of HC were as follows: (1) the Mini-Mental State
Examination (MMSE) scores between 24 and 30; (2) the Clinical
Dementia Rating (CDR) of 0; and (3) no other neurological or
psychiatric disorders. The inclusion criteria of EMCI were as
follows: (1) the MMSE scores between 24 and 30; (2) having
memory complaint and objective memory loss measured by
education adjusted scores on the Wechsler Memory Scale-
Revised Logical Memory II Story A score (a maximum score of
25): EMCI was assigned for a score of 9–11 for 16 ormore years of
education, a score of 5–9 for 8–15 years of education, or a score of
3–6 for 0–7 years of education; (3) the CDR of 0.5; (4) preserved
activities of daily living; (5) no significant impairment in other
cognitive domains; and (6) no dementia.

All the MRI images were acquired on a 3T Philips MR
scanner. TheMR protocol parameters of 3D T1 and rs-fMRI were
as follows. 3D T1: 3D sagittal acquisition with magnetization-
prepared rapid gradient-echo (MP-RGAE), repetition time
(TR)/echo time (TE) = 6,700 ms/3.1ms, flip angle (FA) = 9◦,
spatial resolution = 1 × 1 × 1.2mm, matrix size = 256 × 256,
and slice number= 170 and rs-fMRI: multislice axial acquisition
with gradient echo-echo planar imaging (GRE-EPI), TR/TE =
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TABLE 1 | Demographics and clinical measures of the HC and EMCI subjects.

HC (n = 40) EMCI (n = 49) P value

Age (mean±SD, year) 75.1 ± 6.31 72.2 ± 6.72 0.34#

Female/Male 22/18 25/24 0.71*

ADNI-MEM (mean±SD) 1.0 ± 0.55 (n=36) 0.5 ± 0.57 (n = 44) <0.001#

ADNI-EF (mean±SD) 0.8 ± 0.75 (n = 36) 0.5 ± 0.81 (n = 44) 0.053#

Aβ (mean±SD, pg/ml) 188.5 ± 48.79 (n = 29) 185.9 ± 62.26 (n = 37) 0.85#

Tau (mean±SD, pg/ml) 73.4 ± 35.43 (n = 29) 93.1 ± 64.66 (n = 37) 0.12#

pTau (mean±SD, pg/ml) 36.1 ± 17.69 (n = 29) 42.3 ± 26.25 (n = 37) 0.26#

HC, healthy controls; EMCI, early mild cognitive impairment; Aβ, amyloid β; ADNI-MEM,

Alzheimer’s Disease Neuroimaging Initiative-composite assessment of memory ADNI-EF,

ADNI-executive function; pTau, phosphorylated tau.
*Chi-squared test, p < 0.05 deemed as statistically significant.
#Two sample Student’s t-test, p < 0.05 deemed as statistically significant.

3,000 ms/30ms, FA = 80◦, in-plane resolution = 3mm × 3mm,
slice thickness = 3.3mm, matrix size = 64 × 64, slice number =
46, and dynamics= 140.

Clinical measures including neuropsychological evaluation
[ADNI-composite assessment of memory (ADNI-MEM) and
ADNI-executive function (ADNI-EF) and CSF biomarkers [the
accumulation of amyloid β (Aβ), tau protein, and phosphorylated
tau (pTau) protein] were also obtained in a subset and used in this
work to reflect the neurological state (Table 1).

MRI Processing
Resting-state functional MRI images were preprocessed by using
the Data Processing & Analysis for Brain Imaging (DPABI,
Beijing, China) (version 4.4, http://rfmri.org/dpabi) software.
Main processing procedures (Figure 1) included: (1) slice timing
correction to correct for slice-dependent delays achieved by
shifting the time series of each slice to temporally align all
the slices to a reference time point (middle slice); (2) head
motion correction by realigning the fMRI volumes to the mean
volume; (3) coregistering T1 image to mean fMRI volume to
obtain the forward and backward transformation matrices; (4)
segmentation of T1 image to obtain the gray matter, white matter,
CSF, and the normalization matrix (forward transformation
matrix) of T1 to the Montreal Neurological Institute (MNI)
space; (5) regression of covariates to remove the potential effects
of linear trend, head motion (24 head motion parameters), global
signal, and signals within white matter and CSF; (6) warping
the fMRI images into the MNI space by the previous backward
transformation matrix of coregistering T1 to fMRI and forward
transformation matrix of normalizing T1 to MNI space; and
(7) band filtering the fMRI signals with a frequency range of
0.01–0.1Hz to keep only the interesting frequencies and discard
potential noise sources (noise or physiological signal). No image
smoothing was performed to preserve the details of fMRI signals.

Calculation of Preferred Information Flow
Measures
Information flow measure was calculated by NPMR-GCA with
home-developed MATLAB scripts (Matlab, 2019b, MathWorks,
USA; see Supplemental Material). The functional Atlas of
Intrinsic Connectivity of Homotopic Areas (AICHA) was

adopted in this study (29) to define the spatially separated gray
matter regions. This atlas has 192 separated brain labels (brain
nodes) and each label incorporates the bilateral homotopic brain
areas, which are deemed to have the same function.

Steps of information flowmeasure calculation were as follows:

Step 1: The mean fMRI signals were extracted for the 192
brain regions.
Step 2: The effective connectivity matrix between brain regions
was constructed by NPMR-GCA. The functional connection
was weighted by NPMR-GCA values presented byGCA

(

i, j
)

to
characterize the directed information flow from brain region
i to brain region j.
Step 3: The preferred information flow direction was defined
as the relative information flow between each paired brain
region by using preferred_GCA (i, j) = GCA(i, j)/[GCA

(

i, j
)

+

GCA
(

j, i
)

] (Figures 1, 2A). A value of preferred_GCA(i, j) >

0.5 indicated preferred information outputting of brain
region i compared to brain region j, and a value of
preferred_GCA(i, j) < 0.5 indicated preferred information
receiving of brain region i compared to brain region j. A
value of preferred_GCA(i, j) = 0.5 indicated no preferred
information flow direction between brain regions i and j.
Step 4: Additionally, we defined the preferred information
flow index [preferred_GCA(i)] of a brain region by averaging
the preferred outputting direction across all the other brain
regions (Figures 1, 2A), a preferred_GCA(i) > 0.5 indicated
preferred information outputting ability of a brain region at
the whole brain level, and a preferred_GCA (i) < 0.5 indicated
preferred information receiving ability.

Statistical Analyses
Statistical analyses were conducted by using the Statistical
Package for the Social Sciences (SPSS) (version 22.0, IBM
Corporation, Armonk, New York, USA) and MATLAB scripts
(Matlab, 2019b, MathWorks, USA). Categorical variables (e.g.,
sex) were displayed with percentages and analyzed by the
chi-squared test. Continuous variable (e.g., age, neurological
measures) was displayed with mean and SD. Data normality
was analyzed by the Kolmogorov–Smirnov test. The Student’s t-
test was used for between-group comparison (EMCI vs. HC) if
data were normally distributed; otherwise, the Mann–Whitney
U test was used. A two-sided p < 0.05 was deemed as
statistically significant.

The edge-wise Student’s t-test was used to compare the
preferred information flow direction between groups (EMCI vs.
HC) and a two-sided false discovery rate (FDR)-corrected p
< 0.05 was deemed as statistically significant. The node-wise
Student’s t-test was used to compare the preferred information
flow index between groups and a two-sided FDR-corrected p <

0.05 was deemed as statistically significant.

Multivariate Machine Learning
Multivariate support vector classification (SVC) was carried out
for the identification of EMCI from HC and least absolute
shrinkage and selection operator (lasso) regression were used
to predict the neurological measures by using information
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FIGURE 1 | Functional MRI (fMRI) processing and analysis flowchart of the study.

flow measures (both preferred information flow direction and
index) in EMCI and HC. For SVC, preferred information
flow measures with statistically significant differences between
EMCI and HC were used. The leave-one-out cross validation
(LOOCV) was adopted to evaluate the performance of SVC with
classification accuracy, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV). For lasso
regression, Pearson’s correlation coefficients between predicted
and actual neurological measures were used to evaluate the
model performance.

The details of the image processing and analysis were
described in Figure 1.

RESULTS

Demographics and Clinical Variables
No difference was observed on age, sex, ADNI-EF, Aβ,
Tau, and pTau between EMCI and HC. Lower ADNI-MEM
score was observed in EMCI (0.5 ± 0.57) compared to HC
(1.0± 0.55; p < 0.001).

Information Flow Pattern in EMCI
As shown in Figure 2B, the preferred information flow direction
from middle frontal gyrus to angular gyrus, from precentral
sulcus to inferior occipital gyrus, from inferior occipital gyrus
to Rolando sulcus, from inferior parietal gyrus to anterior insula
gyrus, from precentral sulcus to superior temporal pole gyrus,
from superior temporal pole gyrus to anterior insular gyrus,
from lateral occipital gyrus to parieto-occipital sulcus, and from
posterior cingulate gyrus to hippocampus decreased in EMCI
compared to HC.

As shown in Figure 2B, the preferred information flow index
decreased in the posterior insular gyrus, superior temporal pole

gyrus, posterior cingulate gyrus, and cuneus gyrus and increased
in the precentral sulcus, middle temporal gyrus, and thalamus in
patients with EMCI compared to HC.

Differentiation of EMCI From HC by Using
Information Flow Measures
As shown in Table 2, a classification accuracy of 79.78%, the
sensitivity of 85%, specificity of 75.51%, PPV of 73.91%, and NPV
of 86.05% were achieved for differentiation of EMCI from HC
by using the above preferred information flow directions (seven
features), which showed a statistical difference between groups.

Classification accuracy of 76.40%, the sensitivity of 70%,
specificity of 81.63%, PPV of 75.68%, and NPV of 76.92% were
achieved for differentiation of EMCI fromHC by using the above
preferred information flow index (eight features), which showed
a statistical difference between groups.

Clinical Assessment of EMCI by Using
Information Flow Pattern
As shown in Figure 3, when using preferred information
flow directions (e.g., those between brain areas within frontal,
temporal, and parietal lobe), the ADNI-MEM, ADNI-EF, level
of Aβ, tau, and pTau could be well predicted with correlation
coefficients of 0.83 (p < 0.001; feature number = 17), 0.88 (p <

0.001; feature number = 13), 0.82 (p < 0.001; feature number
= 16), 0.83 (p < 0.001; feature number =1 4), and 0.76 (p <

0.001; feature number = 11), respectively. When using preferred
information flow index (e.g., those of brain areas within frontal,
temporal, and parietal lobe), the predictive ability decreased with
lower correlation coefficients of 0.72 (p < 0.001; feature number
= 10), 0.67 (p < 0.001; feature number = 6), 0.75 (p = 0.009;
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FIGURE 2 | The information flow patterns in HC and EMCI. (A) The preferred information flow direction and preferred information flow index in HC and EMCI. The

node size indicated the value of the preferred information flow index. The color of the directed edge indicated the value of preferred information flow direction (only

directed edges with values > 0.5 were presented); (B) The alterations of information flow patterns in EMCI compared to HC. The first row presented the edge-wise

(Continued)
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FIGURE 2 | statistical results of preferred information flow direction, only decreased preferred information flow direction in EMCI was displayed as the opposite

preferred information flow direction was increased, which implies the identical information flow changes between the brain nodes; the Second row presented the

node-wise statistical results of preferred information flow index, red nodes indicated the increased preferred information flow index and the blue nodes indicated the

decreased preferred information flow index. HC, healthy controls; EMCI, early mild cognitive impairment; G, gyrus; S, sulcus.

TABLE 2 | Identification of EMCI by using information flow measures by SVC.

Features Accuracy Sensitivity Specificity PPV NPV

Preferred information flow direction(FN = 7) 79.78% 85% 75.51% 73.91% 86.05%

Preferred information flow index(FN = 8) 76.40% 70% 81.63% 75.68% 76.92%

EMCI, early mild cognitive impairment; SVM, support vector machine; PPV, positive predictive value; NPV, negative predictive value; FN, feature number; SVC, support

vector classification.

feature number = 15), 0.65 (p < 0.001; feature number = 13),
and 0.59 (p= 0.01; feature number= 20), respectively.

DISCUSSION

In this study, the information flow pattern of EMCI was
investigated by using preferred information flow direction
and index between/within brain regions defined by NPMR-
GCA and demonstrated their abilities for clinical differential
diagnosis and neurological state prediction. Results showed
disturbed preferred information flow directions involving default
mode network (DMN), executive control network (ECN),
somatomotor network (SMN), visual network (VN), and altered
preferred information flow index in several brain areas (including
the thalamus, posterior cingulate, and precentral gyrus) in EMCI
compared to HC. Additionally, a good classification (accuracy of
80%) of EMCI and HC and good predictive abilities (r > 0.7)
of the preferred information flow directions for the neurological
state (cognitive measures and CSF biomarkers) were achieved.

The disturbed information flow pattern in EMCI was
consistent with previous evidence that the alterations in patients
with dementia predominately involved DMN, ECN, SMN, and
VN (15, 19, 30, 31). The altered information flow pattern
in cingulate, especially in posterior cingulate, was consistent
with the functional deficit within DMN in patients with MCI
and dementia (19, 32), which may account for the episodic
memory problems in EMCI (33). In addition, the information
flow in the temporal gyrus, angular gyrus, and insula further
demonstrated the changes within DMN (19, 32, 34). The altered
information flow in the frontal gyrus may associate with the
mild cognitive decline in EMCI (18, 30). Information flow
change in the precentral gyrus was observed in this study,
implying a motor function deficit in patients with EMCI, which
has been previously demonstrated (10). Occipital gyrus within
VN showed disturbed information flow pattern in short- (e.g.,
between lateral occipital gyrus and parieto-occipital sulcus) and
long-range (e.g., between precentral sulcus and middle occipital
gyrus and between inferior occipital gyrus and Rolando sulcus)
connectivity, which may account for the cognitive decline in
EMCI (10, 19). Hippocampus, which was themost reported brain
area in AD, also presented altered information flow directions

with other brain regions, especially cingulate; this finding may
account for the mild decline memory in patients with EMCI
(34–36). The posterior cingulate, thalamus, precentral, insular,
middle temporal gyrus, and temporal pole were acknowledged
brain functional hubs in both healthy people and patients with
neuropsychiatric disorders (15, 19), and the disturbances of
the information flow in these brain hubs may account for the
underlying pathological mechanism and clinical manifestation in
patients with EMCI (1, 19, 37).

Based on the above findings, accurate differentiation of EMCI
from HC was achieved. The classification accuracy (80%) was
comparable to previous reports based on multimodal MRI
(15, 34). Recently, deep learning based on fMRI demonstrated
exciting performance for the early diagnosis of EMCI, achieving
a classification accuracy of above 95%, which was superior
to widely applied conventional machine learning methods (3,
4, 38). However, it was difficult to interpret the contributing
features in deep learning models (27). Support vector machine
(SVM) was a popular multivariate supervised data classification
approach with performance being comparable or superior
to other machine learning methods (e.g., k-nearest neighbor
algorithm, Naive Bayes, decision trees, discriminant analysis),
especially for small samples (39). The differentiation of EMCI
from HC by using SVM further confirmed the clinical
value of the information flow alterations in EMCI observed
in this study.

The accurate prediction of neurological measures (reflecting
neurological state) by using information flow patterns was
achieved, which was rarely reported in previous MCI studies.
These findings were of high importance, especially for those
who were not available timely to clinical cognitive assessments
and invasive CSF sampling, which can help physicians and
clinicians for early screening of patients with EMCI. These
findings also implied that the brain functional alterations of
EMCI could provide objective radiological makers to assess the
cognitive state and pathological changes in patients with EMCI,
which was important for monitoring the disease progression,
triaging for clinical trials, and evaluating the response to clinical
treatments (2).

There are some limitations to this study. First, the sample
size of included subjects was limited to Philips scanner and
a specific protocol setting to avoid the potential influence
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FIGURE 3 | Neurological assessment by using information flow measures by lasso regression. The first and second columns presented the selected information flow

directions and a good prediction ability for the ADNI-MEM, ADNI-EF, Aβ, tau, and pTau evaluation. The color of the directed edge indicated the value of lasso

regression coefficient (beta); the third and fourth columns presented the selected information flow index and a relative decreased prediction ability for the ADNI-MEM,

ADNI-EF, Aβ, tau, and pTau evaluation. The size of the node indicated the absolute value of the lasso regression coefficient and the color of the node indicated the

positive (red) or negative (blue) lasso regression coefficient. Aβ, amyloid β; pTau, phosphorylated Tau; ADNI-MEM, Alzheimer’s Disease Neuroimaging

Initiative-composite assessment of memory; ADNI-EF, ADNI-executive function; FN, feature number; G, gyrus; S, sulcus.

of scanner and acquisition parameters, since this study was
the first try to use NPMR-GCA to depict the underlying
information flow in EMCI. In the future, larger samples by
using different parameters on different MR scanners should
be considered to validate the current findings. Second, the
preferred information flow direction was a relative value between
brain nodes, a value of 0.5 indicated no preferred information
flow direction, which failed to characterize the information
pattern of the brain nodes with simultaneous increased and
decreased information outputting and receiving abilities. In
addition, the information flow measures could not determine

whether the increased preferred information flow direction
was a result of underlying increased information outputting
ability or decreased receiving ability. Third, LOOCV was
adopted for the SVC model evaluation, overfitting might be
presented especially for small samples, and further works with
large samples and external testing datasets would be included
to validate the current models. Lastly, this work aimed to
investigate the intrinsic information flow revealed by rs-fMRI.
As for the clinical diagnosis and neurological assessment,
multimodal MRI including morphology, perfusion, and task-
fMRI may improve the performance of the current diagnostic

Frontiers in Neurology | www.frontiersin.org 7 November 2021 | Volume 12 | Article 706631

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


He et al. Information Flow in EMCI

and predictive models, which would be conducted in the
future with multimodal datasets from the multiple protocol
settings and scanners.

CONCLUSION

In this study, we defined preferred information flow direction
and index by NPMR-GCA and observed their ability to
help in the early diagnosis and neurological state assessment
in EMCI, reflecting the underlying pathological process
in patients with EMCI, which may help to guide the
physician and clinician for early screening, monitoring
disease progression, and providing objective biomarker for the
clinical trials.
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