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ABSTRACT

As more and more high-throughput data has been
produced by next-generation sequencing, it is still a
challenge to classify RNA transcripts into protein-
coding or non-coding, especially for poorly anno-
tated species. We upgraded our original coding po-
tential calculator, CNCI (Coding-Non-Coding Index),
to CNIT (Coding-Non-Coding Identifying Tool), which
provides faster and more accurate evaluation of the
coding ability of RNA transcripts. CNIT runs ∼200
times faster than CNCI and exhibits more accuracy
compared with CNCI (0.98 versus 0.94 for human,
0.95 versus 0.93 for mouse, 0.93 versus 0.92 for ze-
brafish, 0.93 versus 0.92 for fruit fly, 0.92 versus
0.88 for worm, and 0.98 versus 0.85 for Arabidop-
sis transcripts). Moreover, the AUC values of 11 ani-
mal species and 27 plant species showed that CNIT
was capable of obtaining relatively accurate identifi-
cation results for almost all eukaryotic transcripts. In
addition, a mobile-friendly web server is now freely
available at http://cnit.noncode.org/CNIT.

INTRODUCTION

Numerous studies show that non-coding RNAs (ncRNAs)
have critical roles in diverse biological processes from plants
to animals (1–4), such as sponging by microRNAs (5),
cell development (6), acting as modular scaffolds (7) and

regulating epigenetic inheritance (8). Despite the increas-
ing number of high-throughput data produced by next-
generation sequencing, the classification of protein-coding
or non-coding transcripts remains a challenge, especially
for poorly annotated species. For instance, existing software
available for annotating plants is rare and/or of low accu-
racy and plants are important resource for novel drug leads
(9). The study of plant long non-coding RNA is still in its in-
fancy, and the biological functions and mechanisms of plant
non-coding RNAs are mainly focused on model plants such
as rice and Arabidopsis. The first step is to identify lncRNA
with effective identification software at the beginning of new
research, so as to determine the research method and direc-
tion for the functional delineation of the newly discovered
RNA. At present, few existing software programs can be
used to identify plant non-coding RNA, and in general, the
accuracy of identification has not been verified by a large
number of data sets.

To overcome these shortcomings and make it easier for
users to distinguish transcripts, we updated our CNCI al-
gorithm (10) to create CNIT. In comparison with CNCI,
CNIT runs ∼200 times faster than CNCI and exhibits
higher accuracy, especially for plants, when using human
and Arabidopsis data as training sets. Because CNIT, sim-
ilar to CNCI, classifies protein-coding and non-coding
RNAs solely based on intrinsic sequence composition, it
is potentially applicable to a variety of species lacking a
whole-genome sequence or with poorly annotated infor-
mation. In addition, we constructed a mobile-friendly web
server for researchers, making CNIT now freely available at
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Figure 1. Evaluation of the accuracy of CNIT, CNCI, CPC2, CPAT and PLEK software. Overall comparison data (A) and detailed accuracy (B) in the
six organisms from the CPC2 website.

http://cnit.noncode.org/CNIT/ as both a web server and a
downloadable stand-alone package.

MATERIALS AND METHODS

Dataset processing

In order to construct and validate the CNIT model, we
downloaded and filtered protein-coding and non-coding se-
quence data of 11 animal and 26 plant species from Ref-
seq and Ensembl (Supplementary materials and methods
and Supplementary Table S2). Animal protein-coding and
non-coding transcripts were from the RefSeq database (11).
For plants, coding transcripts were obtained from the Ref-
seq, and noncoding transcripts were from Ensembl Plants
(v37) database (12). A total of 19752 coding RNAs and
19752 non-coding RNAs of human origin (GRCH38) were
selected for training and testing. In addition, 2588 cod-
ing RNAs and 2588 non-coding RNAs of Arabidopsis
thaliana species (EnsemblPlants-v37) were used to build
the plant model. Among the above total coding and non-
coding transpcripts dataset, 70% were selected for training
and 30% for testing. To evaluate the cross-species perfor-
mance of CNIT, the rest of 10 animal species and 25 plant
species were used for validation. These training and testing
datasets collected by CNIT can be obtained from the down-
load page (http://cnit.noncode.org/CNIT/download). In re-
cent years, small open reading frame (sORF, length of se-
quence less than 300nt) has been studied continuously, but
still has not formed a well-organized known database (13–
15). Therefore, the existence of sORF was not considered in
all the above lncRNA data sets. Moreover, in order to com-
pare the performance of identifying mRNAs with sORFs,
we then extracted the human mRNAs data set which con-
tains sORFs.

To evaluate the performance of CNIT compared with
other software, we further downloaded independent test
datasets from CPC2 datasets (http://cpc2.cbi.pku.edu.cn/
help/data set.php), including human, mouse, zebrafish,
fruitfly, worm and Arabidopsis thaliana datasets, for valida-
tion and comparison, which met strict standards and were
high-quality (16).

Model construction

Consistent with CNCI (10), we first constructed a compari-
son frequency matrix of adjoining nucleotide triplets (ANT)
using the training dataset (lncRNA sequence & coding do-
main sequence (CDS). Based on the comparison frequency
matrix, a sub-sequence as most-like CDS (MLCDS) with
highest summation of ANT frequency were found in each
reading frame. Six MLCDSs were obtained from six open
reading frames. Among them, the MLCDS with a maximal
score (summation of ANT frequency) was termed as MML-
CDS. Based on the six MLCDSs, the MMLCDS score,
standard deviation of six MLCDS scores, standard devi-
ation of six MLCDS lengths, and MMLCDS codon fre-
quency (4*4*4 = 64 dimensions) with a total of 67 features
were finally used to construct the XGBoost models (Supple-
mentary materials and methods).

RESULTS

CNIT identification performance and comparison with exist-
ing tools

CPC2 and CNCI in the existing tools can be used to com-
pare the performance in a wide range of species. The data
were collected from test data downloaded from the CPC2
website (http://cpc2.cbi.pku.edu.cn/help/data set.php, Fig-
ure 1A). The data of six species were identified by the five
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Figure 2. Global prediction by ROC analysis for CNIT across 37 species.

software programs: CNIT, CNCI, CPC2, CPAT (It only
can identify four species) (17) and PLEK (18) software, and
the accuracy was calculated (Figure 1B). Compared with
CNCI, CNIT has higher accuracy. In terms of computing
time, CNIT is ∼200 times faster than CNCI, as evaluated
by calculating the average running time ratio of CNCI and
CNIT in the six species when both were in single thread
mode. Moreover, CNIT is almost better than that of CPC2,
except for the identification of worm sequences (accuracy:
0.915 versus 0.975). CNIT also showed a better perfor-
mance in more species than the CPAT and PLEK with more
accuracy. Then, we used the above five software programs
to identify mRNAs with sORFs (Supplementary Table S3).
According to the results, compared with CNCI, CPAT and
CPC2, CNIT has a higher accuracy in mRNAs with sORFs
sequence identification, while PLEK has the highest accu-
racy.

For all downloaded animals and plants sequence data,
CNIT identified them one by one and drew AUC curves
to see the identification effect. For animal species, CNIT
achieved a very high AUC value for mammals, amphib-
ians, reptiles, birds, fish and invertebrates, indicating that

it can distinguish coding from non-coding RNA. Simi-
larly, for plants, CNIT also obtained high AUCs for mono-
cotyledons, dicotyledons, bryophytes, ferns, Chlorophyta
and red algae, especially monocotyledons and dicotyledons.
CNIT validates plants and animals that cover most of the
genera of the order family. Although not very rigorously,
CNIT can identify most eukaryotic RNA as coding or non-
coding RNA. Here, we show the prediction of CNIT for
37 species (11 animal and 26 plant species) with the corre-
sponding AUC value (Figure 2). We also compared the per-
formance of CNIT and CPC2 using the above datasets and
showed the prediction accuracy of 37 species in Supplemen-
tary Table S2, meanwhile macro-averaged F1 statistic was
performed for imbalanced datasets. The relevant compar-
ison showed that CNIT’s ability to recognize coding tran-
scripts outperformed CPC2 (Supplementary Figure S1A).
Although CPC2 could identify non-coding sequences better
(Supplementary Figure S1B), CNIT has more advantages
in identifying sequences including coding and non-coding
ones synchronously with higher macro-averaged F1, espe-
cially for plant species (Supplementary Figure S1C).
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Figure 3. Screenshot of the CNIT web server. (A) Summary html view output with coding probability. (B, C) Graphical view of the ‘Details’ page.

Web server introduction

It is convenient for users to access the CNIT web portal at
http://cnit.noncode.org/CNIT/. The web tool accepts RNA
transcripts in FASTA format as input and outputs assess
coding potential of the sequences. CNIT provides two iden-
tification methods, the simplest is to enter a single or mul-
tiple FASTA format RNA sequence through the website
home page, and click RUN to submit the identification task.
In addition, one can also submit the RNA sequence files in
FASTA format on the ‘Batch’ page for batch identification.
However, if the sequence contains too many Ns or some-
thing else (more than 10% of the sequence), it may not pro-
duce results. In addition to web-side identification, users
can download CNIT software packages and install them
under the Linux system. For installation and usage, see the
‘Download’ page.

When the identification program finishes running, the
identified results will appear on the results page. CNIT re-
sults give an overview of the coding status of the input
sequences. Each row corresponds to one input sequence.
The columns show the transcript ID, the coding/noncoding
classification label (Index), the coding probability score
(CNIT Score: where greater than 0 indicates coding RNA,

less than 0 indicates non-noncoding RNA; the larger the
score, the greater the coding possibility). Users can further
click ‘View’ to enter the identification detail page. A unique
job ID is assigned to each job by the web server. Users can
use job-ID to track the job progress and retrieve the results,
which will be saved on the server for one week.

EXAMPLE

We took human coding gene L1 cell adhesion molecule
transcript variant 1 (L1CAM: NM 000425.4) (19) as an ex-
ample and used online CNIT for identification. CNIT pre-
dicted that it was a coding transcript, with a CNIT score =
0.88 (Figure 3A).

‘View’ in the last column can be clicked to display more
detailed information. The details page is divided into three
parts. A description of L1CAM summarizing its coding
probability and features is presented at the top (Figure
3B). In the middle of the page, an interactive visualiza-
tion of three supporting features, including sequence length,
MLCDS start and MLCDS end, are provided. In addi-
tion, the sequence detail of L1CAM is noted in the mid-
dle of the page (Figure 3C). In the CNIT Score Detail Plot,
the red line represents the correct transcriptional reading

http://cnit.noncode.org/CNIT/
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Figure 4. Examples of CNIT analysis of transcripts for coding RNA L1CAM (A) and non-coding RNA HOTAIR (B). CNIT score distribution of the six
reading frames for each transcript is the left y-axis and sequence length is normalized to nucleotide triplets in the x-axis. Red line represents the correct
transcription reading frame and the other five lines (blue) represent the other five reading frames.
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frame out of other colored lines, such as the identification
result for human coding gene L1CAM (Figure 4A). By
contrast, CNIT analysis of human non-coding transcript
HOX transcript antisense RNA transcript variant 2 (HO-
TAIR: NR 003716) (20) did not identify a coding sequence
(CNIT Score = −0.31, Figure 4B). At the bottom of the ‘de-
tails’ page, you can blast your sequence in the NONCODE
database in this page directly.

SUMMARY

Non-coding RNAs have emerged as major components
of the eukaryotic transcriptome. Genome-wide analyses
have revealed the existence of thousands of long noncoding
RNAs (lncRNAs) in several species, and a growing num-
ber of lncRNAs have been found to be implicated in hu-
man disease (21–23) and plant growing and breeding (4,24–
26). Despite the increasing number of high-throughput
data produced by next-generation sequencing, the classifi-
cation of protein-coding or noncoding transcripts remains
a challenge, especially for poorly annotated species. In other
words, the existing software available for annotating plants
is rare or of low accuracy.

CNCI published in 2013 is widely used by worldwide re-
searchers and has been cited >200 times (Web of Science)
in the past 5 years (10). To better serve researchers and
make it easier for users to distinguish transcripts, we up-
dated our CNCI algorithm to CNIT. Because CNIT classi-
fies protein-coding and non-coding RNAs solely based on
intrinsic sequence composition, as does CNCI, it is partic-
ularly well suited for transcriptome analysis of not well-
studied species with high accuracy, robustness and con-
sistency, to help researchers validate coding or noncod-
ing hypotheses for further functional studies. Moreover, in
comparison with CNCI, CNIT runs∼200 times faster than
CNCI and exhibits higher accuracy, especially for plants
(0.98 versus 0.94 in humans, 0.95 versus 0.93 in mice, 0.93
versus 0.92 in zebrafish, 0.93 versus 0.92 in the fruit fly, 0.92
versus 0.88 in worms, and 0.98 versus 0.85 in Arabidopsis).
The current CNIT can be further applied to species with
incomplete genome annotations, such as Artemisia annua
(Qing Hao), Astragalus membranaceus (Huang Qi), Gin-
seng (Ren Shen), etc.

Moreover, we constructed a user-friendly web server
that is freely available at website: http://cnit.noncode.org/
CNIT/. As a result, it will be easy for users to employ this
online tool in batches or single sessions rather than just un-
der the Linux system. Thus, CNIT is a handy and useful
tool, not only for predicting protein-coding or non-coding
sequences generated by high-throughput sequencing data,
but also for analyzing the sequence features across species
as either an online or offline tool.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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