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Aspergillus fumigatus Trehalose-
Regulatory Subunit Homolog Moonlights
To Mediate Cell Wall Homeostasis
through Modulation of Chitin Synthase
Activity
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Robert A. Cramer

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New
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ABSTRACT Trehalose biosynthesis is found in fungi but not humans. Proteins involved
in trehalose biosynthesis are essential for fungal pathogen virulence in humans and
plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in
the human pathogen Aspergillus fumigatus significantly alters cell wall structure and in-
tegrity, though the mechanistic link between these virulence-associated pathways re-
mains enigmatic. Here we characterize genes, called tslA and ts/B, which encode proteins
that contain domains similar to those corresponding to trehalose-6-phosphate phospha-
tase but lack critical catalytic residues for phosphatase activity. Loss of tsIA reduces treh-
alose content in both conidia and mycelia, impairs cell wall integrity, and significantly al-
ters cell wall structure. To gain mechanistic insights into the role that TsIA plays in cell
wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-
tandem mass spectrometry (LC-MS/MS) were used to reveal a direct interaction between
TslA and CsmaA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase
activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopatho-
genesis of murine invasive pulmonary aspergillosis through altering cytokine production
and immune cell recruitment. In conclusion, our data provide a novel model whereby
proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and
consequently impact fungus-host interactions.

IMPORTANCE Human fungal infections are increasing globally due to HIV infec-
tions and increased use of immunosuppressive therapies for many diseases. There-
fore, new antifungal drugs with reduced side effects and increased efficacy are
needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic
fungi and is absent in humans. Components of the trehalose biosynthesis pathway
are important for the virulence of human-pathogenic fungi, including Aspergillus fu-
migatus. Consequently, it has been proposed that components of this pathway are
potential targets for antifungal drug development. However, how trehalose biosyn-
thesis influences the fungus-host interaction remains enigmatic. One phenotype as-
sociated with fungal trehalose biosynthesis mutants that remains enigmatic is cell
wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like
subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall
homeostasis through modulation of chitin synthase localization and activity. As the
cell wall is a current and promising therapeutic target for fungal infections, under-
standing the role of trehalose biosynthesis in cell wall homeostasis and virulence is
expected to help define new therapeutic opportunities.
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spergillus fumigatus is a filamentous fungus that can cause a severe fungal disease,

invasive aspergillosis (IA), in immunocompromised humans (1, 2). Azoles are
antifungal drugs that inhibit fungal ergosterol synthesis and are the current drugs of
choice for IA treatment. Drug-drug interactions, undesirable side effects, and a growing
emergence of azole-resistant strains in certain parts of the world are challenges faced
by clinicians employing azole therapy against IA (3, 4). Thus, there is a growing need for
new antifungal drugs to combat life-threatening infections caused by A. fumigatus and
associated species.

Trehalose biosynthesis is found in many organisms, e.g., insects, plants, inverte-
brates, and fungi, but not in humans. The canonical fungal trehalose biosynthesis
pathway was defined in Saccharomyces cerevisiae (5, 6). The canonical pathway in
S. cerevisiae consists of the following components: Tps1p (trehalose-6-phosphate syn-
thase), Tps2p (trehalose-6-phosphate phosphatase), and two regulatory subunits,
Tps3p and Tsl1p (5-11). These proteins form a complex to produce trehalose (5, 6).
Genes encoding trehalose biosynthesis proteins are essential for virulence in the
human-pathogenic yeasts Candida albicans (12) and Cryptococcus neoformans (13).
Canonical fungal trehalose biosynthesis is also present in A. fumigatus. In A. fumigatus,
tps1 has at least two paralogs that are important for trehalose production, tpsA and
tpsB (tpsA/B) (14), whereas Tps2 has one ortholog, named OrlA (15). While loss of tpsA
and tpsB enhances the virulence of A. fumigatus as measured by murine mortality and
immunopathogenesis, the loss of orlA significantly attenuates virulence (14, 15). A
striking feature of both the tpsA/B and orlA genetic mutants and of yeast trehalose
mutants is their altered cell wall integrity. However, the mechanism(s) through which
trehalose biosynthesis proteins impact fungal cell wall homeostasis is undefined. Given
the extensive interactions between trehalose biosynthesis and basic fungal carbon
metabolism, both indirect and direct mechanisms are plausible, though not mutually
exclusive, causative models.

In this study, characterization of the unstudied A. fumigatus trehalose regulatory
subunits ts/A and tsIB revealed a surprising role for TslA in modulating fungal cell wall
homeostasis. Our results support a model whereby TslIA plays a critical direct role in
fungal cell wall homeostasis through modulating the localization and activity of a class
V chitin synthase enzyme, CsmA. Thus, for the first time, our results provide novel
insights into mechanisms through which the canonical fungal trehalose biosynthesis
pathway directly impacts fungal cell wall homeostasis and consequently the host-
pathogen interaction.

RESULTS

TslA and TsIB are homologs of yeast trehalose regulatory subunits Tsl1 and
Tps3. To identify putative regulatory subunits of the trehalose complex in A. fu-
migatus, we queried the protein sequences of S. cerevisiae Tsl1p and Tps3p against
the A. fumigatus strain A1163 protein database using BLASTp algorithms (http://
www.aspergillusgenome.org/). Two proteins, AFUB_089470 and AFUB_021090, showed
significant sequence similarity to Tsl1p and Tps3p and were consequently named TslA
and TslB, respectively. TslA contains 919 amino acids, while TsIB contains 918 amino
acids. The TslA and Tsl1p and Tps3p protein sequences showed 40% and 37% amino
acid identity and 59% and 54% protein sequence similarity, respectively. TsIB and Tsl1p
and Tps3p showed 38% and 36% amino acid identity and 57% and 53% protein
sequence similarity, respectively. Protein domain analyses revealed that TsIA and TsIB
share domains similar to those of the trehalose-6-phosphate phosphatase (TPP) OrlA,
such as the glycosyl transferase domain (GT1-TPS) and the halogen-associated
dehydrogenase-like domain (HAD-TPP), as previously reported in A. niger (16). However,
compared to the known catalytic sites of TPS and TPP domains in bacteria (17, 18), TsIA
and TsIB appear to lack catalytic residues of both domains similar to those of yeast
Tsl1p and Tps3p. To study the function of these proteins in A. fumigatus, we generated
genetic single- and double-null mutants of ts/A and ts/B in A. fumigatus CEA17 (mutants
AtslA, AtsIB, and AtsIA/B) as previously described (19-21). Reconstituted AtsIA and Ats/B
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strains were generated by ectopic insertion of the wild-type ts/A and tsIB alleles
(AtsIA+tsIA and AtsIB+tsIB) (22). Singly reconstituted AtsIA/B strains were also gener-
ated using either wild-type tslA alleles or wild-type ts/B alleles (AtsIA/B+tsIA or AtslIA/
B+tsIB) (22). All strains were confirmed by both PCR and Southern blot analyses.
Furthermore, the confirmed strains were analyzed with quantitative reverse transcrip-
tase PCR (qRT-PCR) and mRNA corresponding to ts/A and tsIB was confirmed to be
absent in all mutants and confirmed to be restored to wild-type levels in the respective
reconstituted strains (data not shown). In AtslA, we observed increased mRNA levels of
tsIB; tslA mRNA levels remained similar to the wild-type levels in the AtsIB mutant (data
not shown).

Loss of TslA and TsIB decreases trehalose content and delays germination. To
test the hypothesis that TsIA and TsIB are involved in trehalose biosynthesis in A. fu-
migatus, we measured conidia and mycelium trehalose content in our wild-type and
generated strains (Fig. 1). A significant decrease in trehalose content in the Ats/A,
AtsIA/B, and AtsIA/B+tsIB strains was observed compared to levels observed with the
wild-type and reconstituted strains in both the conidial and mycelial stages (Fig. 1). Loss
of TsIB alone had minimal impact on trehalose levels in conidia or mycelia. These results
suggest that TslA is more critical for trehalose production than TsIB. However, loss of
TsIB in AtsIA further reduced trehalose content compared to that seen with Ats/A
alone (P < 0.0001). This result suggests that TsIB is also involved in trehalose produc-
tion (Fig. 1).

Loss of trehalose biosynthesis in A. fumigatus and other filamentous fungi affects
germination of conidia (14, 15, 23). Consistent with previous observations, the AtslA,
AtsIB, and AtsIA/B strains showed a significant delay in germination in the first 8 h when
cultured in liquid glucose minimal medium (LGMM). At 8 h, the wild-type strain
germinated at 94.00 £ 2.00% whereas the AtslA, AtsIB, and Ats/A/B strains germinated
at 80.33 £ 2.08% (P = 0.0012), 86.00 = 3.46% (P = 0.0257), and 86.67 £ 2.31% (P =
0.0142), respectively. Nevertheless, these mutants showed no detectable differences in
radial growth on solid GMM or in biomass in batch culture at 37°C compared to the
levels seen with the wild-type and reconstituted strains.

Loss of TslA increases susceptibility to cell wall-perturbing agents. Trehalose
biosynthesis null mutants have associated cell wall defects in A. fumigatus as evidenced
by data from AtpsA/B and AorlA strains (14, 15). To test the hypothesis that TsIA and TsIB
play a role in cell wall homeostasis, we utilized the cell wall-perturbing agents Congo
red (CR), calcofluor white (CFW), and caspofungin (CPG). We observed increased CR and
CFW susceptibility with the Ats/A and AtsIA/B strains (Fig. 2A). No significant difference
in CPG susceptibility was observed. To further confirm the cell wall phenotypes of these
mutants, we utilized osmostabilizing medium containing 1.2 M sorbitol (sorbitol min-
imal media [SMM]) and an enriched medium, Sabouraud dextrose agar (SDA). Ats/A
showed restored cell wall phenotypes on both SMM and SDA in the presence of CFW
(Fig. 2B). As both CR and CFW bind to chitin on the cell wall and inhibit growth, while
CPG inhibits B-1,3-glucan synthase, these results suggest that loss of TsIA affects the
chitin component of the fungal cell wall.

Loss of TslA alters cell wall structure and exposure of fungal cell wall microbe-
associated molecular patterns (MAMPs). One possible mechanism to explain the
increased susceptibility of the AtslA strain to cell wall-perturbing agents is an inherent
alteration in cell wall structure. To explore this hypothesis, transmission electron
microscopy (TEM) was utilized. TEM micrographs revealed that the Ats/A strain had a
significantly thinner cell wall than the wild type (P = 0.002) (Fig. 3). Moreover, an
accumulation of an electron-dense material near the cell wall of the Ats/A strain was
observed along the hyphae. We hypothesize that loss of TsIA may alter extracellular
matrix and/or associated cell wall proteins of this fungus. Given the significant altera-
tion in the AtslA strain cell wall structure, we next tested the hypothesis that exposure
of key MAMPs, chitin and B-glucan, is altered in this mutant.
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FIG 1 Loss of TsIA and TsIB decreases trehalose production in both conidia (A) and hyphae (B).
Quantitation of trehalose production in conidia and mycelia was performed using glucose oxidase (GO)
assays (Sigma) after trehalase enzyme incubation. For the conidial stage, 2 X 108 conidia were used to
extract trehalose by boiling at 100°C for 20 min and collecting the supernatant to perform GO assays. For
the mycelial stage, 1 X 108 conidia were cultured in 10 ml LGMM at 37°C for 16 h, the mycelia were
weighed and lyophilized, and trehalose extraction was performed. Data are presented as means =+ SE of
results from three biological replicates. ***, P < 0.0001 (unpaired two-tailed Student’s t test compared to
the wild-type CEA10 results).

CFW and wheat germ agglutinin (WGA) staining were used to observe chitin levels
and exposure on the cell wall. Loss of TslA dramatically increased both CFW staining
and WGA staining, which likely reflects increased chitin content of this mutant (P =
0.0074 for CFW and P = 0.0017 for WGA) (Fig. 4A and B). Soluble dectin-1 (s-dectin-1)
staining was used to observe B-glucan exposure, and loss of TslA significantly de-
creased s-dectin-1 staining on fungal germlings (P = 0.0005) (Fig. 4C). We conclude that
loss of TslA affects cell wall homeostasis in part by disrupting chitin and B-glucan
homeostasis.

One possible explanation of these results is that loss of TslA indirectly affects the
fungal cell wall through induction of a cell wall integrity response that is perhaps due
to an alteration in intracellular osmotic homeostasis resulting from reductions in
trehalose levels. To test this hypothesis, we utilized gRT-PCR to quantitate mRNA levels
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FIG 2 Loss of TslA increases fungal susceptibility to cell wall-perturbing agents (A), and growth of the Ats/A
strain is restored on sorbitol minimal media (SMM) and Sabouraud dextrose media (SDA) in the presence
of 50 ug/ml calcofluor white (B). Dropout assays were performed at 37°C for 2 days by using 10> to 102
conidia for each strain inoculated on GMM with or without cell wall-perturbing agents, i.e., 1 mg/ml Congo
red, 50 pg/ml calcofluor white, and 1 wg/ml caspofungin. Images and data are representative of three
independent experiments with similar results.
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of transcription factors known to be induced by cell wall stress, rImA and atfA (24, 25).
We observed that the mRNA levels of both rimA and atfA in the Ats/A strain were
equivalent to the levels seen with the wild type and the reconstituted strains with or
without the presence of CFW (Fig. 5A). Alternatively, it is possible that loss of TslA alters
carbon metabolic flux and thus affects cell wall biosynthesis. Several studies in multiple
fungi have observed significant changes in cell wall biosynthesis-encoding gene mRNA
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FIG 3 Loss of TslA decreases fungal cell wall thickness and results in accumulation of electron-dense
material at the outer layer of the cell wall. Mycelia from each strain were prepared for TEM as previously
described (19, 39). Cell wall thickness was analyzed by ImagelJ. Data are presented as means * SE of 10
measurements from two biological replicates of each strain. **, P value = 0.002 (unpaired two-tailed
Student’s t test compared to the wild-type CEA10 results). Bars, 500 nm.

levels in response to nutrient availability (26-29). To investigate this hypothesis, we
analyzed the mRNA levels of fksA, encoding a B-glucan synthase enzyme, and of csmA,
encoding a class V chitin synthase enzyme, using qRT-PCR. We observed no change in
the expression levels of these genes in the Ats/A strain (Fig. 5B). The combination of
osmostabilizing medium rescue of the cell wall perturbation phenotype, lack of an
intrinsic cell wall integrity response, and lack of changes in cell wall biosynthesis-
encoding gene mRNA levels suggests that changes in the cell wall homeostasis
resulting from the loss of TslA are unlikely to be solely the result of altered carbon
metabolism.

TslA interacts with a class V chitin synthase enzyme. To understand the mech-
anism behind the role of TsIA in cell wall homeostasis, we utilized an affinity purification
approach to identify proteins interacting with TslA. To utilize this approach, we
generated a TsIA C-terminal S-tag strain (30, 31). Similar to previous observations in
S. cerevisiae, we observed that TslA interacts with the TPP, OrlA, which suggests that
TsIA may regulate TPP activity/function in A. fumigatus (see Table S2 in the supple-
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FIG 4 Loss of TslA alters MAMP cell wall exposure. (A and B) The Ats/A strain has increased chitin
levels/exposure as measured by calcofluor white (CFW) staining (A) or wheat germ agglutinin (WGA) (B)
compared to the results seen with wild-type CEA10 and the reconstituted Ats/A+tslA strain. Each strain
was cultured into the germling stage under normoxic conditions at 37°C. The germlings were UV
irradiated and stained with 25 ng/ml CFW or with 5 ng/ml WGA. The mean intensity was analyzed using
ImageJ and the corrected total cell fluorescence (CTCF) was calculated (69, 70). **, P value = 0.0074 for
CFW and 0.0017 for WGA compared to CEA10 (unpaired two-tailed Student’s t test compared to the
wild-type CEA10 results). DIC, differential interference contrast. (B) The Ats/A strain has decreased
B-glucan exposure as measured by s-dectin-1 staining compared to the wild-type CEA10 and the
reconstituted Ats/A+tslA strain. Each strain was cultured to the germling stage under normoxic condi-
tions at 37°C. The germlings were UV irradiated, blocked, and stained with a conditioned medium
containing s-dectin1-hFc followed by Alexa Fluor 488-conjugated, goat anti-human IgG1. The corrected
total cell fluorescence (CTCF) was calculated. ***, P value = 0.0005 (unpaired two-tailed Student’s t test
compared to the wild-type CEA10 results). Data are presented as means = SE of 15 images from three
biological replicates. Bar, 3 um.

mental material). TslA also interacted with metabolic enzymes involved in central
carbon metabolism, including proteins in glycolysis and pentose phosphate path-
ways. Unexpectedly, TslA interacted with the chitin synthase enzyme, CsmA (ChsE;
AFUB_029080). These data suggest that TsIA has important metabolism regulatory
functions in addition to the canonical function in trehalose biosynthesis. A list of TsIA
interacting proteins, with score and identity notations, is presented in Table S2.

To validate the protein-protein interaction between TsIA and CsmA, we utilized a
coimmunoprecipitation (Co-IP) approach (Fig. 6). We first introduced a 3X Flag tag to
the C terminus of CsmA in the background of the wild-type and S-tagged TslA strains.
We observed no changes in the phenotypes and trehalose levels of these tagged strains
compared to wild-type levels (data not shown). We performed coimmunoprecipitation
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FIG 5 Loss of TslA does not affect the cell wall integrity and HOG-MAPK pathways (A) and does not change the expression of fksA and csmA (B). A total of
106 conidia of the wild-type strain and the Ats/A strain were incubated overnight in liquid GMM, and CFW was added for 0, 15, and 60 min as indicated. Samples
were collected, and RNA extraction was performed for measuring rImA, atfA, fksA, and csmA mRNA abundance using qRT-PCR analysis as previously described

(15). Data are presented as means = SD of results from three biological replicates of each strain.

assays using S-protein beads with the wild-type, S-tagged TslA, and Flag-tagged CsmA
strains and the S-tagged TslA and Flag-tagged CsmA strain. Using Western blot analysis,
we observed that TsIA coimmunoprecipitated from only the S-tagged TslA strain and
the S-tagged TslA and Flag-tagged CsmA strain. In support of the affinity purification
data, CsmA coimmunoprecipitated in the S-tagged TslA and Flag-tagged CsmA strain
(Fig. 6A). To further confirm the interaction between TslA and CsmA, we performed
reciprocal coimmunoprecipitation assays using anti-Flag M2 magnetic beads. We ob-
served CsmA to coimmunoprecipitate from only the Flag-tagged CsmA strain and the
S-tagged TslA and Flag-tagged CsmA strains. Also, TsIA was coimmunoprecipitated
from the S-tagged TslA and Flag-tagged CsmA strains (Fig. 6B). From these results, we
conclude that TsIA and CsmA physically interact in A. fumigatus.

Loss of TslA increases chitin synthase activity and affects cellular localization
of CsmA. One potential mechanism to explain our results is that TslA directly regulates
chitin synthase activity through CsmA. To test the hypothesis that TslA regulates CsmA
activity, we utilized a nonradioactive chitin synthase activity approach successfully
utilized in A. fumigatus (32, 33). After extracting membrane proteins and incubating
with substrates for chitin production, we observed a significant increase in chitin
production in the Ats/A strain compared to the wild-type, reconstituted, and control
AcsmA strains whereas the negative controls showed very low chitin content (Fig. 7) (for
10 g, P = 0.0117 [for comparisons between the wild-type strain and the Ats/A strain)
and P = 0.0013 (for comparisons between the wild-type strain and the AcsmA strain).
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FIG 6 TslA physically interacts with CsmA. Affinity purification assays from Flag-tagged CsmA strains in
the background of S-tagged TslA were performed with S-protein beads (A) and anti-Flag beads (B) to
verify interactions. Data are images representative of results from three independent experiments, all
with similar results.

This result supports the hypothesis that TslA is a potential negative regulator of chitin
synthase activity through its interaction with CsmA.

As chitin synthase localization is critical for cell wall homeostasis in fungi, we
hypothesized that TslA alters CsmA localization and, consequently, chitin synthase
activity. To observe the change in the localization of CsmA, we introduced a green
fluorescent protein (GFP) tag into the C terminus of CsmA in the wild-type and Ats/A
strain backgrounds. We confirmed the stability of the C-terminal GFP-tagged CsmA
protein of each strain using Western blot analysis (Fig. 8A). Consistent with results in
A. nidulans, CsmA primarily localized to the growing hyphal tips and septa in wild-
type A. fumigatus (34). In contrast, the localizations of CsmA in the Ats/A strain were
dispersed along the lateral cell wall of the fungus and throughout the cytoplasm and
were not spatially restricted to the hyphal tips or septa (Fig. 8B). Furthermore, to
quantify the puncta at the subapex region (within 20 um of the tip), the puncta in the
images were analyzed, and fewer puncta were visible in the Ats/A strain (P < 0.0001 [for
comparisons between CEA10 and the Ats/A strain]) (Fig. 8C). Consequently, we con-
clude that TslA is critical for proper CsmA localization at the hyphal tip and hypothesize
that loss of TslA causes dysregulation of chitin synthase activity through altered CsmA
localization. To gain further insight into how TslA affects CsmA localization, we inves-
tigated TslA localization using a strain with expression of C-terminal GFP-tagged TslA.
We observed that TslA localized nonspecifically in the cytosol throughout the hyphae
after 12 h or 16 h of incubation (Fig. 8D) (see Fig. S1 in the supplemental material).
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FIG 7 Loss of TslA increases chitin synthase activity. Ten micrograms of membrane proteins were used
to perform a nonradioactive chitin synthase activity assay. Each strain was cultured at 30°C for 6 h and
switched to 37°C for 24 h. Ten micrograms of the wild type’s membrane proteins was used to compare
with no substrate, UDP-N-acetyl glucosamine (UDP-GIcNAc) and no trypsin as negative-control assays. *,
P = 0.0117; **, P = 0.0013; ***, P < 0.0001 (unpaired two-tailed Student’s t test compared to the
wild-type CEA10 results). Data are presented as means * SE of results from three biological replicates.

TslA modulates the host inflammatory response. As the fungal cell wall is at the
interface of the host-pathogen interaction, we next tested the hypothesis that loss of
TsIA impacts murine invasive pulmonary aspergillosis (IPA) outcomes. First, fungal
virulence was assessed using a survival analysis in the chemotherapeutic murine model
of IPA (35). From the survival experiment, all AtsIA strain-inoculated mice perished by
day 7, whereas the wild-type-strain-inoculated and reconstituted-strain-inoculated
groups survived through the second week (Fig. 9A). The median durations of survival
for mice inoculated with the wild type, the Ats/A strain, and the reconstituted strain
were 3, 3.5, and 3 days, respectively. Although the Ats/A strain-inoculated mice had a
clear trend toward earlier mortality than the mice in the groups inoculated with the
wild-type strain or the reconstituted strain, Kaplan-Meier analysis showed no significant
difference between groups (P = 0.066 [for comparisons between the wild-type and
AtslA strain groups]). We next examined the pulmonary fungal burden of lung homog-
enates using a quantitative PCR (qPCR) approach to quantitate fungal 18S ribosomal
DNA (rDNA) levels (36) and observed no significant difference between the results seen
with the Ats/A strain and the wild-type and reconstituted strains (P = 0.057 [for
comparisons between the wild-type and Ats/A groups) (Fig. 9B). However, significant
differences in lung histopathology were observed between groups, with Ats/A-
inoculated mice containing increased levels of inflalmmatory foci compared to those
inoculated with the wild-type and reconstituted strains (Fig. 9C). Moreover, the orga-
nizations of the inflammatory lesions were significantly different between the Ats/A
strain and the wild type, with many Ats/A lesions exhibiting abscess-like characteristics,
especially on day 4 after inoculation (Fig. 9C). We hypothesize that the trend toward
higher mortality rates and earlier mortality of Ats/A-inoculated mice was the result of
increased immunopathogenesis and an altered host response.

We tested this hypothesis by collecting bronchoalveolar lavage fluid (BALF) on day
2 postinoculation (D2PI). Consistent with the histopathological findings, we observed
larger inflammatory cell infiltrates from BALF of Ats/A-inoculated mice than from BALF
of the wild-type- or reconstituted-strain-inoculated groups (P = 0.0051 [for compari-
sons between CEA10 and the Ats/A strain]) (Fig. 9D). Cell differential counts re-
vealed increased infiltration of macrophages and neutrophils from the BALF of Ats/A-
inoculated mice compared to the results seen with the wild-type and reconstituted
strains (for neutrophils, P < 0.05 [two-way analysis of variance {ANOVA} for compari-
sons among the CEA10, AtslA, and AtsIA+tsIA strains; for macrophages, P < 0.01
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FIG 8 TslA promotes CsmA hyphal tip localization. (A) Western blot analysis of C-terminal GFP-tagged CsmA in the wild-type strain,
AtslA strain, and Ats/A+tslA strain backgrounds. (B) C- termlnal GFP-tagged CsmA was generated in the wild-type strain, Ats/A, and
AtsIA+tsIA mutant backgrounds. Each strain was cultured at 37°C for 12 h, and live-cell imaging was performed using a Quorum
Technologies WaveFX spinning disk confocal microscope (magnification, X1,000). The images were analyzed using Imaris 8.1.4
software. (C) Loss of TslA changes the number of CsmA puncta at the hyphal tip. To quantify the puncta at the subapex region (within
20 pum of the tip), the puncta in the images were counted and analyzed using Imaris 8.1.4 software. ***, P < 0.0001 (unpaired
two-tailed t test compared to the wild-type CEA10 results). (D) Localization of GFP-tagged TslA. C-terminal GFP-tagged TslA was
generated and cultured at 37°C for 12 h. Live-cell imaging was performed using a Quorum Technologies WaveFX spinning disk
confocal microscope (magnification, X1,000). The three-dimensional (3D) structure of TsIA puncta was created by the use of Imaris
8.1.4 software. Data are presented as means = SE of results corresponding to 15 images from three biological replicates. Bar, 3 um.

Number of puncta at the subapex region

[two-way ANOVA for comparisons among the CEA10, Ats/A, and Ats/A+tslIA strains])
(Fig. 9E).

To better understand potential causes of the higher levels of inflammatory cellular
infiltrate inside AtslA-inoculated lungs, we utilized a Luminex assay to quantitate
selected inflammatory cytokines from the BALF. Despite the equivalent levels of fungal
burden, we observed an increased-inflammatory-cytokine profile, including increases in
the levels of tumor necrosis factor alpha (TNF-a«), CXCL1, and macrophage inflammatory
protein 1-alpha (MIP-Ta or CCL3), in Ats/A-inoculated BALF compared to the wild-type
and reconstituted-strain results. MIP-1« levels increased significantly in the Ats/A-
inoculated BALF (P = 0.0286) (Fig. 9F). Consequently, we conclude that the increased
chitin levels and the decreased B-glucan levels on the cell wall of the Ats/A strain alter
the immunopathogenesis of murine IPA through increased and differential recruitment
of inflammatory cells, likely through alterations in the secretion of proinflammatory
cytokines.

DISCUSSION

The trehalose biosynthesis pathway is crucial for the virulence of human- and
plant-pathogenic fungi, including Candida albicans (12), Cryptococcus neoformans (13),
Aspergillus fumigatus (15), and Magnaporthe oryzae (37). In A. fumigatus, loss of the
trehalose synthases TpsA and TpsB virtually eliminates trehalose production and results
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FIG 9 Survival analysis (A) and fungal burden (B) data from the Ats/A strain are similar to the data from the wild-type and Ats/A+tsIA
strains, while the loss of TslA increased inflammation (panels C and D and panels E and F). (A) A total of 106 conidia of each strain
were inoculated via the intranasal route in a chemotherapeutic IPA murine model. Ten CD1 mice were used in each group. Survival
analysis was performed for 2 weeks. p.i., postinfection. (B) No significant differences in fungal burden were observed in the strains
tested. Analysis of the fungal burden of these mice was performed as previously described (36). (C) Ats/A-infected lungs show more
inflammatory cell infiltrations. The fungal histology was performed on day 2 and day 4 to observe the inflammatory cell infiltrations.
Arrowheads show the abscess-like structure. Images are representative of results from three mice. Magnification, X50. (D and E)
Ats/A-infected bronchoalveolar lavage fluid samples (BALs) had increased cell infiltrations, especially macrophages. To observe
changes in the inflammatory response in vivo, cell counts and differential counts were performed. (D) P value = 0.0051 (unpaired
two-tailed t test compared to the wild-type CEA10 results). (E) For neutrophils, *, P < 0.05 (two-tailed ANOVA for comparisons among
the CEA10, AtslA, and AtsIA+tslA strains); for macrophages, **, P < 0.01 (two-tailed ANOVA for comparisons among the CEA10, AtslA,
and Ats/A+tslA strains). (F) Luminex assay results from AtsIA mutant-infected BALs show an increased inflammatory cytokine profile.
Data are presented as means * SE of results from BALF from three mice of each strain. *, P = 0.0286 (unpaired two-tailed
Mann-Whitney test).

in a strain with an increase in virulence as measured by murine survival in a cortico-
steroid murine model of IPA (14). Though the mechanism for the increase in virulence
is unknown, it is suggested to be driven by altered cell wall composition and immu-
nopathogenesis (14). This result was rather surprising given that trehalose synthase null
mutants in other human-pathogenic fungi are severely attenuated in virulence. In
contrast, loss of the TPP Tps2 ortholog OrlA in A. fumigatus severely attenuated
virulence in a chemotherapeutic murine model and markedly reduced virulence in an
X-CGD murine model (15). As with the loss of TpsA and TpsB, the loss of OrlA
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significantly alters the cell wall of A. fumigatus. Yet it has remained enigmatic how
trehalose biosynthesis and cell wall biosynthesis are mechanistically linked.

To further explore the role of trehalose biosynthesis in A. fumigatus virulence and
cell wall homeostasis, we identified and characterized two additional homologs of the
S. cerevisiae trehalose biosynthesis complex, here named TslA and TsIB. Our major
finding is that A. fumigatus TslA physically interacts with the chitin synthase CsmA,
which leads to a novel model where TslA can moonlight as a regulator of chitin
biosynthesis. While our data do not rule out perturbations in carbon metabolism that
occur upon loss of trehalose biosynthesis proteins impacting cell wall biosynthesis, they
strongly suggest that TslA has a direct regulatory role through its interaction with the
CsmA chitin synthase.

In A. fumigatus, TsIA and TsIB lack the canonical catalytic residues of both TPS and
TPP domains, similarly to S. cerevisiae Tps3p (ScTps3p) and Tsl1p. Yet loss of TslA in
A. fumigatus leads to a significant decrease in the trehalose content in both conidia and
mycelia, similarly to the loss of ScTsl1p (11). Consequently, TslA is directly involved in
regulating trehalose biosynthesis in A. fumigatus. Intriguingly, we observed a direct
interaction between TslA and the A. fumigatus TPP (OrlA) in our experiments. Further
experiments are needed to test the hypothesis that TsIA serves as a regulator of TPP
activity in A. fumigatus. In addition, trehalose assays of ts/A and ts/B null mutants
suggest that while both TslA and TsIB are involved in trehalose biosynthesis, these two
proteins are not redundant and have multiple functions that remain to be fully
elucidated in A. fumigatus.

The major phenotype associated with loss of TslA is a significant alteration in cell
wall integrity as evidenced by cell wall stress assays. In addition, TEM and cell wall chitin
and beta-glucan exposure assays strongly suggest that loss of TslIA impacts cell wall
homeostasis. To further understand the underlying mechanisms, we used an affinity
purification approach followed by liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analysis of coprecipitating proteins with TslA. In S. cerevisiae, ScTsl1p and
Tps3p interact with proteins that regulate cell wall rigidity and cell wall components in
the spores, i.e., Pmt6p, an O-mannosyltransferase, and Sps2p (a protein expressed
during sporulation), but there are no reports of interactions with cell wall biosynthesis
enzymes (38). Surprisingly, however, we discovered that A. fumigatus TslA interacts
with a class V chitin synthase, CsmA. To our knowledge, this is the first report of a
protein-protein interaction between trehalose and cell wall biosynthesis proteins in
fungi. However, S5cTsl1p and Tps3p also interact with other enzymes in glycolysis,
including other mitochondrial proteins. In our experiments, we also observed that TslA
in A. fumigatus also interacts with enzymes in glycolysis, the pentose phosphate
pathway, and mitochondrial proteins though these interactions remain to be validated.

Consequently, our data suggest that TslIA plays a complex role in fungal carbon
metabolism, cell wall homeostasis, and fungus-host interactions. For chitin production,
G6P is converted into fructose 6-phosphate and then N-acetyl glucosamine, while
UDP-glucose is the key building block to generate B-glucan. These substrates, G6P and
UDP-glucose, are also the critical building blocks for trehalose biosynthesis. Perturba-
tions in trehalose biosynthesis that occur when key proteins are lost through genetic
mutation or in response to specific environments thus result in significant alterations in
fungal carbon metabolism that may alter biosynthetic processes in the cell that require
sugar-phosphate intermediates. Nevertheless, from the mRNA expression of the tran-
scription factors in the cell wall integrity pathway (RImA), the high-osmolarity glycerol-
mitogen-activated protein kinase (HOG-MAPK) pathway (AtfA), the B-glucan synthase
enzyme (FksA), and the class V chitin synthase enzyme (CsmA), we observed that the
loss of TslA has no intrinsic effect on mRNA levels of these genes. These results suggest
that the observed defects in cell wall homeostasis may be the result of the direct
regulation of CsmA or other cell wall biosynthesis components by TslA.

A. fumigatus contains eight chitin synthase enzymes divided into seven classes (39,
40). However, only class V and class VIl enzymes have an N-terminal myosin motor-like
domain (MMD) (41-43). Fungal cells pack these enzymes into 60-nm-diameter mi-
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crovesicles, called chitosomes, and transport them to the hyphal tip (44). Chitosomes
merge with the apical cell membrane, and chitin synthase enzymes (Chs) are trans-
ported into the interior side of the cell membrane (45). However, MMD-Chs are also
able to transport themselves along actin filaments to the fungal tip (34). In Ustilago
maydis, chitosomes are not required for the cytoplasmic motility of class V chitin
synthases (46, 47). MMD-Chs are usually found at the hyphal tip and septa, so they are
proposed to be involved in polarized cell wall biosynthesis and septal formation (48).
A. fumigatus possesses two chitin synthases with an MMD, called CsmA and CsmB (49).
A ¢smA null mutant shows less chitin content in the conidial cell wall (49). Recently,
Muszkieta et al. observed that CsmA is important for cell wall homeostasis (50). Loss of
¢csmA, csmB, chsF, and chsD causes formation of a disorganized cell wall structure and
significantly attenuates virulence in vivo (50).

In contrast, our results suggest that loss of TslA results in altered CsmA localization
and an increase in chitin synthase activity. It is unknown how TslA binds to CsmA and
affects its localization and activity. Localization of chitin synthase enzymes is essential
for function, and their localization is dependent upon multiple regulatory steps,
including posttranslational modifications, e.g., phosphorylation and dephosphoryla-
tion. For example, in S. cerevisiae, ScChs3 is phosphorylated by ScPkc1 under conditions
of heat stress (51). ScSac1 phosphatase inhibits ScChs3 forward transportation, while
ScPik1 overexpression promotes forward movement (52). Both ScSac1 and ScPik1 are
important for Golgi trafficking to the plasma membrane (52). Furthermore, phosphor-
ylation and dephosphorylation of ScChs3 are necessary for guiding Chs3 to the septum
in each cell cycle stage (53). Lenardon et al. showed that C. albicans Chs3 (CaChs3), a
major enzyme for chitin synthesis, is phosphorylated at Ser139 in C. albicans (54).
Mutations at the site revealed that both phosphorylation and dephosphorylation of
CaChs3 are crucial for the localization and function of CaChs3, including the polarized
growth. However, kinases regulating phosphorylation of CaChs3 are still unknown (54).
Consequently, it is possible that the mechanism behind altered CsmA localization in the
absence of TslA is related to alteration of CsmA phosphorylation. In addition to the
phosphorylation, as mentioned above, chitin synthase localization is also associated
with actin filaments (34). Therefore, it is possible that TsIA may stabilize the chitin
synthase and actin complex to help direct localization and activity. We found from the
LC-MS/MS data that TslA did not pull down ActA but did pull down an actin cytoskel-
eton protein (VIP1) and an actin-bundling protein (Sac6). Moreover, we observed that
TslA localized in the cytosol along the hyphae without any obvious specific TslIA
localization sites, i.e., hyphal tips (Fig. 8D) (see Fig. S1 in the supplemental material).
Furthermore, in filamentous fungi, microtubule-based intracellular trafficking plays an
important role in the dynamics of various vesicles and proteins (55, 56). It is possible
that CsmA localization is involved with both actin filaments and the microtubule-based
mechanism (34). Additional research is needed to define the molecular mechanism
through which TsIA regulates CsmA localization and/or activity.

Importantly, the fungal cell wall is not only important for fungal survival but also
essential for interactions with the host immune system (57). The balance between the
host immune response and virulence of the fungi is an important factor that deter-
mines the fate of both fungal pathogens and hosts (57). Chitin plays an important role
in the immune response to fungi. For example, chitin has an immunomodulatory effect
on the host by shifting the immune response from a T,;1 response to a more T,,2-like
response that can have an impact on fungal survival inside the host (58). Here, we
observed increased levels of chitin exposure and content in the cell wall for A. fumiga-
tus in the absence of TslA. We also noted the presence of electron-dense material on
the exterior of Ats/A hyphae. This electron-dense material could be galactosaminoga-
lactan (GAG), a major component of the A. fumigatus extracellular matrix (59). GAG is
an adhesin that is essential for biofilm formation (59, 60). GAG also has immune-
modulatory effects inducing T2 lineage proliferation (59). Furthermore, exogenous
GAG inhibits human proinflammatory cytokine production through interleukin-1 (IL-1)
signaling by inducing IL-1 receptor antagonist (61). However, it remains unclear how

March/April 2017 Volume 8 Issue 2 e00056-17

mBio’

mbio.asm.org 14


http://mbio.asm.org

TsIA Regulates the Cell Wall through Chitin Synthase

various cell wall compositions impact the inflammatory response and disease outcomes
in IPA murine models. Therefore, additional studies are needed to investigate the
connections among loss of TslA, cell wall components, and the observed altered host
immune response. One translationally relevant future research direction is to examine
the effects of TslA loss on the efficacy of a chitin synthase inhibitor such as nikkomycin
Z. As TslA and other trehalose biosynthesis proteins have a profound effect on fungal
cell wall homeostasis, further investigation into these molecular mechanisms may
reveal novel targets or approaches for therapeutic development.

In conclusion, our results suggest that both TsIA and TsIB are involved in the
biosynthesis of trehalose in A. fumigatus. However, the mechanisms behind the regu-
lation of trehalose production by these two proteins are still unclear. What is clear is
that TslA has an unexpected additional so-called moonlighting role in regulating chitin
synthase activity. On the basis of the impact of TsIA loss on CsmA localization, we
speculate that TsIA might be critical for the proper localization of key trehalose
biosynthesis proteins such as OrlA. Importantly, these results strongly suggest that
trehalose-related proteins are important for cell wall biosynthesis not only for their role
in carbon metabolism regulation but also from direct physical interactions with cell wall
biosynthesis enzymes. A more fundamental understanding of the underlying mecha-
nisms linking trehalose and cell wall biosynthesis may uncover potential novel anti-
fungal targets and will enhance our understanding of A. fumigatus-host interactions.

MATERIALS AND METHODS

Fungal strains, media, and growth conditions. Aspergillus fumigatus strain CEA17 (a uracil auxo-
troph strain lacking a pyrG gene) was used to generate ts/A, ts/B, and tsIA/B null mutants (62). A ku80
strain (a uracil auxotroph strain lacking pyrG and akuB genes) was used to generate S-tagged and
Flag-tagged strains for pulldown and coimmunoprecipitation experiments (62, 63). Glucose minimal
media (GMM) containing 1% glucose were used to grow the mutants along with a wild-type strain,
CEA10 (CBS144.89), at 37°C in 5% CO, if not stated otherwise (64). The conidia from each strain were
collected by the use of 0.01% Tween 80 after 72 h of incubation at 37°C in 5% CO,. Fresh conidia were
used in all experiments.

Strain construction and fungal transformation. Gene replacements and reconstituted strains were
generated as previously described (15, 35). All strains are listed in Table ST in the supplemental material.
PCR and Southern blotting were used to confirm the mutant strains (15). Real-time reverse transcriptase
PCR was used to confirm expression of the reintroduced gene (65). To generate the single-null mutant,
A. parasiticus pyrG from pJW24 was used as a selectable marker (20). To generate a double-null mutant
strain and reconstituted strains of single-null mutants, we utilized a ptrA marker, which is a pyrithiamine
resistance gene from A. oryzae (21). To generate reconstituted strains of the double-null mutant, we
utilized hygB, which is a hygromycin B phosphotransferase gene, as a hygromycin resistance marker (22).
For S-tagged strains, an S-tag coding sequence was introduced along with A. fumigatus pyrG (AfpyrG) into
the C terminus of proteins of interest, i.e., TsIA and TsIB (30, 31). For coimmunoprecipitation experiments,
we introduced a Flag tag together with ptrA as a marker into the C terminus at the loci encoding proteins
of interest, e.g., CsmA, in the TslA-S tag background (66). In localization experiments, we generated
C-terminal GFP-tagged CsmA in both the wild-type (CEA17) and AtslA strain backgrounds by using pyrG
and ptrA as selectable markers, respectively. After the constructs were generated, polyethylene glycol-
mediated transformation of fungal protoplasts was performed as previously described (67). For the ptrA
marker transformation, we added pyrithiamine hydrobromide (Sigma; catalog no. P0256) to 1.2 M
sorbitol media (sorbitol minimal media [SMM]) at 0.1 mg/liter (21). For the hygB marker transformation,
we recovered the strains containing the hygB marker by adding hygromycin B (Calbiochem; catalog no.
400052) into the 0.7% SMM agar overlay at 150 ng/ml the day after transformation (22).

Trehalose measurement. Trehalose content in conidia and mycelia was measured as previously
described (15). Briefly, a total of 2 X 108 conidia were used for the conidial stage of the trehalose assay,
and 1 X 108 conidia were cultured overnight in 10 ml liquid glucose minimal medium (LGMM) for the
mycelial stage as described by d’Enfert and Fontaine (1997) (68). Cell-free extracts were then tested for
trehalose levels according to the glucose assay kit protocols (Sigma; catalog no. GAGO20). Results from
biological triplicate experiments were averaged, standard deviation calculated, and statistical signifi-
cance determined (P < 0.05) with an unpaired two-tailed Student’s t test.

Cell wall-perturbing agents and antifungal agents. Several cell wall-perturbing agents, namely,
Congo red (CR) (Sigma catalog no. C6277), calcofluor white (CFW) (fluorescent brightener 28; Sigma
catalog no. F3543), and caspofungin (CPG) (Cancidas; Merck & Co., Inc.), were utilized for cell wall
integrity tests. CR, CFW, or CPG was added into GMM plates at a final concentration of 1 mg/ml, 50 ng/ml,
or 1 pg/ml, respectively. Dropout assays were performed by plating serial dilutions of 1 X 105to 1 X 102
conidia in a 5-ul drop of each strain. The plates were cultured at 37°C in 5% CO,, and the images were
taken at 48 h. This experiment was performed in three biological replicates (15).

Cell wall MAMP exposure. Calcofluor white (CFW), fluorescein-labeled wheat germ agglutinin
(WGA) (Vector Laboratories; catalog no. FL-1021), and soluble dectin-1 staining was performed as
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previously described (58, 69). Briefly, each fungal strain was cultured until it reached the germination
stage on liquid glucose minimal media. The hyphae were UV irradiated at 6,000 mJ/cm?2. The micro-
graphs were taken using the Z-stack of the fluorescence microscope, a Zeiss HAL 100 microscope (Carl
Zeiss Microscopy LLC, Thornwood, NY), equipped with a Zeiss AxioCam MRm camera. The intensity was
analyzed using ImageJ, and the corrected total cell fluorescence (CTCF) was calculated (69, 70). Data are
presented as means =+ standard errors (SE) corresponding to 15 images from three biological replicates.

Transmission electron microscopy. The cell walls of the wild-type strain (CEA10) and the Ats/A and
AtsIA+tslA strains were examined by using TEM as previously described (19, 39). All TEM images were
taken at 100 kV on a JEOL TEM 1010 microscope (JEOL, Tokyo, Japan) equipped with a digital camera
(XR-41B; Advanced Microscopy Techniques). Cell wall thickness was analyzed using ImageJ (69). Data are
presented as means = SE of 10 measurements from two biological replicates of each strain.

Proteomic assay, pulldown assay, and coimmunoprecipitation. In the pulldown assays for the S
tag, 108 conidia of the wild-type and S-tagged strains were incubated in 100 ml liquid GMM medium at
30°C for 8 h and switched to 37°C for 16 h (250 rpm). The mycelia from each strain were collected and
lyophilized overnight. Proteins were extracted as previously described (30). Sample supernatants were
measured to estimate protein concentrations using the Bradford method (Bio-Rad, Hercules, CA). For the
purification step, 300 ul of S protein agarose slurry (Novagen) (150-ul packed bead volume) was added
per 100 mg of protein and incubated at 4°C using rotary agitation for 1 h and previously described
purification steps (30). The supernatant was loaded into 10% mini-protein precast gels (Bio-Rad). The gel
was stained with Bio-Safe Coomassie blue (Bio-Rad) for 3 h. The bands were cut and submitted for
mass spectrometry analysis (LC-MS/MS) at The Vermont Genetics Network, University of Vermont,
Burlington, VT.

Co-IP with S-protein beads and anti-Flag magnetic beads. To perform coimmunoprecipitation
assays, C-terminal Flag-tagged CsmA strains were generated in the S-tagged TslA background. S-protein
bead Co-IP experiments were performed in the same way as the previously described S-protein bead
pulldown experiments. To perform reciprocal coimmunoprecipitation assays, C-terminal Flag-tagged
CsmA strains were used. An IP buffer was used followed by affinity purifications with anti-Flag M2
magnetic beads (Sigma) as previously described (66). Proteins were transferred from a 10% SDS-PAGE gel
onto a polyvinylidene difluoride (PVDF) membrane for a Western blot assay using a Trans-Blot turbo
transfer system (Bio-Rad). S-tagged TslA was detected using a rabbit anti-S-tag antibody (ICL) at 1:5,000
dilution and a goat anti-rabbit IgG (H+L) horseradish peroxidase (HRP) antibody (Thermo Scientific) at
1:10,000 dilution. For the Flag-tagged CsmA, a mouse monoclonal anti-Flag M2 antibody (F1804; Sigma)
was used at 1:10,000 dilution as a primary antibody followed by an anti-mouse IgG HRP conjugate
(W4021; Promega) used at 1:2,500 dilution as a secondary antibody. Chemiluminescence detection was
performed using a Clarity Western ECL substrate (Bio-Rad) and a FluorChem FC2 imager (Alpha Innotech).
For loading controls, an anti-tubulin antibody (Sigma; catalog no. T5192) (human) was utilized.

Chitin synthase activity assay. A total of 108 conidia of each fungal strain were grown at 37°C for
24 h in 10 ml of liquid GMM at 250 rpm. The mycelia were collected for preparation of membrane
fractions by centrifugation at 100,000 X g for 40 min at 4°C as described before. After that, the
nonradioactive chitin synthase activity assay was performed in a 96-well plate as previously described
(32, 33).

Murine model of invasive pulmonary aspergillosis. CD1 female mice (6 to 8 weeks old) were used
in chemotherapeutic murine model experiments as previously described (35). Mice were obtained from
Charles River Laboratories, Inc. (Raleigh, NC). For survival studies and histopathology, 10 mice per
A. fumigatus strain (including strains CEA10, Ats/A, and AtsIA+tsIA) were inoculated intranasally with 1 X
106 conidia in 40 ul of phosphate-buffered saline (PBS) and monitored three times a day. Mice were
observed for 14 days after the A. fumigatus challenge. Any animals showing distress were immediately
humanely sacrificed and recorded as deaths within 24 h. No mock-infected animals perished in any of the
experiments. Statistical comparison of the associated Kaplan-Meier curves was conducted with log rank
tests (71). Lungs were removed from all mice sacrificed at different time points during the experiment
for fungal burden assessment and histopathology.

Histopathology. The chemotherapeutic murine model was performed additionally for histopathol-
ogy. Three mice in each group (including the CEA10, Ats/A, and AtsIA+tslA strain groups) were humanely
euthanized at day 2 and day 4 postinoculation. Lungs were harvested from each group and fixed in 10%
formalin before embedding in paraffin was performed. Sections (5 wm in thickness) were taken and
stained with either H&E (hematoxylin and eosin) or GMS (Gomori's methenamine silver stain) as
previously described (72). Slides were analyzed microscopically with a Zeiss Axioplan 2 imaging micro-
scope (Carl Zeiss Microimaging, Inc., Thornwood, NY) fitted with a QImaging Retiga-SRV Fast 1394
red-green-blue (RGB) camera. The analysis was performed in Phylum Live 4 imaging software. Images
were captured at X50 magnification as indicated in each image.

In vivo fungal burden. Quantitative analysis of fungal growth in infected mouse lungs was
performed after lungs were harvested at day 4 postinoculation with a quantitative PCR as previously
described (36). Values were averaged for the CEA10, Ats/A, and AtsIA+tslA strains at each time point and
compared using the Mann-Whitney-corrected t test.

Collection and analysis of bronchoalveolar lavage fluid (BALF). At the indicated time after
A. fumigatus instillation, mice were euthanized using CO,. Bronchoalveolar lavage fluid (BALF) was
collected by washing the lungs with 2 ml of PBS containing 0.05 M EDTA. BALF was then centrifuged and
the supernatant collected and stored at —20°C until analysis. BAL fluid cells were resuspended in 200 ul
of PBS and counted on a hemocytometer to determine total cell counts. Cells were then spun onto glass
slides using a Thermo Scientific Cytospin4 cytocentrifuge and were subsequently stained using a
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Diff-Quik staining kit (Electron Microscopy Sciences) for differential cell counting. Assays for analysis of
cytokines and chemokines from BALF were performed by using a Luminex system as previously
described (69).

Ethics statement. This study was carried out in strict accordance with the recommendations given

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal
experimental protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at
Dartmouth College (protocol number cram.ra.1).

San Diego, CA). All error bars represent standard errors of the means.
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