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Abstract

Summary: Gene-based supervised machine learning classification models have been widely used to

differentiate disease states, predict disease progression and determine effective treatment options.

However, many of these classifiers are sensitive to noise and frequently do not replicate in external

validation sets. For complex, heterogeneous diseases, these classifiers are further limited by being un-

able to capture varying combinations of genes that lead to the same phenotype. Pathway-based clas-

sification can overcome these challenges by using robust, aggregate features to represent biological

mechanisms. In this work, we developed a novel pathway-based approach, PRObabilistic Pathway

Score, which uses genes to calculate individualized pathway scores for classification. Unlike previous

individualized pathway-based classification methods that use gene sets, we incorporate gene inter-

actions using probabilistic graphical models to more accurately represent the underlying biology and

achieve better performance. We apply our method to differentiate two similar complex diseases, ul-

cerative colitis (UC) and Crohn’s disease (CD), which are the two main types of inflammatory bowel

disease (IBD). Using five IBD datasets, we compare our method against four gene-based and four al-

ternative pathway-based classifiers in distinguishing CD from UC. We demonstrate superior classifica-

tion performance and provide biological insight into the top pathways separating CD from UC.

Availability and Implementation: PROPS is available as a R package, which can be downloaded at

http://simtk.org/home/props or on Bioconductor.

Contact: rbaltman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advancements in statistical modeling combined with the ease of ob-

taining and generating gene expression data have led to multiple

approaches to build regression and classification models to aid in

diagnosis, prognosis, disease prediction, patient stratification and

treatment selection (Alizadeh et al., 2000; Kourou et al., 2015;
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Tan and Gilbert, 2003). For classification, the most common

approaches entail using a subset of genes to derive a signature for the

phenotypes of interest (Dorman et al., 2016; Huang et al., 2007;

Ramaswamy et al., 2003). However, these gene signatures have been

challenging to reproduce, particularly in heterogeneous diseases such

as cancer and when there is a lack of adequate validation data

(Koscielny, 2010). Additionally, many limitations arise when focusing

on differentially expressed genes to construct gene-based classifiers,

such as noise, measurement errors and the large number of gene

hypotheses, all of which can hinder reproducibility (Novak et al.,

2002; Swain et al., 2002). Furthermore, in complex, heterogeneous

diseases such as inflammatory bowel disease (IBD), there likely exist

multiple combinations of gene perturbations that result in similar

phenotypes. Using pathway-based methods may overcome these chal-

lenges, as combining genes to produce pathway-based feature scores

has been shown to be more robust (Guo et al., 2005), and can result

in fewer features, which can reduce overfitting and improve generaliz-

ability while maintaining biological interpretability.

IBD is a complex and chronic inflammatory condition of the

gastrointestinal tract, which affects over 1 in 200 people in the USA

(Ananthakrishnan, 2015). IBD consists of two main diseases, ulcera-

tive colitis (UC) and Crohn’s disease (CD), with approximately

equal incidence (Ananthakrishnan, 2015). These two diseases can

have very similar clinical presentations, with shared findings such as

bloody diarrhea, abdominal pain and inflammation. However, des-

pite these similarities, the two diseases respond to treatments differ-

ently. For example, although mesalazine is considered first-line

treatment for UC to induce and maintain remission, its use in CD

is controversial, with multiple studies failing to show efficacy

(Akobeng and Gardener, 2005; Baumgart and Sandborn, 2007;

Rasmussen et al., 1987). These differences have prompted numerous

attempts to understand the molecular characteristics and differences

between CD and UC at the tissue level (Lawrance et al., 2001;

Wu et al., 2007). An improved understanding of the molecular

mechanisms of CD and UC has the potential to improve disease-

specific treatment regimens, subtype patients for treatments, un-

cover new drug targets and increase the success of clinical trials.

Supervised machine learning has the potential to differentiate be-

tween UC and CD in active disease sites. Montero-Meléndez et al.

(2013) (GSE36807) constructed a classifier using five genes (FAM120A,

GAS2L3, CPNE8, NQO2, HOXA10), which yielded a 79% accuracy

using leave-one-out cross-validation on colonic biopsies from 28 pa-

tients. However, this classifier has not been validated in any additional

IBD datasets. There have also been studies that identify differentially ex-

pressed genes in UC and CD versus healthy controls, which could be

used to construct gene signatures for classification (Dieckgraefe et al.,

2000; Lawrance et al., 2001; Wu et al., 2007). However, there is little

concordance among the genes from these previous studies.

Furthermore, when combining multiple studies, a meta-analysis con-

cluded that inflammatory lesions in CD and UC are very similar, with

essentially no gene differences found between the two diseases (van

Beelen Granlund et al., 2013). For differentiating similar polygenic dis-

eases such as CD and UC, aggregating genes into a pathway-based ap-

proach has the potential to overcome these limitations.

Several methods implement pathway-based feature engineering

approaches based on databases such as the Molecular Signatures

Database (MSigDB) (Subramanian et al., 2005) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,

2000). Lee et al. (2008) identified specific differentiating genes

within each pathway to aggregate into a pathway activity score. Su

et al. (2009) calculated and aggregated the log-likelihood ratio

(LLR) of genes within pathways. Recently, Young and Craft (2016)

introduced a pathway-informed classification system and presented

several methods of feature aggregation based on gene sets.

However, these methods represent pathways as gene sets and ignore

interactions between genes. Incorporating the underlying pathway

architecture can improve performance and biological interpretabil-

ity, particularly for distinguishing two diseases with many impli-

cated genes in common. Indeed, methods that incorporate pathway

topology for global pathway analysis, such as signaling pathway im-

pact analysis, have shown superiority to traditional pathway over-

representation analysis (Efroni et al., 2007; Khatri et al., 2012;

Tarca et al., 2009). These global pathway methods typically aggre-

gate multiple samples per phenotype in order to identify significant

biological pathways of interest and discover underlying biological

mechanisms. The success of incorporating pathway topology in glo-

bal pathway analysis has motivated the development of our method

for individual pathway-based classification, which can be applied to

a wide range of biological classification and prediction tasks.

In this work, we present a new, generalizable approach for indi-

vidualized pathway-based classification, PRObablistic Pathway

Score (PROPS), which uses Gaussian Bayesian networks to create

individualized features that reflect pathway activity. We apply these

pathway-based features to distinguish CD from UC. We compare

our method against that of Montero-Meléndez et al., as well as three

additional gene-based approaches and four alternative pathway-

based approaches. We demonstrate that our method produces super-

ior performance in differentiating UC from CD and provides biolo-

gical insight about the important pathways and the underlying

molecular mechanisms driving these diseases.

2 Materials and methods

2.1 Datasets
We curated five datasets containing CD and UC patients at baseline.

The first four, GSE6731 (Wu et al., 2007), GSE9686 (Carey et al.,

2008), GSE10616 (Kugathasan et al., 2008) and GSE36807 (Montero-

Meléndez et al., 2013), are publicly available studies downloaded from

the Gene Expression Omnibus. An additional gene expression dataset

of IBD patients from the Boston Children’s Hospital and the Brigham

and Women’s Hospital (BCH/BWH) was provided by Pfizer Inc.

(L.Afzelius, personal communication—manuscript in preparation). We

selected these studies as they all contain both CD and UC tissue sam-

ples from areas of active disease. All studies were conducted with ap-

proval from their respective institutional review boards.

The BCH/BWH dataset was profiled using the Affymetrix

PrimeView array. Multiple samples were taken from each patient from

affected (lesional) and non-affected (non-lesional) areas of the small in-

testine and colon. For the 12 CD patients, there were a total of 42

non-lesional samples and 71 lesional samples. For the 13 UC patients,

there were a total of 44 non-lesional samples and 75 lesional samples.

Data were normalized using robust multi-array average (Irizarry

et al., 2003), using the affy package (Gautier et al., 2004) and R

3.2.3 (R Core Development Team, Vienna, Austria). We used

ComBat (Johnson et al., 2007) from the sva package (Leek et al.,

2016) to correct for batch effects across studies, where a batch con-

sisted of an entire study (e.g. all samples from GSE10616), and

phenotype labels were not used. We mapped probes to genes using

the corresponding platform files, averaged genes that were associ-

ated with multiple probes and expanded probes that mapped to mul-

tiple genes so that the measured values for the probe contributed to

the average value for each corresponding gene. Only genes measured

across all studies contributed to the downstream analysis.
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To be consistent across studies and limit effects due to anatom-

ical location, we analyzed only colonic, non-rectal samples.

GSE6731, GSE10616, GSE9686 and GSE36807 consist of only

colon samples, and we excluded ileal and rectal samples from

BCH/BWH, using the remaining 24 CD, 59 UC and 76 non-

lesional samples. From GSE6731, we used the samples from af-

fected areas from patients with a definitive diagnosis of CD or UC.

All studies except for the BCH/BWH dataset contain healthy, UC

and CD samples. The BCH/BWH dataset instead contains matched

samples from non-lesional areas of the colon, which were used in

addition to the healthy samples from other studies. BCH/BWH

contains pediatric and adult samples, GSE9686 consists solely of

pediatric samples and the remaining datasets are comprised of all

adult samples.

2.2 PROPS feature engineering
We extracted all human pathways from KEGG, using the

KEGGgraph package (Zhang and Wiemann, 2009). In KEGG, each

pathway consists of a set of genes, which are represented by nodes

and connected by directed edges. Missing genes that were not meas-

ured in all studies, and their corresponding edges, were not included.

In order to convert the KEGG pathways into Bayesian networks, we

started with the gene nodes and added the edges from KEGG in ran-

dom order, excluding edges that would result in cycles. Only path-

way networks with at least one edge were included. To quantify the

fluctuations generated by this randomization, we tested 1000 add-

itional random edge orderings per pathway. We calculated the index

of dispersion of the generated values for each pathway over all IBD

samples in the training dataset. We then constructed 1000 models

from the training data and assessed the variance of the area under

the curves (AUCs) in each validation dataset.

We modeled each KEGG pathway as a Gaussian Bayesian net-

work, where a gene node represents the gene expression. We used

the bnlearn package (Scutari, 2009) to model each node as a linear

combination of its parent nodes, where all nodes are Gaussian. Let

node X in the pathway G have parents Y ¼ fY1;Y2; . . . ; Yng. Each

node is modeled as follows:

P X jYð Þ � N b0 þ b1y1 þ b2y2 þ � � � þ bnyn; r2
� �

We then use the maximum likelihood estimate to learn the Gaussian

distribution parameters and linear coefficients fb0;b1; . . . ; bn; r2g
for each node using the healthy and non-lesional samples (Fig. 1).

We apply the parameterized network model to the CD and UC sam-

ples, and for each pathway in each patient, we calculate the log-

likelihood. Let X ¼ fX1;X2; :; Xng be the nodes in pathway G: For

a given sample for pathway G, let the data observation be X1 ¼ x1;

X2 ¼ x2; . . . ; Xn ¼ xn and h be the parameters of the pathway

learned using the healthy and non-lesional data. Thus, the log-

likelihood is calculated as follows:

log P X1 ¼ x1; . . . ; Xn ¼ xn j hð Þ ¼
Xn

i¼1

log PðXi ¼ xi j h; Xpa ¼ xpaÞ

where Xpa are the nodes in pathway G that are the parents of node

Xi. These log-likelihood values are then used to represent each path-

way as features for subsequent classification (Fig. 1).

2.3 Gene-based feature sets
For comparison, we implemented feature sets at the gene level, using

the raw gene values. We created models using (i) all genes, (ii) all

genes associated with a KEGG pathway (‘pathway genes’), (iii) the

five genes from the classifier built by Montero-Meléndez et al.

(‘GSE36807 five genes’) and (iv) the top 257 significant genes (‘top

257’). We chose 257 to match the number of features used in the

pathway-based models. The GSE36807 five genes were present in

all studies except in GSE6731 and were thus evaluated only in the

remaining three studies, including GSE36807 itself.

2.4 Alternative pathway-based feature sets
For further comparison, we implemented four existing pathway-

based feature engineering methods to compare against PROPS: LLR

(Su et al., 2009), conditionally responsive genes (CORG) (Lee et al.,

2008), gene expression deviation (GED) (Young and Craft, 2016)

and normal tissue centroid (NTC) (Young and Craft, 2016). As

detailed in the original papers, we used the canonical pathways in

the C2 functional set of MSigDB (1329 pathways) for the former

two and KEGG (257 pathways) for the latter two.

LLR calculates the ratio between the conditional probability

density functions of CD samples versus UC samples for each gene,

where both are assumed to be conditional Gaussian distributions.

Next, the ratio is normalized across all samples. The pathway activ-

ity is then represented by the sum of normalized LLRs for all genes

in the given pathway (Su et al., 2009).

CORG identifies a set of genes that are most important for each

pathway, and only those genes contribute to the pathway activity

score. To determine which genes to include, CORG applies a greedy

approach where genes are sorted by their t-test scores for CD versus

UC, and genes are included sequentially until the discriminative

score between CD and UC stops improving (Lee et al., 2008).

NTC and GED are two approaches reported together that in-

corporate healthy samples when calculating pathway scores for add-

itional phenotypes or conditions of interest (Young and Craft,

2016). For each sample, NTC represents each pathway as a location

in gene space using the genes that are part of the pathway. The

Euclidean distance between this point and the average healthy loca-

tion is used as the measure of pathway activity. In contrast, GED

creates two features for each pathway, one to represent the over-

expressed genes and one for the under-expressed genes. A gene is

included in the pathway score if the expression distribution for the

phenotype of interest is significantly different from that of the

healthy samples, using the Kolmogorov–Smirnov test. A score is cal-

culated for those genes that are significantly differentially expressed,

and this score is then added to either the over-expressed feature or

the under-expressed feature based on its deviation from the healthy

samples. The original implementation of NTC and GED has further

parameters that exclude promiscuous genes, which are part of many

pathways and limit pathways that are used in the final model via

clustering silhouette scores (Young and Craft, 2016). We consider

these to be tuning steps that are applicable to any of the methods

described. To be consistent with all of the other methods that do not

natively implement these tuning steps, we included all genes and

pathways in our NTC and GED implementations.

2.5 Classifier construction and evaluation
For all nine feature sets, we constructed 100 random forest models

using the randomForest package (Liaw and Weiner, 2002) and eval-

uated our classifiers using the median area under the receiver–oper-

ator characteristic (ROC) curve (AUC). We trained each model

using the BCH/BWH dataset, which contains the most samples as

well as both adult and pediatric samples, and used the four smaller

publicly available datasets independently as external validation. We

chose this setup over combining samples across studies in order to
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evaluate each dataset separately and limit batch effects when inter-

preting the results. We further compared performance between

methods by aggregating the classification probabilities for all of the

validation data, calculating the AUC and then using DeLong’s test

(DeLong et al., 1988) to assess significance. We only used independ-

ent validation data when assessing significance, and thus the

GSE36807 five-gene classifier was assessed using only GSE10616

and GSE9686. Using these aggregate results, we further assess classi-

fication performance by constructing precision–recall curves and

calculating the area under the precision–recall curve (AUPRC),

where Crohn’s disease was designated as the positive class.

To assess feature importance, we extracted and averaged the

mean decrease in the Gini index for each of our 100 models. We fur-

ther evaluated our model by closely examining the incorrectly classi-

fied samples. We first visualized the classification results from

PROPS using multidimensional scaling (Gower, 1966) with cosine

distance. We then compared each pathway from the CD samples

that were falsely classified as UC against the correctly classified CD

samples using Student’s t-test. We did the same for the incorrectly

classified UC samples.

3 Results

3.1 Gene expression and pathway data
We analyzed 7 UC, 5 CD and 4 healthy samples from GSE6731; 10

UC, 14 CD and 11 healthy samples from GSE10616; 5 UC, 11 CD

and 8 healthy samples from GSE9686 and 15 UC, 13 CD and 7

healthy samples from GSE36807. From BCH/BWH, we used 24 CD

and 59 UC samples, spanning 11 UC and 4 CD patients. We used all

colonic, non-lesional samples from BCH/BWH, which consisted of

76 samples from 21 patients. Thus, for differentiating CD from UC,

we trained on 83 samples with four validation sets containing 16,

24, 12 and 28 samples. There were 9116 genes common to all plat-

forms used.

From KEGG, we extracted 300 human pathways. These path-

ways are composed of 7069 genes, of which 4561 were in our set of

9116. Only pathways with at least one edge were included, resulting

in 257 pathways. For those methods that used MSigDB, we used all

1329 canonical pathways from the C2 functional set, version 5.2.

These pathways contained 8899 genes, of which 5624 were in our

set of 9116.

3.2 Probabilistic pathway score
Using PROPS, we attained median AUCs of 0.764, 0.829, 0.836 and

0.849 in GSE10616, GSE6731, GSE9686 and GSE36807, respect-

ively. Compared to the eight other methods, our method ranks first

above all other methods in all the validation sets, with the excep-

tions of tying NTC in GSE10616 and being outperformed by the

GSE36807 five genes in GSE36807. PROPS, on average, tended to

outperform the gene-based feature sets by nearly 0.1 in the AUC

(Fig. 2, Supplementary Fig. S1), NTC by 0.04 and other alternative

pathway-based feature sets by 0.1 (Fig. 2, Supplementary Fig. S2).

Aside from the two exceptions, PROPS outperforms all other mod-

els in all studies. When aggregating all the validation results, PROPS

outperforms all other methods, with an AUC of 0.821 (Fig. 3A) and

an AUPRC of 0.858 (Supplementary Fig. S3). PROPS statistically

Fig. 1. Overview of PROPS feature engineering. (1) KEGG pathways are downloaded and represented as directed networks. (2) Edges are added to the pathway in

random order, excluding edges that would result in cycles. (3) This results in a Bayesian network representation of each KEGG pathway. (4) Each pathway model

is parameterized using the healthy and non-lesional tissue samples. (5) The parameterized network is applied to CD and UC data to (6) calculate log-likelihood val-

ues for each pathway for each patient, which are used for subsequent classification
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significantly outperforms LLR, CORG, GED and using all the genes

(Fig. 3B). Though limited by the number of validation samples, par-

ticularly when comparing against the GSE36807 five genes, PROPS

performs the best overall in pairwise comparison, surpassing at least

four other methods, whereas the next best method, NTC, surpasses

only LLR.

When converting the KEGG pathways to Bayesian networks, the

mean proportion of edges kept was 95.5%. Our edge randomization

sensitivity analysis over 1000 iterations yielded very small fluctu-

ations in the log-likelihood values. For CD samples, the median

index of dispersion was 0, with an interquartile range of 0–0.03. For

UC patients, the median was 0, with an interquartile range of

0–0.003. After using the 1000 BCH/BWH sets to construct 1000

models, we found the variance in the AUC of the validation sets to

be 0.00020 in GSE10616, 0.00016 in GSE6731, 0.00011 in

GSE36807 and 0.00026 in GSE9686. We believe that fluctuations

of this magnitude are unlikely to impact our model results or any

other subsequent downstream analyses.

3.3 Gene-based features
The gene-based feature sets had median AUC on the validation

sets ranging from 0.6 to 0.764, with the exception of the

GSE36807 five genes with an AUC of 0.949 in GSE36807.

However, it is clear that the model using the GSE36807 five genes

trained by leave-one-out cross-validation in GSE36807 is overfit

to that particular study, for it does not perform nearly as well on

any of the other datasets. In fact, this model is generally surpassed

by using all the genes or by expanding the number of top genes

used (Fig. 2, Supplementary Fig. S1). Aside from this model,

PROPS outperformed all gene-based feature sets across all four

studies. Using the top 257 genes tends to produce the best perform-

ance out of all the gene-based feature sets, particularly in

GSE10616 (Supplementary Fig. S1A). The improvement in the

AUC was evident even when the sample size was small, for ex-

ample in GSE6731 (Supplementary Fig. S1B).

3.4 Alternative pathway-based features
Our method outperforms the other alternative methods across all

studies, with the exception of tying NTC in GSE10616 (Fig. 2,

Supplementary Fig. S2). When comparing these methods across all of

the validation data, our method performs significantly better than

LLR, CORG and GED (Fig. 3B). Of the four alternative methods,

NTC was the best performing pathway-based feature set across three

out of the four validation sets, and GED obtained the best results in

GSE9686 (Supplementary Fig. S2C). However, GED tended to be less

consistent than NTC, as evidenced by GED underperforming against

the gene-based methods in GSE6731 and GSE10616 (Supplementary

Fig. S2A and B). LLR and CORG consistently performed below all

the gene-based feature sets, except for LLR in GSE6731.

3.5 Model classification and important pathways
The 15 most important pathways for classification as determined

by our model are shown in Figure 4A. Interestingly, all of these

Fig. 2. AUC comparison between all methods on all four validation datasets. PROPS consistently performs well and outperforms nearly all other methods in all

studies
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pathways were found to be more perturbed (lower log-likelihood

values) in UC as compared to in CD. The majority of pathways

found are related to metabolism, many of which have been shown to

play a role in IBD (Jansson et al., 2009; Williams et al., 2009).

We have visualized our PROPS features by projecting each sam-

ple into two dimensions and overlaying the classification results

from our model (Fig. 4B). The CD samples misclassified as UC are

generally located in the border region between the two diseases.

However, there are a few UC samples (one from GSE9686, two

from GSE10616 and two from GSE36807) that resemble CD sam-

ples more so than other UC samples. When comparing UC samples

that were classified as CD to correctly classified UC samples, the

five pathways that were most different were the chemokine signaling

pathway; valine, leucine and isoleucine degradation; extracellular

matrix receptor interaction; cytokine–cytokine receptor interaction

and focal adhesion.

4 Discussion

In this work, we present PROPS as a novel method for creating indi-

vidualized pathway scores based on a probabilistic framework. For

each pathway, our method calculates the log-likelihood of each pa-

tient’s data, which we interpret as a measure of pathway perturb-

ation and dysregulation. We apply our method to differentiate two

similar, complex diseases, CD and UC, and show that our method

achieves better performance than a previous CD versus UC classifier

and multiple alternative gene and pathway-based methods. We use a

random forest classifier, which was chosen to compare all nine

methods as it can easily accommodate a wide range of number of

features, can capture non-linear effects, requires less hyperparameter

tuning than methods such as support vector machines and is rela-

tively easy for users to implement and interpret. However, as

PROPS is primarily a feature engineering method, any classification

method may be used, which can be chosen to best suit the end user.

Fig. 3. (A) Aggregate ROC curves and (B) pairwise AUC comparison between all methods on all independent validation data. For GSE36807 five genes, only

GSE10616 and GSE9686 were used, resulting in fewer samples for comparison. PROPS obtains the highest AUC and outperforms more methods than all its com-

petitors, significantly outperforming all genes, LLR, CORG and GED, and trending towards significance against pathway genes and top 257 genes

Fig. 4. (A) The top 15 important features from our model. (B) Visualization of

classification results using multidimensional scaling. The majority of the mis-

classified samples are located at the border between CD and UC, with five UC

samples that appear to be more similar to CD than UC
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In contrast to previous individualized pathway-based methods,

our method takes into account pathway topology, rather than

treating pathways as gene sets. Additionally, our method does not

prune genes or pathways based on user-defined thresholds or heur-

istics, making it easy to use with a consistent interpretation. There

have been multiple global pathway analysis methods that incorpor-

ate pathway topology (Efroni et al., 2007; Tarca et al., 2009;

Vaske et al., 2010), where the latter two use underlying probabilis-

tic graphs. However, both methods bin continuous data such as

mRNA expression into discrete states, such as upregulated and

downregulated. Determination of such thresholds to use for bin-

ning can be the cause of variance and subjectivity, and thus we

have chosen instead to use continuous values in our method.

However, use of continuous gene expression values without nor-

malization or batch correction leads to incompatibility and bias

when assessing experiments from different platforms and institu-

tions. Thus, we perform batch effect normalization, where each

study is one batch, as a pre-processing step, and have provided this

functionality in our R package.

We use KEGG as our underlying pathway database, assuming

that KEGG pathway topology is conserved across tissues and disease

states, and that KEGG interactions are relevant at the mRNA ex-

pression level. We chose KEGG as it is frequently used to interpret

gene expression data (Dahlquist et al., 2002; Segal et al., 2003) and

for consistency as two of the competing methods also use KEGG.

However, our method can use any set of directed pathways and can

be used with different data sources, such as proteomics data.

Graphical models have also been used to infer pathway structure

from gene expression data (Dobra et al., 2004; Massa et al., 2010),

and these resulting pathways are also compatible with our method.

Using our data, we excluded some KEGG pathways because their

genes were not measured in all five studies. Recent approaches in

platform imputation may provide a solution for expanding the num-

ber of genes that can be used in downstream analysis (Zhou et al.,

2017).

In differentiating CD and UC at sites of active disease, we chose

to use biopsy samples, as the number of studies containing resection

samples is limited. Though CD is a transmural disease, mucosal

healing has been correlated with improved outcomes and has been

used as an endpoint in multiple clinical trials (Dave and Loftus,

2012; Rutgeerts et al., 2007). Thus, understanding the differences in

the mucosa, as captured by these biopsies, is important for distin-

guishing the disease mechanisms driving CD and UC.

In establishing the baseline pathway distributions, we used

healthy controls and non-lesional samples. We included the non-

lesional samples since van Beelen Granlund et al. (2013) showed

that the profile of such samples was nearly identical to samples from

healthy controls. Furthermore, we used samples from various loca-

tions, though all are from the colon. Previous studies specific to IBD

have shown that there is no significant anatomical variation in the

expression profiles among sites with active disease within the colon

(Costello et al., 2005; Wu et al., 2007).

Overall, our method outperforms existing classifiers and meth-

ods, with an average AUC of 0.82 on four independent validation

sets, an aggregate AUC of 0.821 and an AUPRC of 0.858. Our

method surpassed the next best performing method by 0.035 in the

aggregate AUC and 0.064 in AUPRC. Given that IBD is a rela-

tively common chronic disease affecting an estimated 1.5 million

Americans, a robust increase in performance, even if small, has the

potential to affect a large number of patients. Notably, our method

even performs well on small validation sets like GSE6731, which

has only 12 samples. Additionally, our method is able to apply to

pediatric (GSE9686) and adult samples (GSE6731, GSE10616 and

GSE36807) and performs well even with different proportions of

CD to UC patients in the validation set, as in GSE9686. Gene-

based approaches, in contrast, tend to overfit, for example when

using the five genes isolated from GSE36807 and when using all

the genes. By using pathways, we are implementing biologically

driven regularization in order to improve performance by condens-

ing gene features into relevant, aggregate pathway features. These

pathway-based features tend to be more robust and less prone to

overfitting.

In addition to our novel methodology, our work also contributes

biological insight into differentiating CD and UC. In distinguishing

the two, we found that many of the top pathways are related to me-

tabolism, as detailed below. Interestingly, pathways that are known

to play a role in both diseases, such as immune-mediated and in-

flammatory pathways, do not appear to dominate this list. Such

pathways likely have less discriminative power to separate these two

diseases, since they are shared features. However, such pathways are

important when examining UC samples that were misclassified as

CD samples. These misclassified UC samples generally had higher

log-likelihood values, differing on a few key IBD-related pathways

from other UC samples. These samples may represent a difference in

the disease state for these samples or a subtype of UC that more

closely mimics CD at the molecular level.

Tyrosine metabolism is the top pathway with the highest mean

decrease in the Gini index, surpassing the second most important

pathway by a large margin. Nitration of tyrosine increases in the

context of oxidative stress and inflammatory conditions (Hanazawa

et al., 2000; Kaur and Halliwel, 1994) and specifically in UC

(Kimura et al., 1998). Notably, Kruidenier et al. (2003) found a sig-

nificant increase in immunohistochemical expression of 3-nitro-L-

tyrosine in inflamed UC mucosa, but not in CD, non-inflamed UC

or healthy controls. This is consistent with our finding of increased

dysregulation of tyrosine in UC compared to CD. Nitrotyrosine has

been implicated in damaging DNA and inflammation-mediated car-

cinogenesis (Murata and Kawanishi, 2004), which may be a contri-

buting factor to the development of colorectal cancer, particularly in

UC.

Aside from tyrosine metabolism, several of the other top path-

ways have a known role in IBD. For example, sphingolipids have

been implicated in many inflammatory conditions (Maceyka and

Spiegel, 2014), including IBD (Suh and Saba, 2015). Our results sug-

gest that sphingolipid metabolism may play different roles in UC

versus CD, with UC being more dysregulated than CD. One drug

that targets this pathway, fingolimod, has been shown to prevent

the development of colitis in mice (Deguchi et al., 2006), and an-

other drug, ozanimod, is currently being tested in clinical trials to

treat UC. Many of the other top pathways have also been implicated

in IBD, such as retinol metabolism (Reifen et al., 2002), tight junc-

tions (Edelblum and Turner, 2009) and sulfur and propanoate me-

tabolism (Knights et al., 2013). Although these pathways are known

to have a role in IBD, our results suggest differing activity between

CD and UC, and further investigation of the role of these pathways

in the individual diseases is warranted.

5 Conclusions

In this work, we introduce a novel approach, PROPS, to calculate

individual pathway-based scores, using Bayesian networks to cap-

ture pathway topology. We apply our method to differentiate CD

and UC in order to elucidate disease mechanisms by harnessing in-

formation from sites of active inflammation. In distinguishing these
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two complex diseases, we demonstrate that PROPS is superior in

performance and more robust than existing IBD classifiers and al-

ternative methods, and that even pathways that are known to be

shared by UC and CD show differing activity, which is useful for

differentiation.
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