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Abstract
Background: Integrin β (ITGB) superfamily plays an essential role in the intercellular 
connection and signal transmission. It was exhibited that overexpressing of ITGB fam-
ily members promotes the malignant progression of lung adenocarcinoma (LUAD), but 
the relationship between ITGB superfamily and the LUAD prognosis remains unclear.
Methods: In this study, the samples were assigned to different subgroups utilizing 
non-negative matrix factorization clustering according to the expression of ITGB fam-
ily members in LUAD. Kaplan–Meier (K-M) survival analysis revealed the significant 
differences in the prognosis between different ITGB subgroups. Subsequently, we 
screened differentially expressed genes among different subgroups and conducted 
univariate Cox analysis, random forest feature selection, and multivariate Cox analy-
sis. 9-feature genes (FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, 
MARCH4, and STC1) in the ITGB superfamily were selected to establish a prognostic 
assessment model for LAUD.
Results: In accordance with the median risk score, LUAD samples were divided into 
high- and low-risk groups. The receiver operating characteristic (ROC) curve of LUAD 
patients’ survival was predicted via K-M survival curve and principal component 
analysis dimensionality reduction. This model was found to have a favorable perfor-
mance in LUAD prognostic assessment. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses of differentially expressed genes between 
groups and Gene Set Enrichment Analysis (GSEA) of intergroup samples confirmed 
that the high- and low-risk groups had evident differences mainly in the function of 
extracellular matrix (ECM) interaction. Risk score and univariate and multivariate Cox 
regression analyses of clinical factors showed that the prognostic model could be ap-
plied as an independent prognostic factor for LUAD. Then, we draw the nomogram of 
1-, 3-, and 5-year survival of LUAD patients predicted with the risk score and clinical 
factors. Calibration curve and clinical decision curve proved the favorable predictive 
ability of nomogram.
Conclusion: We constructed a LUAD prognostic risk model based on the ITGB super-
family, which can provide guidance for clinicians on their prognostic judgment.
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1  |  INTRODUC TION

The number of cancer patients is increasing year by year worldwide, 
and the patients tend to be younger. According to the latest data from 
the National Cancer Registry, lung cancer remains one of the cancers 
with the highest morbidity and mortality.1 Non-small cell lung cancer 
(NSCLC) accounts for 80%-85% of total lung cancer, while lung ade-
nocarcinoma (LUAD) is the main histological subtype of NSCLC.2 The 
survival time of early LUAD patients can be prolonged by surgical 
treatment. However, due to the lack of specific clinical symptoms in 
the early stage, the opportunity for surgical treatment has been lost 
because of local infiltration or distant metastasis. The treatment tech-
nology for LUAD has currently been improved a lot. In addition to 
surgical resection, comprehensive treatments including radiotherapy 
and chemotherapy are also the main therapeutic methods for LUAD. 
However, the 5-year survival rate of patients is still lower than that of 
most cancers (https://seer.cancer.gov/statf​acts/). In recent years, de-
spite the new hope for LUAD patients with target therapy, the prog-
nosis is still not satisfactory.3,4 Thus, biomarkers are utilized to identify 
the high-risk patients with poor prognosis, which provides underlying 
therapeutic targets for LUAD treatment and improves the prognosis 
of LUAD patients, contributing to disease management and treatment.

Integrin β (ITGB) superfamily is a member of the integrin super-
family, which contains eight subtypes. Integrin is a kind of transmem-
brane heterodimer of somatic adhesion molecules that can provide 
connections and mediate interactions between cells and cells, cells, 
and extracellular matrixes (ECMs).5 ITGB superfamily also plays an 
initial role in the regulation of various cellular activities, including 
proliferation, carcinogenesis, and immune response.6 Puerkaiti et al.7 
demonstrated that ITGB2 can enhance tumor progression and af-
fect patients’ prognosis via inhibiting the identification and immune 
response of the immune system to tumor cells in triple-negative 
breast cancer. Wu et al.8 revealed that inhibiting the expression of 
ITGB3 in gastric cancer can repress gastric cancer cells to migrate 
and invade. While ITGB1 was indicated by Li et al.,9 it induces ra-
dioresistance by affecting DNA repair and YAP1-induced epithelial–
mesenchymal transition in NSCLC. Zhu et al.10 proposed that the high 
expression of ITGB1 in NSCLC shortens the overall survival (OS) of 
patients. Wu et al.11 proposed that ITGB4 can be applied as the diag-
nostic biomarker for both LUAD and lung squamous cell carcinoma, 
ITGB8 can be used as the diagnostic biomarker for lung squamous 
cell carcinoma, and ITGB4 can also serve as an underlying prognos-
tic biomarker for LUAD. However, the potential biological functions 
of ITGB5 and ITGB7 were scarcely understood. The above studies 
exhibited that the ITGB family is correlated with the malignant pro-
gression and prognosis of tumors. Therefore, the exploration of the 
influences of ITGB-related genes on LUAD contributes to the prog-
nostic assessment and the mining of potential biomarkers.

The prognostic effects of the ITGB superfamily on LUAD remain 
unsolved. We applied LUAD-related mRNA expression data from the 
public databases to classify LUAD samples into subgroups according 
to the gene expression profiles of ITGB superfamily members. Then, 
based on the differentially expressed genes in varying subgroups, 
a prognostic risk assessment model related to ITGB superfamily 
for LUAD was established, in order to provide some references for 
screening potential biomarkers of LUAD patients and clinicians’ 
prognostic judgment.

2  | MATERIAL S AND METHODS

2.1  | Data downloading

mRNA expression data and corresponding clinical information (age, 
survival, tumor staging, etc.) of LUAD patients were accessed from 
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.can-
cer.gov/), including 535 LUAD samples and 59 normal samples.

2.2  |  Classification and evaluation of ITGB-
related subgroups

First, the samples with survival time of more than 30  days were 
screened from LUAD samples for subsequent analysis. Non-negative 
matrix factorization (NMF) method was adopted for clustering anal-
ysis of samples based on the gene expression of ITGB8. The optimal 
cluster number was determined according to the area curve of NMF 
cophenetic, and the LUAD samples in the dataset were divided into 
subgroups.12 “factoextra” package (CRAN—Package factoextra (r-
project.org)) was utilized for principal components analysis (PCA) on 
ITGB-related subtypes to verify the clustering. The survival curves 
of different subtypes were drawn applying the “survival” package.13

2.3  |  Screening of ITGB-related prognostic 
genes and construction of a prognostic model

Differential analysis was performed on the genes in different ITGB-
related subgroups employing edgeR package14 with |logFC| > 1 and 
FDR  <  0.05 as the standard to screen the differentially expressed 
genes in diverse subgroups. The clusterProfiler package15 was applied 
to conduct Gene Ontology (GO) enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) signaling pathway analyses on all 
differentially expressed genes. The differentially expressed genes in 
different subgroups were analyzed by univariate Cox regression with 
the survival package, and the mRNA associated with prognosis was 
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screened with p  <  0.001 as the standard. The samples were rand-
omized into training set and validation set at a ratio of 7:3 using the 
“caret” package. The “randomForestSRC” package was employed to 
conduct iterative elimination screening (ntree=1000, nrep=50) for 
prognostic mRNAs in the training set, and the optimal prognostic 
genes were obtained. The survival package was ultimately adopted 
to conduct multivariate Cox analysis on the mRNAs obtained in the 
previous step, followed by the obtaining of the ITGB family-related 
prognostic genes and the construction of the risk assessment model.

2.4  |  Assessment of the prognostic risk model

In accordance with the expression level and risk coefficient of each 
feature in the samples, the risk score of each sample in the training set 
was calculated, and the patient samples were assigned to groups with 
the median risk score as the critical value. Then, PCA dimensionality 
reduction was conducted on different risk groups applying the facto-
extra package. The survival curves were drawn utilizing the survival 
package. In order to verify the effectiveness of the risk assessment 
model, the timeROC package was applied to draw receiver operating 
characteristic (ROC) curve, and the area under ROC curve (AUC) of 1-, 
3-, and 5-year OS of LUAD patients was calculated. Finally, the same 
verification was applied in the validation set.

2.5  |  Enrichment analysis of signaling pathway 
between high- and low-risk groups

The limma package was employed to conduct the differential expres-
sion analysis on mRNAs in high-  and low-risk groups (|logFC|  >  1, 
padj  <  0.05). The enrichment of functions and pathways of the dif-
ferentially expressed genes was analyzed on the online website 
Metascape (https://metas​cape.org/gp/index.html#/main/step1). Gene 
Set Enrichment Analysis (GSEA) was then adopted to perform KEGG 
pathway analysis on samples in two risk groups.

2.6  |  Construction and evaluation of nomogram

To investigate the independence of the ITGB superfamily-related prog-
nostic risk assessment model constructed in this study, univariate and 
multivariate Cox analyses were performed with risk score as a prognos-
tic feature combined with other clinical factors (age, sex, TNM stage, 
and tumor stage). Combined with clinical factors and risk scores, the 
nomogram was generated to predict the 1-, 3-, and 5-year OS of LUAD 
patients using the rms package.16 To evaluate the consistency between 
the actual survival and predicted survival of the nomogram, calibration 
curves were further drawn to measure the reliability of the model.

Subsequently, the method provided by Memorial Sloan-Kettering 
Cancer Center (https://www.mskcc.org/depar​tment​s/epide​miolo​
gy-biost​atist​ics/biost​atist​ics/decis​ion-curve​-analysis, MSKCC) was 
utilized to draw nomogram to predict the decision curves for 1-, 3-, 

and 5-year OS of LUAD patients,17 thereby verifying the predictive 
performance of the nomogram.

3  |  RESULTS

3.1  |  Classification of ITGB gene-related subgroup

First, the data in TCGA-LUAD dataset were preprocessed, and 493 
LUAD samples with survival time over 30 days and complete clini-
cal information were screened. NMF method was applied to analyze 
the samples based on the ITGB expression profile. The area curve of 
NMF cophenetic was adopted to visualize the non-negative matrix 
decomposition clustering analysis, with K representing the number 
of subgroups obtained by clustering. The results implicated that the 
model clustering was the most stable when k = 2, and LUAD samples 
were assigned to two subgroups cluster1 and cluster2 (Figure 1A,B). 
PCA dimensionality reduction in the two subgroups indicated that 
the two kinds of samples could be distinguished by the ITGB gene 
expression pattern (Figure 1C). The results of the survival analysis 
of two subgroups demonstrated the significant differences in the 
survival of samples between ITGB-related subgroups (Figure  1D). 
Taken together, due to the notable correlation between the expres-
sion pattern of ITGB family members and LUAD prognosis, ITGB 
possessed a certain prognostic value.

Due to the worse OS status of cluster2 than that of cluster1, 
we conducted differential expression analysis. Nine-hundred and 
ninty-six differentially expressed genes were totally found, with 
707 upregulated genes and 289 downregulated genes (Figure 2A). 
Enrichment analyses were performed on these 996  genes. GO 
analysis confirmed that these differentially expressed genes were 
mainly enriched in the antimicrobial humoral response, neuropep-
tide signaling pathway, ion channel complex, MHC protein complex, 
receptor-ligand activity, and other biological functions (Figure 2B). In 
addition, KEGG analysis demonstrated that these differentially ex-
pressed genes were mainly enriched in the biological pathways, such 
as estrogen signaling pathway and retinol metabolism (Figure 2C). 
Taken together, the functional differences between ITGB-related 
subgroups were found to be enriched in immune signal regulation, 
tumor progression regulation, and other related pathways.

3.2  |  Construction of a prognostic model based on 
ITGB-related 9-feature genes

Fifty LUAD prognosis-related mRNAs were screened from dif-
ferentially expressed genes in ITGB subgroups through univariate 
Cox regression analysis, with p  <  0.001 as the screening condi-
tion (Table  S1). Thereafter, the dataset was randomly divided into 
the training set and validation set at a ratio of 7:3. Random Forest 
method was used to carry out the feature selection on the training 
set based on the relationship between the error rate and the number 
of genes in the classification tree. The results exhibited that when 
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the feature gene number was 9, error rate was 0.3512. Thereafter, 
with the increase in gene number, error rate did not decrease no-
tably (Figure 3A,B). Hence, these 9 genes were selected for multi-
variate Cox analysis, thereby obtaining 9 optimal prognostic genes 
(FAM83A, AKAP12, PKP2, CYP17A1, GJB3, TMPRSS11F, KRT81, 

MARCH4, and STC1). The prognostic risk assessment model was risk 
score = 0.110* FAM83A + 0.070* AKAP12 + 0.071* PKP2 − 0.141* 
CYP17A1 − 0.065* GJB3 + 0.045* TMPRSS11F + 0.050* KRT81 + 
0.109* MARCH4 + 0.088* STC1 (Figure 3C). The samples were as-
signed to low- and high-risk groups by median risk score.

F I G U R E  1 LUAD is divided into ITGB-related subgroups based on the NMF model. (A) Area curve of NMF cophenetic at different k 
values; (B) 493 LUAD patients were divided into 2 ITGB-related subgroups; (C) PCA dimensionality reduction analysis among ITGB-related 
subgroups; (D) K-M survival analysis among ITGB-related subgroups (*p < 0.05)
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F I G U R E  2 Differentially expressed 
genes and their involved functional 
pathways among ITGB-related subgroups. 
(A) Volcano plot of differentially 
expressed genes in different ITGB 
subgroups (red: upregulated genes, green: 
downregulated genes); Bubble diagram 
of (B) GO enrichment analysis and (C) 
KEGG enrichment analysis of differentially 
expressed genes in ITGB subgroups
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3.3  |  ITGB-related prognostic model has a 
favorable predictive performance

According to the clinical information of patients in different risk 
groups, the survival distribution map of LUAD patients was drawn. 
It could be observed that with the increase in the risk score of the 
training set samples, the number of LUAD deaths in the high-risk 
group gradually increased and the survival time gradually shortened 
(Figure  4A,B). Combined with the heatmap of 9-feature gene ex-
pression in two risk groups, it was indicated that in the training set, 

only CYP17A1 was evidently highly expressed in the high-risk group 
(Figure 4C), and the results of the validation set were consistent with 
that of the training set (Figure 4D–F).

PCA dimensionality reduction analysis was performed on the 
samples of the high-risk group in the training set based on the 
9-feature genes, and the two risk groups of samples could be clearly 
distinguished (Figure 5A). Similar results were obtained in the val-
idation set (Figure 5B). Subsequently, survival curves were drawn 
for the samples of two risk groups in the training set and validation 
set. It was observed that the survival rate of the high-risk group was 

F I G U R E  3 Construction of ITGB-related prognostic model. (A) The relationship between error rate and the number of feature genes in 
random forest feature selection; (B) The importance sequencing of the screened 9 prognostic genes; (C) Forest map of multivariate Cox 
regression of 9-feature genes (*p < 0.05, **p < 0.01)

F I G U R E  4 Survival of samples and expression of feature genes in high- and low-risk groups. Risk score distribution chart of LUAD 
patients in the (A) training set and (D) validation set, with red displaying samples in the high-risk group and green displaying samples in the 
low-risk group; survival curves of LUAD patients in the (B) training set and (E) validation set obtained by risk score, with red representing the 
dead samples and green representing the living samples; Heatmap of 9-feature gene expression in two risk groups in the (C) training set and 
(F) validation set
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lower than that of the low-risk group, indicating that the high-risk 
group had a worse prognosis (Figure 5C,D). TimeROC curve hinted 
that 1-, 3-, and 5-year AUC values predicted by the model in the 
training set were 0.75, 0.72, and 0.71, respectively (Figure 5E). While 
in the validation set, 1-, 3-, and 5-year AUC values were 0.72, 0.84, 
and 0.7, respectively (Figure  5F). In summary, the 9-feature gene 
prognostic risk assessment model could predict the survival of LUAD 
patients to a certain extent.

3.4  | Different signaling pathways in the high- and 
low-risk groups

Differential expression analysis was performed on genes in two 
risk groups, and 936 differentially expressed genes were ob-
tained. Enrichment analysis of differentially expressed genes 
in Metascape illustrated that these genes were mainly associ-
ated with NABA MATRISOME ASSOCIATED, anion transport, 
Processes regulation of hormone levels, and other biological 
functions (Figure  6A–C). GSEA software was then applied to 
conduct KEGG analysis on the differentially expressed genes in 
two risk groups. Evident differences were shown in the activa-
tion levels of signaling pathways, such as FOCAL_ADHESION, 
ECM_RECEPTOR_INTERACTION, and CELL_CYCLE between two 
groups (Figure 6D–F). Based on the results of the above functional 
analyses, differentially expressed genes were demonstrated to be 
enriched in ECM interaction and cell cycle regulation in two risk 
groups, suggesting that changes in these functions might be inter-
nal factors affecting the prognostic differences in the high- and 
low-risk groups.

3.5  |  The nomogram of the combination of 9-gene 
prognostic model and clinical factors

Risk score of 9-feature gene model could solely serve as a prognostic 
factor, and it could be combined with other clinical factors (age, sex, 
TNM stage, and tumor stage) to conduct univariate Cox analysis. The 
results demonstrated the notable significance of T, N stages, and 
risk score (p < 0.01), indicating that T, N stages, and risk score were 
closely correlated to LUAD prognosis (Figure 7A). Multivariate Cox 
analysis of these factors revealed that T, N stages, and risk score had 
evident significance (p < 0.05), while only risk score had extremely 
notable significance (p  <  0.001) (Figure 7B). In conclusion, it was 
proved that the risk score obtained by the 9-feature gene prognostic 
model could be utilized as a prognostic factor independent of tradi-
tional clinical features.

To better predict 1-, 3-, and 5-year OS of LUAD patients, the 
risk score of 9-feature gene prognostic model was combined with 
other clinical factors (age, sex, TNM stage, and tumor stage) to 
construct nomogram for predicting LUAD survival (Figure  7C). 
The calibration curve was applied to verify the consistency be-
tween the actual and predicted survival, reflecting the favorable 
fitting degree of the calibration curve (Figure 7D–F). The decision 
curve of the nomogram was then used to verify the predictive per-
formance (Figure 7G–I). In summary, the constructed nomogram 
based on 9-feature gene risk score, and clinical factors had a satis-
factory predictive ability, which can provide help for clinicians to 
judge the prognosis of patients.

4  | DISCUSSION

The development of sequencing technology accelerates the iden-
tification of more biomarkers and therapeutic targets, which has 
deepened the understanding of tumors. Nonetheless, it has been 
difficult to identify reliable biomarkers associated with LUAD 
treatment and prognosis. Several observations in recent years 
have demonstrated that the abnormal expression of integrin is 
closely associated with the progression of tumors.18–20 Therefore, 
LUAD was divided into subgroups based on the ITGB superfamily, 
and 9-feature genes were screened from differentially expressed 
genes among different subgroups through the bioinformatics 
method, leading to the construction of an ITGB-related prognostic 
model.

The feature genes used to establish the ITGB-related prog-
nostic model were FAM83A, AKAP12, PKP2, CYP17A1, GJB3, 
TMPRSS11F, KRT81, MARCH4 and STC1. FAM83A, AKAP12, 
PKP2, TMPRSS11F, KRT81, MARCH4, and STC1 were risk fac-
tors. FAM83A is located on chromosome 8q24 and is upregu-
lated in LUAD, which is closely correlated to the poor prognosis 
of patients.21 A study uncovered that FAM83A can activate the 
expression of MAPK signaling pathway, thus enhancing the ma-
lignant progression of NSCLC.22 The high expression of FAM83A 
was revealed to induce a higher risk score in our study. AKAP12/
Gravin is an A-type kinase anchor protein. It was exhibited that 
AKAP12 is highly expressed in LUAD, promotes LUAD cell pro-
liferation, migration, and invasion, and represses cell apoptosis.23 
PKP2, a member of the p120ctn family of cell adhesion molecules, 
enhances cell proliferation, migration, and invasion by activating 
the EGFR signaling pathway in LUAD.24 PKP2 was elucidated to 
initially affect tumorigenesis, aggressiveness, malignant biologi-
cal behavior, and immune infiltration of ovarian cancer.25  These 
results correspond to the risk ratio of the feature genes we 

F IGURE  5 Assessment of predictive capacity of 9-feature gene-based prognostic model. PCA dimensionality reduction analysis of 
samples in the high- and low-risk groups in the (A) training set and (B) validation set, with red indicating the high-risk group and cyan 
indicating the low-risk group; K-M survival curves of patients in two risk groups in the (C) training set and (D) validation set, with red 
representing the high-risk group and blue representing the low-risk group; ROC curves of 9-feature gene-based prognostic model in the (E) 
training set and (F) validation set
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analyzed, whereas the observation of TMPRSS11F and MARCH4 
is less explored. KRT81, a hair keratin, has become a biomarker of 
breast cancer and was revealed to promote cancer cell migration 
and invasion.26 A study illustrated that STC1 is highly expressed 

in bladder cancer, enhances PD-L1 expression, and increases the 
degree of T cell immune infiltration.27  The role of these feature 
genes in tumor progression has been elucidated, but their prog-
nostic value has not been fully explored. The prognostic genes 

F I G U R E  6 Differentially activated signaling pathways between high- and low-risk groups. (A) Bar chart of p-value distribution of 
biological processes and functional enrichment of differentially expressed genes in two risk groups in the training set. The horizontal 
axis represents the number of enriched genes; (B) ID cluster diagram and (C) p-value cluster diagram of functional enrichment items of 
differentially expressed genes in the high- and low-risk groups in the training set; Enrichment of two risk groups in (D) FOCAL_ADHESION 
gene set, (E) ECM_RECEPTOR_INTERACTION gene set and (F) CELL_CYCLE gene set
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F IGURE  7 Construction of ITGB-
related nomogram and assessment 
of predictive ability. Forest map of 
(A) univariate Cox analysis and (B) 
multivariate Cox analysis on the risk 
score of 9-feature gene model and clinical 
factors; (C) The constructed nomogram 
of risk score of 9-feature gene and clinical 
factors; (D–F) Calibration curves of 
1- (D), 3- (E), and 5-year (F) survival of 
LUAD patients predicted by nomogram; 
(G–I) Decision curves of 1- (G), 3- (H), 
and 5-year (I) survival of LUAD patients 
predicted by nomogram
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screened in this study are likely to be the biomarkers for LUAD 
treatment.

CYP17A1 and GJB3 are protective factors. CYP17A1 is a mul-
tifunctional hydroxylase of the cytochrome p450 family, which is 
expressed in the endoplasmic reticulum and adrenal cortex of testic-
ular interstitial cells. It induces DNA demethylation to suppress cell 
proliferation, invasion, and metastasis of glioma.28 Meanwhile, bio-
informatics analysis indicated that the low expression of CYP17A1 
in the high-risk group indirectly indicated the protective effect 
of CYP17A1. GJB3  has been less researched in previous studies. 
Collectively, the 9-feature genes screened based on the ITGB super-
family in our study were not only related to LUAD prognosis but also 
used as a potential target for LUAD treatment.

The enrichment analyses of differentially expressed genes in 
high- and low-risk groups indicated that these genes were primarily 
enriched in ECM interaction and cell cycle regulation. The adhesion 
between tumor cells and ECM is closely related to tumor invasion 
and metastasis. ECM is a dense network composed of structural 
proteins, adaptor proteins, proteoglycan, and enzymes, which ex-
ists in all tissue and mainly provide biochemical and structural sup-
port for tissue homeostasis. It provides support for cell adhesion 
and migration and regulates cell cycle progression.29,30 ECM and 
its receptor integrin play a crucial role in tumor growth, invasion, 
metastasis, and drug resistance. As previously described, exosomes 
secreted by tumors express different integrin subtypes on their 
membranes, which are selectively absorbed by distant non-tumor 
cells in a tissue-specific manner, laying a preliminary foundation for 
tumor metastasis.31 Gan et al.32 uncovered that ECM 1 accelerates 
cell metastasis and glycolysis metabolism via inducing integrin β4/
FAK/SOX2/HIF-1α signaling pathway. Du et al.33 explored that in-
tegrin α3 activates c-Src/extracellular signal in cervical cancer to 
modulate protein kinase/adherent plaque kinase signaling pathway 
and enhances tumor metastasis and angiogenesis, resulting in the 
unsatisfactory prognosis in patients with cervical cancer. Salemi 
et al.34 suggested that integrin α2β1 inhibits cell cycle to promote 
cell apoptosis and repress epithelial–mesenchymal transformation, 
so as to attenuate prostate cancer cell proliferation. In a word, the 
prognostic model constructed in this study was an ITGB-related 
prognostic model, which reflected different prognostic results in 
two risk groups. The cause might be the modulation of integrin on 
ECM, cell–cell interaction, and intercellular signal transmission.

In conclusion, we utilized the NMF method to group LUAD sam-
ples according to the expression of ITGB superfamily genes, and 
subsequently constructed and evaluated the ITGB superfamily-
related prognostic risk assessment model based on the differentially 
expressed genes of ITGB-related subgroups. Besides, the feature 
genes screened in this study might serve as the underlying targets 
for LUAD targeted therapy, which can provide references for LUAD 
prognosis determination. However, there are still some deficiencies 
in this study. This study is a pure retrospective study based on public 
datasets, while clinical samples should be contained to verify the 
predictive ability of the constructed model in the future.
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