
J Clin Lab Anal. 2022;36:e24419.	 		 	 | 1 of 13
https://doi.org/10.1002/jcla.24419

wileyonlinelibrary.com/journal/jcla

Received:	13	January	2022  | Revised:	25	March	2022  | Accepted:	27	March	2022
DOI: 10.1002/jcla.24419  

R E S E A R C H  A R T I C L E

Construction of a prognostic risk assessment model for lung 
adenocarcinoma based on Integrin β family- related genes

Yuanlin Wu |   Linhai Fu |   Bin Wang |   Zhupeng Li |   Desheng Wei |   Haiyong Wang |   
Chu Zhang |   Zhifeng Ma |   Ting Zhu |   Guangmao Yu

This is an open access article under the terms of the Creative	Commons	Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
©	2022	The	Authors.	Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC.

Department of Thoracic Surgery, Shaoxing 
People's Hospital, Shaoxing, China

Correspondence
Guangmao Yu, Department of Thoracic 
Surgery, Shaoxing People's Hospital, No. 
568	Zhongxing	North	Road,	Shaoxing,	
Zhejiang	312000,	China.
Email: yu_guangmao@163.com

Abstract
Background: Integrin β (ITGB) superfamily plays an essential role in the intercellular 
connection and signal transmission. It was exhibited that overexpressing of ITGB fam-
ily	members	promotes	the	malignant	progression	of	lung	adenocarcinoma	(LUAD),	but	
the	relationship	between	ITGB	superfamily	and	the	LUAD	prognosis	remains	unclear.
Methods: In this study, the samples were assigned to different subgroups utilizing 
non- negative matrix factorization clustering according to the expression of ITGB fam-
ily	members	in	LUAD.	Kaplan–	Meier	(K-	M)	survival	analysis	revealed	the	significant	
differences in the prognosis between different ITGB subgroups. Subsequently, we 
screened differentially expressed genes among different subgroups and conducted 
univariate Cox analysis, random forest feature selection, and multivariate Cox analy-
sis.	9-	feature	genes	(FAM83A,	AKAP12,	PKP2,	CYP17A1,	GJB3,	TMPRSS11F,	KRT81,	
MARCH4,	and	STC1)	in	the	ITGB	superfamily	were	selected	to	establish	a	prognostic	
assessment	model	for	LAUD.
Results: In	accordance	with	the	median	risk	score,	LUAD	samples	were	divided	into	
high-		and	low-	risk	groups.	The	receiver	operating	characteristic	(ROC)	curve	of	LUAD	
patients’	 survival	 was	 predicted	 via	 K-	M	 survival	 curve	 and	 principal	 component	
analysis dimensionality reduction. This model was found to have a favorable perfor-
mance	in	LUAD	prognostic	assessment.	Gene	Ontology	(GO)	and	Kyoto	Encyclopedia	
of	Genes	and	Genomes	(KEGG)	analyses	of	differentially	expressed	genes	between	
groups	and	Gene	Set	Enrichment	Analysis	 (GSEA)	of	 intergroup	samples	confirmed	
that the high-  and low- risk groups had evident differences mainly in the function of 
extracellular	matrix	(ECM)	interaction.	Risk	score	and	univariate	and	multivariate	Cox	
regression analyses of clinical factors showed that the prognostic model could be ap-
plied	as	an	independent	prognostic	factor	for	LUAD.	Then,	we	draw	the	nomogram	of	
1-	,	3-	,	and	5-	year	survival	of	LUAD	patients	predicted	with	the	risk	score	and	clinical	
factors. Calibration curve and clinical decision curve proved the favorable predictive 
ability of nomogram.
Conclusion: We	constructed	a	LUAD	prognostic	risk	model	based	on	the	ITGB	super-
family, which can provide guidance for clinicians on their prognostic judgment.
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1  |  INTRODUC TION

The number of cancer patients is increasing year by year worldwide, 
and	the	patients	tend	to	be	younger.	According	to	the	latest	data	from	
the National Cancer Registry, lung cancer remains one of the cancers 
with the highest morbidity and mortality.1 Non- small cell lung cancer 
(NSCLC)	accounts	for	80%-	85%	of	total	lung	cancer,	while	lung	ade-
nocarcinoma	(LUAD)	is	the	main	histological	subtype	of	NSCLC.2 The 
survival	 time	 of	 early	 LUAD	 patients	 can	 be	 prolonged	 by	 surgical	
treatment. However, due to the lack of specific clinical symptoms in 
the early stage, the opportunity for surgical treatment has been lost 
because of local infiltration or distant metastasis. The treatment tech-
nology	 for	 LUAD	 has	 currently	 been	 improved	 a	 lot.	 In	 addition	 to	
surgical resection, comprehensive treatments including radiotherapy 
and	chemotherapy	are	also	the	main	therapeutic	methods	for	LUAD.	
However,	the	5-	year	survival	rate	of	patients	is	still	lower	than	that	of	
most cancers (https://seer.cancer.gov/statf acts/). In recent years, de-
spite	the	new	hope	for	LUAD	patients	with	target	therapy,	the	prog-
nosis is still not satisfactory.3,4 Thus, biomarkers are utilized to identify 
the high- risk patients with poor prognosis, which provides underlying 
therapeutic	targets	for	LUAD	treatment	and	 improves	the	prognosis	
of	LUAD	patients,	contributing	to	disease	management	and	treatment.

Integrin β (ITGB) superfamily is a member of the integrin super-
family, which contains eight subtypes. Integrin is a kind of transmem-
brane heterodimer of somatic adhesion molecules that can provide 
connections and mediate interactions between cells and cells, cells, 
and	 extracellular	matrixes	 (ECMs).5 ITGB superfamily also plays an 
initial role in the regulation of various cellular activities, including 
proliferation, carcinogenesis, and immune response.6 Puerkaiti et al.7 
demonstrated that ITGB2 can enhance tumor progression and af-
fect patients’ prognosis via inhibiting the identification and immune 
response of the immune system to tumor cells in triple- negative 
breast cancer. Wu et al.8 revealed that inhibiting the expression of 
ITGB3 in gastric cancer can repress gastric cancer cells to migrate 
and invade. While ITGB1 was indicated by Li et al.,9 it induces ra-
dioresistance	by	affecting	DNA	repair	and	YAP1-	induced	epithelial–	
mesenchymal	transition	in	NSCLC.	Zhu	et	al.10 proposed that the high 
expression of ITGB1 in NSCLC shortens the overall survival (OS) of 
patients. Wu et al.11 proposed that ITGB4 can be applied as the diag-
nostic	biomarker	for	both	LUAD	and	lung	squamous	cell	carcinoma,	
ITGB8	can	be	used	as	 the	diagnostic	biomarker	 for	 lung	squamous	
cell carcinoma, and ITGB4 can also serve as an underlying prognos-
tic	biomarker	for	LUAD.	However,	the	potential	biological	functions	
of	 ITGB5	 and	 ITGB7	were	 scarcely	 understood.	The	 above	 studies	
exhibited that the ITGB family is correlated with the malignant pro-
gression and prognosis of tumors. Therefore, the exploration of the 
influences	of	ITGB-	related	genes	on	LUAD	contributes	to	the	prog-
nostic assessment and the mining of potential biomarkers.

The	prognostic	effects	of	the	ITGB	superfamily	on	LUAD	remain	
unsolved.	We	applied	LUAD-	related	mRNA	expression	data	from	the	
public	databases	to	classify	LUAD	samples	into	subgroups	according	
to the gene expression profiles of ITGB superfamily members. Then, 
based on the differentially expressed genes in varying subgroups, 
a prognostic risk assessment model related to ITGB superfamily 
for	LUAD	was	established,	in	order	to	provide	some	references	for	
screening	 potential	 biomarkers	 of	 LUAD	 patients	 and	 clinicians’	
prognostic judgment.

2  | MATERIAL S AND METHODS

2.1  | Data downloading

mRNA	expression	data	and	corresponding	clinical	information	(age,	
survival,	tumor	staging,	etc.)	of	LUAD	patients	were	accessed	from	
The	Cancer	Genome	Atlas	(TCGA)	database	(https://portal.gdc.can-
cer.gov/),	including	535	LUAD	samples	and	59	normal	samples.

2.2  |  Classification and evaluation of ITGB- 
related subgroups

First, the samples with survival time of more than 30 days were 
screened	from	LUAD	samples	for	subsequent	analysis.	Non-	negative	
matrix	factorization	(NMF)	method	was	adopted	for	clustering	anal-
ysis	of	samples	based	on	the	gene	expression	of	ITGB8.	The	optimal	
cluster	number	was	determined	according	to	the	area	curve	of	NMF	
cophenetic,	and	the	LUAD	samples	in	the	dataset	were	divided	into	
subgroups.12	 “factoextra”	 package	 (CRAN—	Package	 factoextra	 (r-	
project.org))	was	utilized	for	principal	components	analysis	(PCA)	on	
ITGB- related subtypes to verify the clustering. The survival curves 
of different subtypes were drawn applying the “survival” package.13

2.3  |  Screening of ITGB- related prognostic 
genes and construction of a prognostic model

Differential analysis was performed on the genes in different ITGB- 
related subgroups employing edgeR package14 with |logFC| > 1 and 
FDR <	 0.05	 as	 the	 standard	 to	 screen	 the	 differentially	 expressed	
genes in diverse subgroups. The clusterProfiler package15 was applied 
to	conduct	Gene	Ontology	(GO)	enrichment	and	Kyoto	Encyclopedia	
of	 Genes	 and	 Genomes	 (KEGG)	 signaling	 pathway	 analyses	 on	 all	
differentially expressed genes. The differentially expressed genes in 
different subgroups were analyzed by univariate Cox regression with 
the	 survival	package,	 and	 the	mRNA	associated	with	prognosis	was	

K E Y W O R D S
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screened with p < 0.001 as the standard. The samples were rand-
omized	into	training	set	and	validation	set	at	a	ratio	of	7:3	using	the	
“caret” package. The “randomForestSRC” package was employed to 
conduct iterative elimination screening (ntree=1000, nrep=50)	 for	
prognostic	 mRNAs	 in	 the	 training	 set,	 and	 the	 optimal	 prognostic	
genes were obtained. The survival package was ultimately adopted 
to	conduct	multivariate	Cox	analysis	on	the	mRNAs	obtained	 in	the	
previous step, followed by the obtaining of the ITGB family- related 
prognostic genes and the construction of the risk assessment model.

2.4  |  Assessment of the prognostic risk model

In accordance with the expression level and risk coefficient of each 
feature in the samples, the risk score of each sample in the training set 
was calculated, and the patient samples were assigned to groups with 
the	median	risk	score	as	the	critical	value.	Then,	PCA	dimensionality	
reduction was conducted on different risk groups applying the facto-
extra package. The survival curves were drawn utilizing the survival 
package. In order to verify the effectiveness of the risk assessment 
model, the timeROC package was applied to draw receiver operating 
characteristic	(ROC)	curve,	and	the	area	under	ROC	curve	(AUC)	of	1-	,	
3-	,	and	5-	year	OS	of	LUAD	patients	was	calculated.	Finally,	the	same	
verification was applied in the validation set.

2.5  |  Enrichment analysis of signaling pathway 
between high-  and low- risk groups

The limma package was employed to conduct the differential expres-
sion	 analysis	 on	 mRNAs	 in	 high-		 and	 low-	risk	 groups	 (|logFC|	 > 1, 
padj <	 0.05).	 The	 enrichment	 of	 functions	 and	 pathways	 of	 the	 dif-
ferentially expressed genes was analyzed on the online website 
Metascape	 (https://metas cape.org/gp/index.html#/main/step1). Gene 
Set	Enrichment	Analysis	 (GSEA)	was	then	adopted	to	perform	KEGG	
pathway analysis on samples in two risk groups.

2.6  |  Construction and evaluation of nomogram

To investigate the independence of the ITGB superfamily- related prog-
nostic risk assessment model constructed in this study, univariate and 
multivariate Cox analyses were performed with risk score as a prognos-
tic	feature	combined	with	other	clinical	factors	(age,	sex,	TNM	stage,	
and tumor stage). Combined with clinical factors and risk scores, the 
nomogram	was	generated	to	predict	the	1-	,	3-	,	and	5-	year	OS	of	LUAD	
patients using the rms package.16 To evaluate the consistency between 
the actual survival and predicted survival of the nomogram, calibration 
curves were further drawn to measure the reliability of the model.

Subsequently,	the	method	provided	by	Memorial	Sloan-	Kettering	
Cancer Center (https://www.mskcc.org/depar tment s/epide miolo 
gy- biost atist ics/biost atist ics/decis ion- curve - analysis,	 MSKCC)	 was	
utilized to draw nomogram to predict the decision curves for 1- , 3- , 

and	5-	year	OS	of	LUAD	patients,17 thereby verifying the predictive 
performance of the nomogram.

3  |  RESULTS

3.1  |  Classification of ITGB gene- related subgroup

First,	the	data	in	TCGA-	LUAD	dataset	were	preprocessed,	and	493	
LUAD	samples	with	survival	time	over	30	days	and	complete	clini-
cal	information	were	screened.	NMF	method	was	applied	to	analyze	
the samples based on the ITGB expression profile. The area curve of 
NMF	cophenetic	was	adopted	to	visualize	the	non-	negative	matrix	
decomposition	clustering	analysis,	with	K	representing	the	number	
of subgroups obtained by clustering. The results implicated that the 
model clustering was the most stable when k =	2,	and	LUAD	samples	
were assigned to two subgroups cluster1 and cluster2 (Figure 1A,B). 
PCA	dimensionality	reduction	 in	the	two	subgroups	 indicated	that	
the two kinds of samples could be distinguished by the ITGB gene 
expression pattern (Figure 1C). The results of the survival analysis 
of two subgroups demonstrated the significant differences in the 
survival of samples between ITGB- related subgroups (Figure 1D). 
Taken together, due to the notable correlation between the expres-
sion	 pattern	 of	 ITGB	 family	 members	 and	 LUAD	 prognosis,	 ITGB	
possessed a certain prognostic value.

Due to the worse OS status of cluster2 than that of cluster1, 
we conducted differential expression analysis. Nine- hundred and 
ninty- six differentially expressed genes were totally found, with 
707	upregulated	genes	and	289	downregulated	genes	 (Figure 2A). 
Enrichment analyses were performed on these 996 genes. GO 
analysis confirmed that these differentially expressed genes were 
mainly enriched in the antimicrobial humoral response, neuropep-
tide	signaling	pathway,	ion	channel	complex,	MHC	protein	complex,	
receptor- ligand activity, and other biological functions (Figure 2B). In 
addition,	KEGG	analysis	demonstrated	that	these	differentially	ex-
pressed genes were mainly enriched in the biological pathways, such 
as estrogen signaling pathway and retinol metabolism (Figure 2C). 
Taken together, the functional differences between ITGB- related 
subgroups were found to be enriched in immune signal regulation, 
tumor progression regulation, and other related pathways.

3.2  |  Construction of a prognostic model based on 
ITGB- related 9- feature genes

Fifty	 LUAD	 prognosis-	related	 mRNAs	 were	 screened	 from	 dif-
ferentially expressed genes in ITGB subgroups through univariate 
Cox regression analysis, with p < 0.001 as the screening condi-
tion (Table S1). Thereafter, the dataset was randomly divided into 
the	training	set	and	validation	set	at	a	ratio	of	7:3.	Random	Forest	
method was used to carry out the feature selection on the training 
set based on the relationship between the error rate and the number 
of genes in the classification tree. The results exhibited that when 

https://metascape.org/gp/index.html#/main/step1
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the	feature	gene	number	was	9,	error	rate	was	0.3512.	Thereafter,	
with the increase in gene number, error rate did not decrease no-
tably (Figure 3A,B). Hence, these 9 genes were selected for multi-
variate Cox analysis, thereby obtaining 9 optimal prognostic genes 
(FAM83A,	 AKAP12,	 PKP2,	 CYP17A1,	 GJB3,	 TMPRSS11F,	 KRT81,	

MARCH4,	and	STC1).	The	prognostic	risk	assessment	model	was	risk	
score =	0.110*	FAM83A	+	0.070*	AKAP12	+	0.071*	PKP2	−	0.141*	
CYP17A1	−	0.065*	GJB3	+	0.045*	TMPRSS11F	+	0.050*	KRT81	+ 
0.109*	MARCH4	+	0.088*	STC1	(Figure 3C). The samples were as-
signed to low-  and high- risk groups by median risk score.

F I G U R E  1 LUAD	is	divided	into	ITGB-	related	subgroups	based	on	the	NMF	model.	(A)	Area	curve	of	NMF	cophenetic	at	different	k 
values;	(B)	493	LUAD	patients	were	divided	into	2	ITGB-	related	subgroups;	(C)	PCA	dimensionality	reduction	analysis	among	ITGB-	related	
subgroups;	(D)	K-	M	survival	analysis	among	ITGB-	related	subgroups	(*p <	0.05)
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F I G U R E  2 Differentially	expressed	
genes and their involved functional 
pathways among ITGB- related subgroups. 
(A)	Volcano	plot	of	differentially	
expressed genes in different ITGB 
subgroups (red: upregulated genes, green: 
downregulated genes); Bubble diagram 
of (B) GO enrichment analysis and (C) 
KEGG	enrichment	analysis	of	differentially	
expressed genes in ITGB subgroups
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3.3  |  ITGB- related prognostic model has a 
favorable predictive performance

According	 to	 the	 clinical	 information	 of	 patients	 in	 different	 risk	
groups,	the	survival	distribution	map	of	LUAD	patients	was	drawn.	
It could be observed that with the increase in the risk score of the 
training	 set	 samples,	 the	 number	 of	 LUAD	deaths	 in	 the	 high-	risk	
group gradually increased and the survival time gradually shortened 
(Figure 4A,B). Combined with the heatmap of 9- feature gene ex-
pression in two risk groups, it was indicated that in the training set, 

only	CYP17A1	was	evidently	highly	expressed	in	the	high-	risk	group	
(Figure 4C), and the results of the validation set were consistent with 
that of the training set (Figure 4D–	F).

PCA	 dimensionality	 reduction	 analysis	 was	 performed	 on	 the	
samples of the high- risk group in the training set based on the 
9- feature genes, and the two risk groups of samples could be clearly 
distinguished (Figure 5A). Similar results were obtained in the val-
idation set (Figure 5B). Subsequently, survival curves were drawn 
for the samples of two risk groups in the training set and validation 
set. It was observed that the survival rate of the high- risk group was 

F I G U R E  3 Construction	of	ITGB-	related	prognostic	model.	(A)	The	relationship	between	error	rate	and	the	number	of	feature	genes	in	
random forest feature selection; (B) The importance sequencing of the screened 9 prognostic genes; (C) Forest map of multivariate Cox 
regression of 9- feature genes (*p <	0.05,	**p < 0.01)

F I G U R E  4 Survival	of	samples	and	expression	of	feature	genes	in	high-		and	low-	risk	groups.	Risk	score	distribution	chart	of	LUAD	
patients	in	the	(A)	training	set	and	(D)	validation	set,	with	red	displaying	samples	in	the	high-	risk	group	and	green	displaying	samples	in	the	
low-	risk	group;	survival	curves	of	LUAD	patients	in	the	(B)	training	set	and	(E)	validation	set	obtained	by	risk	score,	with	red	representing	the	
dead samples and green representing the living samples; Heatmap of 9- feature gene expression in two risk groups in the (C) training set and 
(F) validation set
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lower than that of the low- risk group, indicating that the high- risk 
group had a worse prognosis (Figure 5C,D). TimeROC curve hinted 
that	 1-	,	 3-	,	 and	 5-	year	AUC	 values	 predicted	 by	 the	model	 in	 the	
training	set	were	0.75,	0.72,	and	0.71,	respectively	(Figure 5E). While 
in	the	validation	set,	1-	,	3-	,	and	5-	year	AUC	values	were	0.72,	0.84,	
and	 0.7,	 respectively	 (Figure 5F). In summary, the 9- feature gene 
prognostic	risk	assessment	model	could	predict	the	survival	of	LUAD	
patients to a certain extent.

3.4  | Different signaling pathways in the high-  and 
low- risk groups

Differential expression analysis was performed on genes in two 
risk groups, and 936 differentially expressed genes were ob-
tained. Enrichment analysis of differentially expressed genes 
in	 Metascape	 illustrated	 that	 these	 genes	 were	 mainly	 associ-
ated	 with	 NABA	 MATRISOME	 ASSOCIATED,	 anion	 transport,	
Processes regulation of hormone levels, and other biological 
functions (Figure 6A–	C).	 GSEA	 software	 was	 then	 applied	 to	
conduct	KEGG	analysis	 on	 the	differentially	 expressed	 genes	 in	
two risk groups. Evident differences were shown in the activa-
tion	 levels	 of	 signaling	 pathways,	 such	 as	 FOCAL_ADHESION,	
ECM_RECEPTOR_INTERACTION,	and	CELL_CYCLE	between	two	
groups (Figure 6D–	F). Based on the results of the above functional 
analyses, differentially expressed genes were demonstrated to be 
enriched	in	ECM	interaction	and	cell	cycle	regulation	in	two	risk	
groups, suggesting that changes in these functions might be inter-
nal factors affecting the prognostic differences in the high-  and 
low- risk groups.

3.5  |  The nomogram of the combination of 9- gene 
prognostic model and clinical factors

Risk score of 9- feature gene model could solely serve as a prognostic 
factor, and it could be combined with other clinical factors (age, sex, 
TNM	stage,	and	tumor	stage)	to	conduct	univariate	Cox	analysis.	The	
results demonstrated the notable significance of T, N stages, and 
risk score (p < 0.01), indicating that T, N stages, and risk score were 
closely	correlated	to	LUAD	prognosis	(Figure 7A).	Multivariate	Cox	
analysis of these factors revealed that T, N stages, and risk score had 
evident significance (p <	0.05),	while	only	risk	score	had	extremely	
notable significance (p < 0.001) (Figure 7B). In conclusion, it was 
proved that the risk score obtained by the 9- feature gene prognostic 
model could be utilized as a prognostic factor independent of tradi-
tional clinical features.

To	better	predict	1-	,	3-	,	and	5-	year	OS	of	LUAD	patients,	the	
risk score of 9- feature gene prognostic model was combined with 
other	 clinical	 factors	 (age,	 sex,	 TNM	 stage,	 and	 tumor	 stage)	 to	
construct	 nomogram	 for	 predicting	 LUAD	 survival	 (Figure 7C). 
The calibration curve was applied to verify the consistency be-
tween the actual and predicted survival, reflecting the favorable 
fitting degree of the calibration curve (Figure 7D–	F). The decision 
curve of the nomogram was then used to verify the predictive per-
formance (Figure 7G–	I). In summary, the constructed nomogram 
based on 9- feature gene risk score, and clinical factors had a satis-
factory predictive ability, which can provide help for clinicians to 
judge the prognosis of patients.

4  | DISCUSSION

The development of sequencing technology accelerates the iden-
tification of more biomarkers and therapeutic targets, which has 
deepened the understanding of tumors. Nonetheless, it has been 
difficult	 to	 identify	 reliable	 biomarkers	 associated	 with	 LUAD	
treatment and prognosis. Several observations in recent years 
have demonstrated that the abnormal expression of integrin is 
closely associated with the progression of tumors.18–	20 Therefore, 
LUAD	was	divided	into	subgroups	based	on	the	ITGB	superfamily,	
and 9- feature genes were screened from differentially expressed 
genes among different subgroups through the bioinformatics 
method, leading to the construction of an ITGB- related prognostic 
model.

The feature genes used to establish the ITGB- related prog-
nostic	 model	 were	 FAM83A,	 AKAP12,	 PKP2,	 CYP17A1,	 GJB3,	
TMPRSS11F,	 KRT81,	 MARCH4	 and	 STC1.	 FAM83A,	 AKAP12,	
PKP2,	 TMPRSS11F,	 KRT81,	 MARCH4,	 and	 STC1	 were	 risk	 fac-
tors.	 FAM83A	 is	 located	 on	 chromosome	 8q24	 and	 is	 upregu-
lated	 in	LUAD,	which	 is	closely	correlated	 to	 the	poor	prognosis	
of patients.21	A	 study	uncovered	 that	 FAM83A	can	 activate	 the	
expression	 of	MAPK	 signaling	 pathway,	 thus	 enhancing	 the	ma-
lignant progression of NSCLC.22	The	high	expression	of	FAM83A	
was	revealed	to	induce	a	higher	risk	score	in	our	study.	AKAP12/
Gravin	 is	 an	A-	type	 kinase	 anchor	 protein.	 It	was	 exhibited	 that	
AKAP12	 is	 highly	 expressed	 in	 LUAD,	 promotes	 LUAD	 cell	 pro-
liferation, migration, and invasion, and represses cell apoptosis.23 
PKP2,	a	member	of	the	p120ctn	family	of	cell	adhesion	molecules,	
enhances cell proliferation, migration, and invasion by activating 
the	EGFR	 signaling	pathway	 in	 LUAD.24	 PKP2	was	elucidated	 to	
initially affect tumorigenesis, aggressiveness, malignant biologi-
cal behavior, and immune infiltration of ovarian cancer.25 These 
results correspond to the risk ratio of the feature genes we 

F IGURE  5 Assessment	of	predictive	capacity	of	9-	feature	gene-	based	prognostic	model.	PCA	dimensionality	reduction	analysis	of	
samples	in	the	high-		and	low-	risk	groups	in	the	(A)	training	set	and	(B)	validation	set,	with	red	indicating	the	high-	risk	group	and	cyan	
indicating	the	low-	risk	group;	K-	M	survival	curves	of	patients	in	two	risk	groups	in	the	(C)	training	set	and	(D)	validation	set,	with	red	
representing the high- risk group and blue representing the low- risk group; ROC curves of 9- feature gene- based prognostic model in the (E) 
training set and (F) validation set
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analyzed,	whereas	the	observation	of	TMPRSS11F	and	MARCH4	
is	less	explored.	KRT81,	a	hair	keratin,	has	become	a	biomarker	of	
breast cancer and was revealed to promote cancer cell migration 
and invasion.26	A	study	 illustrated	that	STC1	 is	highly	expressed	

in bladder cancer, enhances PD- L1 expression, and increases the 
degree of T cell immune infiltration.27 The role of these feature 
genes in tumor progression has been elucidated, but their prog-
nostic value has not been fully explored. The prognostic genes 

F I G U R E  6 Differentially	activated	signaling	pathways	between	high-		and	low-	risk	groups.	(A)	Bar	chart	of	p- value distribution of 
biological processes and functional enrichment of differentially expressed genes in two risk groups in the training set. The horizontal 
axis represents the number of enriched genes; (B) ID cluster diagram and (C) p- value cluster diagram of functional enrichment items of 
differentially	expressed	genes	in	the	high-		and	low-	risk	groups	in	the	training	set;	Enrichment	of	two	risk	groups	in	(D)	FOCAL_ADHESION	
gene	set,	(E)	ECM_RECEPTOR_INTERACTION	gene	set	and	(F)	CELL_CYCLE	gene	set
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F IGURE  7 Construction	of	ITGB-	
related nomogram and assessment 
of predictive ability. Forest map of 
(A)	univariate	Cox	analysis	and	(B)	
multivariate Cox analysis on the risk 
score of 9- feature gene model and clinical 
factors; (C) The constructed nomogram 
of risk score of 9- feature gene and clinical 
factors;	(D–	F)	Calibration	curves	of	
1-		(D),	3-		(E),	and	5-	year	(F)	survival	of	
LUAD	patients	predicted	by	nomogram;	
(G–	I)	Decision	curves	of	1-		(G),	3-		(H),	
and	5-	year	(I)	survival	of	LUAD	patients	
predicted by nomogram
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screened	 in	 this	 study	 are	 likely	 to	be	 the	biomarkers	 for	 LUAD	
treatment.

CYP17A1	and	GJB3	are	protective	 factors.	CYP17A1	 is	 a	mul-
tifunctional	 hydroxylase	 of	 the	 cytochrome	 p450	 family,	 which	 is	
expressed in the endoplasmic reticulum and adrenal cortex of testic-
ular	interstitial	cells.	It	induces	DNA	demethylation	to	suppress	cell	
proliferation, invasion, and metastasis of glioma.28	Meanwhile,	bio-
informatics	analysis	 indicated	that	the	low	expression	of	CYP17A1	
in the high- risk group indirectly indicated the protective effect 
of	 CYP17A1.	 GJB3	 has	 been	 less	 researched	 in	 previous	 studies.	
Collectively, the 9- feature genes screened based on the ITGB super-
family	in	our	study	were	not	only	related	to	LUAD	prognosis	but	also	
used	as	a	potential	target	for	LUAD	treatment.

The enrichment analyses of differentially expressed genes in 
high-  and low- risk groups indicated that these genes were primarily 
enriched	in	ECM	interaction	and	cell	cycle	regulation.	The	adhesion	
between	tumor	cells	and	ECM	is	closely	 related	to	 tumor	 invasion	
and	 metastasis.	 ECM	 is	 a	 dense	 network	 composed	 of	 structural	
proteins, adaptor proteins, proteoglycan, and enzymes, which ex-
ists in all tissue and mainly provide biochemical and structural sup-
port for tissue homeostasis. It provides support for cell adhesion 
and migration and regulates cell cycle progression.29,30	 ECM	 and	
its receptor integrin play a crucial role in tumor growth, invasion, 
metastasis,	and	drug	resistance.	As	previously	described,	exosomes	
secreted by tumors express different integrin subtypes on their 
membranes, which are selectively absorbed by distant non- tumor 
cells in a tissue- specific manner, laying a preliminary foundation for 
tumor metastasis.31 Gan et al.32	uncovered	that	ECM	1	accelerates	
cell metastasis and glycolysis metabolism via inducing integrin β4/
FAK/SOX2/HIF-	1α signaling pathway. Du et al.33 explored that in-
tegrin α3 activates c- Src/extracellular signal in cervical cancer to 
modulate protein kinase/adherent plaque kinase signaling pathway 
and enhances tumor metastasis and angiogenesis, resulting in the 
unsatisfactory prognosis in patients with cervical cancer. Salemi 
et al.34 suggested that integrin α2β1 inhibits cell cycle to promote 
cell	apoptosis	and	repress	epithelial–	mesenchymal	 transformation,	
so as to attenuate prostate cancer cell proliferation. In a word, the 
prognostic model constructed in this study was an ITGB- related 
prognostic model, which reflected different prognostic results in 
two risk groups. The cause might be the modulation of integrin on 
ECM,	cell–	cell	interaction,	and	intercellular	signal	transmission.

In	conclusion,	we	utilized	the	NMF	method	to	group	LUAD	sam-
ples according to the expression of ITGB superfamily genes, and 
subsequently constructed and evaluated the ITGB superfamily- 
related prognostic risk assessment model based on the differentially 
expressed genes of ITGB- related subgroups. Besides, the feature 
genes screened in this study might serve as the underlying targets 
for	LUAD	targeted	therapy,	which	can	provide	references	for	LUAD	
prognosis determination. However, there are still some deficiencies 
in this study. This study is a pure retrospective study based on public 
datasets, while clinical samples should be contained to verify the 
predictive ability of the constructed model in the future.
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