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Deep-learning two-photon fiberscopy for video-
rate brain imaging in freely-behaving mice

Honghua Guan'’, Dawei Li%7, Hyeon-cheol Park?, Ang Li® 2, Yuanlei Yue® 3, Yung-Tian A. Gau?,
Ming-Jun Li® °, Dwight E. Bergles® #®, Hui Lu? & Xingde Li@ 126

Scanning two-photon (2P) fiberscopes (also termed endomicroscopes) have the potential to
transform our understanding of how discrete neural activity patterns result in distinct
behaviors, as they are capable of high resolution, sub cellular imaging yet small and light
enough to allow free movement of mice. However, their acquisition speed is currently sub-
optimal, due to opto-mechanical size and weight constraints. Here we demonstrate sig-
nificant advances in 2P fiberscopy that allow high resolution imaging at high speeds (26 fps)
in freely-behaving mice. A high-speed scanner and a down-sampling scheme are developed
to boost imaging speed, and a deep learning (DL) algorithm is introduced to recover image
quality. For the DL algorithm, a two-stage learning transfer strategy is established to generate
proper training datasets for enhancing the quality of in vivo images. Implementation enables
video-rate imaging at ~26 fps, representing 10-fold improvement in imaging speed over the
previous 2P fiberscopy technology while maintaining a high signal-to-noise ratio and imaging
resolution. This DL-assisted 2P fiberscope is capable of imaging the arousal-induced activity
changes in populations of layer2/3 pyramidal neurons in the primary motor cortex of freely-
behaving mice, providing opportunities to define the neural basis of behavior.
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stablishing correlations between the activity of a population

of neurons with discreet animal behaviors is a critical step in

understanding how the brain encodes motor output. A
device capable of real-time activity imaging of a group of neurons
with subcellular resolution holds promise for elucidating such
correlations. Multiphoton microscopy, along with genetically
encoded fluorescent calcium indicators (such as GCaMP), has
become essential methods for studying neural circuit dynamics in
the brain!2. In vivo two-photon imaging generally requires head-
fixation under the microscope objective®. Such constraint and
associated physical stress inevitably influence neuronal activity
and preclude many behavioral assays that require freely moving
animals, such as elevated plus maze and social interaction tests?.
Flexible, compact 2P fiberscopy techniques have been developed
by several groups, including ours®~10, which can potentially allow
continuous imaging of brain activity in a freely behaving con-
figuration over a long period of time!!12. In our compact fiber-
optic scanning 2P fiberscope, the key design elements include a
single customized double-clad fiber, a miniature piezoelectric
actuator, and a super-achromatic micro objective lens!3. For
functional neuroimaging, the probe is attached to the animal’s
head. It focuses the femtosecond excitation light to the target
brain region, scans the focused beam across the field of view
(FOV), and collects the 2P fluorescence from the target to form
an image.

However, the ultra-compact design of the imaging probe, limits
the choices of beam scanner and imaging optics, and conse-
quently limits the imaging frame rate (usually <5 fps)’. The
suboptimal frame rate makes 2P fiberscopy subject to motion
artifacts induced by normal high-frequency physiological activity
(such as heartbeat at 8-13 Hz)!41>. An increased imaging frame
rate is highly desirable to mitigate motion artifacts!®, which
becomes more critical when imaging freely moving animals. In
addition, for spiking activities analysis, a high imaging frame rate
can significantly improve the accuracy of the resulted firing
rate!”, particularly when using fast calcium indicators such as
GCaMPéf. Furthermore, a higher imaging frame rate (>15 Hz) is
usually required when exploring the dendritic dynamics in living
brain!®. Accordingly, it is essential to improve the frame rate of
the 2P fiberscopy technology for functional neuroimaging.

The frame rate of a conventional flying-spot, raster-scanning
imaging system is determined by the scanning speed (line scan-
ning rate) divided by the scanning density (line density). The
same applies to spiral scanning fiberscopes, where the scanning
speed is defined by the number of spirals per second (i.e., the
resonant frequency of the fiber-optic scanner®~713) and the
scanning density is defined by the number of spirals per frame
(i.e., the sampling density along the radial direction) (see Meth-
ods -> Scanning 2P fiberscope system for details). The frame rate
can be improved by increasing the scanning speed or/and
decreasing the radial scanning density. However, an increased
frame rate inevitably affects image quality, as a higher scanning
speed sacrifices the signal-to-noise ratio (SNR) due to a shorter
pixel dwelling time, and a lower scanning density comprises the
imaging resolution.

Here we present a deep neural network (DNN) based solution
that significantly improves the imaging frame rate with minimal
loss in image quality. This innovation enables 10-fold imaging
frame-rate enhancement of fiberscopy, making it feasible to
perform vide-rate (26 fps) 2P imaging in freely moving mice with
excellent imaging resolution and SNR that were previously not
possible. To determine the proper training dataset for high-speed
in vivo imaging data, we utilized a two-stage learning transfer
strategy to manually generate the intermediate training input and
ground truth. Using this DNN-assisted method, high SNR and
high imaging resolution neuronal images could be recovered from

low SNR, low imaging resolution images acquired at much higher
frame rates.

Results

This work aims to accelerate 2P fiberscopy imaging without
degrading imaging quality. In pursuit of this goal, we introduced
a DNN-based strategy (see Methods -> Deep neural network
(DNN) for details) to recover the associated SNR decrease and
imaging resolution loss induced by a high frame rate. We adopted
the pix2pix framework derived from a conditional generative
adversarial network (cGAN)1%20, The method involves a training
stage and an inference stage, as shown in Fig. 1. The training stage
optimizes the desired DNN model from a given training dataset,
which includes the input images and the ground truth (Fig. 1a).
During training, the optimizer discriminates the differences
between the generated output and the ground truth defined by an
objective function and then updates the DNN to minimize the
differences. After a sufficient number of iterations, the trained
network can be used to enhance the quality of new images
(Fig. 1b).

The performance of a DNN is highly dependent on the training
datasets, especially the quality of the ground truth. The ideal
ground truth images for 2P fiberscopy are those with high SNR
and high pixel density (or imaging resolution). For ex vivo
imaging, this can be achieved by using frame averaging and high-
density sampling, which are commonly adopted when applying
deep learning to optical microscopy for biological sample imaging
(ex vivo)?122, For in vivo imaging, particularly in freely moving
mice, however, we cannot obtain the ideal ground truth, where
frame averaging is generally not feasible due to motion artifacts
and the dynamic nature of neuron activities.

To address the problem, we introduced two-stage neural net-
works with the network at the first stage (DNN-1) helping pro-
duce approximate ground truth which could be used for training
the second stage DNN (DNN-2). The flow chart of our method is
shown in Fig. 1c: In the first step, we trained a denoising network
(DNN-1) using an ex vivo imaging dataset. Here, an intentionally
decreased scanning speed and frame averaging were adopted to
optimize the SNR of ground truth. We then applied the trained
DNN-1 to an in vivo imaging dataset acquired from three head-
fixed mice over different FOVs to generate the approximate
ground truth for the second neural network (DNN-2). In the
second step, the same in vivo dataset was digitally down-sampled
(mimicking images acquired at a low scanning or sampling
density) to serve as the training input. By paring these input
images with the ground truth generated by DNN-1, we were able
to train DNN-2 for both the denoising and inpainting functions
(where inpainting aimed to recover the imaging resolution for the
images of low sampling density). This trained DNN-2 was then
used for enhancing the high-speed, in vivo imaging dataset col-
lected from two different freely behaving mice over different
FOVs. It is noted that a given DNN-2 corresponds to one scan-
ning density. We need to train the DNN-2 separately for images
collected with a different scanning density.

To train DNN-1, we used the 2P fiberscope to collect a training
image set from two ex vivo GFP-immunostained brain slices
(from two mice) over 100 FOVs (denoted by training set I,
acquired at a frame rate of ~2.0 fps). The images were acquired at
a scanning speed of 1650 spirals/sec and a scanning density of
512 spirals/frame (~3X Nyquist density). For each FOV, multiple
frames were collected. We then randomly selected one frame as
input for DNN-1 and pared it with the 10-frame- averaged image
as the corresponding ground truth (equivalent to a slow-scanning
speed of 165 spirals/sec, 0.2 fps). Finally, noise was added to the
input images to mimic different imaging conditions. The trained
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Fig. 1 Overview of the deep neural network (DNN) based method for video-rate 2P fiberscopy. a Training stage. b Inference stage. ¢ Workflow of the

two-stage DNNs' training protocol. GT ground truth.

DNN-1 then served as a customized denoiser to improve the SNR
of two-photon images collected in vivo with the animal head fixed
for generating the ground truth for DNN-2 as described in
detail below.

To train DNN-2, we collected images (denoted by training set
II) from head-fixed awake mice that expressed calcium indicator
GCaMP6m in motor cortex neurons (see Methods -> In vivo
imaging for details) at a frame rate of ~3.3 fps with a higher
scanning speed (3,360 spirals/sec) but at the same scanning or
sampling density (512 spirals/frame) as training set L. It is noted
that the head-fixed configuration ensured less motion artifacts
than freely moving during data acquisition, and it was more
suitable for acquiring training dataset. We enhanced the SNR of
training set II by using the trained DNN-1, and the output (i.e.,
the denoised training set II) served as the intermediate ground
truth. Next, for each frame in training set II, we digitally down-
sampled the image by decreasing the number of spirals per frame
(i.e., down-sampling along the radial direction). The down-
sampled images served as the intermediate input, which along
with the corresponding intermediate ground truth formed the
training dataset for DNN-2. The as-trained DNN-2 aimed to
rescue both the SNR and imaging resolution for images collected
in vivo at a higher frame rate (i.e., with a higher scanning speed
and a lower scanning density). To confirm the feasibility of the
trained DNN-2, we manually selected and labeled a set of in vivo
images collected from freely behaving mice at a high scanning
density (512 spirals/frame) as the testing dataset (see Supple-
mentary Fig. 1 for more details) and quantitatively compared the
quality of the DNN-2 output images with their corresponding
in vivo ground truth. The results confirm that the as-trained
DNN-2 works properly when applied to in vivo freely behaving
images with a low scanning density. The trained DNN-2 enabled
the detection of fine features that were consistent with the ground
truth but difficult to resolve in the original images.

Performance characterization of DNN-1 for SNR enhancement
of in vivo 2P imaging. We first evaluated the performance of the
trained network DNN-1 for improving image SNR by applying the
network to testing set I (collected from head-fixed GCaMP6m-
expressing mice with an imaging speed of 3,360 spirals/sec and an
imaging density of 512 spirals/frame). Figure 2a shows a repre-
sentative image and its corresponding DNN-1 output (Fig. 2c).
The output image exhibits clearly discernable somas and dendrites
with its background noise significantly suppressed. For example,
the SNR of the selected neuron (Fig. 2b, d) increases from 5.18 to
9.78 dB (see Methods -> Data processing for details) after DNN-1
enhancement (see Supplementary Video 1 for details). Besides
image quality improvement, it is critical to assess the potential
impact of DNN-1 on the dynamic neuronal GCaMP signals. We
thus identified 17 representative active neurons within a given
FOV (Fig. 2e) using a well-established post-processing pipeline?3
and compared the normalized time-dependent GCaMP fluores-
cence intensities (AF/F) of the neurons before and after DNN-1
enhancement (Fig. 2f). Results show that the calcium signal
derived from the DNN-1 output was highly consistent with the
input. We also quantified the differences of the GCaMP fluores-
cence signals for each neuron between the raw and DNN-1 output
images. This DNN-induced signal error was calculated by nor-
malized root-mean-square error (NRMSE, see Methods -> Data
processing for details), and we found that the average discrepancy
was around 3% (Fig. 2g). This confirms that the introduction of
DNN does not modify the temporal neural dynamics, which is
critical for accurate functional brain imaging.

It is worth mentioning that the primary purpose of DNN-1 was
to restore “neuronal” features from noisy backgrounds. Besides
denoising, DNN-1 also performed the end-to-end inverse
mapping to preserve sharp edges and fine structural details
rather than over-smooth textures. To achieve optimal image
restoration, the training and testing dataset should share the same
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Fig. 2 Performance of DNN-1 for SNR enhancement of in vivo head-fixed 2P fiberscopy images. a Representative input image along with the magnified
view (b) of the selected region. Images were acquired at a scanning speed of 3,360 spirals/sec and an imaging density of 512 spirals/frame.

¢ Corresponding DNN-T output image of (a) along with the magnified view (d). e Neuron identification by using a post-processing pipeline. f Normalized
time-dependent fluorescence intensity (AF/F) of a selected neuron before and after DNN-1 enhancement. g Dynamic signal fidelity measured by
normalized root-mean-square error (NRMSE) for each neuron. The differences of calcium signals between the DNN-1 output and the raw data are small

(with an average discrepancy around 3%). Scale bars in (a, €): 20 um.

specific image features or cell types, which include soma,
associated axons, and dendrites in this work. Applying a trained
DNN-1 to images of an unknown cell type would generate
unwanted artifacts, and one example is presented in Supplemen-
tary Figure 2.

Performance characterization of DNN-2 for resolution recov-
ery with down-sampled data. As it is not feasible to define the
proper ground truth of a sufficient number (e.g., 100 or more) of
independent images for high-speed functional imaging in freely
behaving animals, we introduced a two-stage learning transfer
strategy to generate the intermediate training dataset and devel-
oped a final network (DNN-2). The DNN-2 enabled imaging
resolution recovery for the down-sampled images, compensating
for the side effects induced by lower scanning densities. In
addition, the DNN-2 inherited the function of SNR improvement
from DNN-1; thus DNN-2 was trained to achieve (1) image
denoising and (2) pixel inpainting (up-sampling) simultaneously.
To quantify the reconstruction accuracy for spatial structural
details at different scanning densities, we separately trained the
DNN-2 network with in vivo images of different (low) scanning
densities. These images were obtained by digitally down-sampling
the images in the previous training set II (acquired from head-
fixed mice in vivo with a scanning speed 3360 spirals/s and a
scanning density of 512 spirals/frame), with a different down-
sampling factor M along the radial direction. For example, M =2
means a scanning density of 256 spirals/frame, M =4 means
128 spirals/frame, and so on. The corresponding testing set II
(Fig. 3a, acquired under the same conditions as the previous
training set II but from different mice) was first enhanced for
SNR by the trained DNN-1, and the denoised images (Fig. 3b)
were defined as the reference for assessing reconstruction

accuracy. We then spatially down-sampled the images in the
testing set II along the radial direction by a factor of M (Fig. 3c,
top row) and applied the corresponding trained DNN-2 (with the
same M-factor) to these down-sampled images. The DNN-2
output images exhibit continuous and clearly resolved neuronal
structures (Fig. 3c, bottom row) in close agreement with the
reference image (see Supplementary Video 2 for details). The
results reveal that fine spatial details can be recovered from a
reduced number of pixels of the original images with the help of
DNNs, suggesting that images can be acquired at a much lower
scanning density, providing a significant boost for the imaging
frame rate (e.g., by a factor of M). Notably, the capability of
DNN-2 for recovering the fine spatial details deteriorates as the
down-sampling factor M increases (Fig. 3d), implying a trade-off
between the reconstructed image quality and scanning density (or
imaging frame rate). To quantify this trade-off, we calculated the
multi-scale structure similarity (MS-SSIM)?* index and the nor-
malized root mean square error (NRMSE) of the reconstruction
against the reference image (Fig. 3e). We found that for a down-
sampling factor M < 8 (corresponding to a data acquisition frame
rate of ~26 fps), the reconstruction for spatial details remains
accurate with an MS-SSIM better than 85% and an NRMSE <3%.

In addition, we introduced another protocol to train the DNN-
2. We initialed the generator and discriminator of DNN-2 with
the pre-trained weights (inherited from DNN-1, denoted as
“Pretrain”) rather than random weights (denoted as “Scratch”
which was used in the above DNN-2 training). Compared with
“Scratch” scheme, the “Pretrain” configuration had faster
convergence at the beginning. The two training methods were
similar to each other after a certain number of epochs (~40) and
the loss curves became nearly identical (see Supplementary Fig. 3
for more details). If the training dataset gets significantly larger
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bars). The measurements were made over the whole image stack with a total number of images n=800. Scale bars in (a, b): 20 um.

and the computation cost becomes the major constraint, the
“Pretrain” scheme will be an effective alternative.

Video-rate recording of brain activity in freely behaving mice.
To assess the performance of this DNN-based strategy, we per-
formed functional imaging experiments in freely behaving mice.
The mice used to perform freely moving imaging were different
from those head-fixed ones used for collecting the in vivo data for
training DNN-2. The schematic of the imaging setup is shown in
Fig. 4a (see Methods -> In vivo imaging for details). To mitigate
interference of normal physiological activity, such as respiration
and heartbeat (~10 Hz in conscious mice)?°, we set the down-
sampling factor M to 8 during real-time recording (corresponding
to a scanning density of 64 spirals/frame with a given scanning
speed of 3360 spirals/sec), and acquired 2P images at ~26 fps,
providing a good compromise between image quality and frame
rate (Fig. 3e). Comparing to the raw images, the output images
from the trained DNN-2 exhibited improved SNR and imaging
resolution (Fig. 4b, c). Figure 4d shows three representative time-
series images where different neurons were active at different
times (see Supplementary Video 3 for details). With our DNN-
based method, neuron somas and dendritic structures could be
clearly recognized during video rate image acquisition After
DNN-2 enhancement, we identified and segmented 21 active
neurons (Fig. 4e) using the post-processing pipeline, the calcium
dynamics for which are plotted in Fig. 4f. In addition, calcium
changes within each neuron could also be tracked at high tem-
poral resolution. As shown in Fig. 4g, h, the transition of neurons
from quiescence (baseline) to active states could be resolved with
a temporal resolution of ~38 ms, suggesting the DNN-assisted 2P
fiberscopy system is suitable for in vivo imaging of faster calcium

indicators such as GCaMP6f,26. Thus, this approach enhances
the temporal resolving capability of 2P fiberscopy, allowing
neuronal activity to be monitored under physiological conditions
in freely moving animals, providing a more accurate measure of
cellular dynamics during discrete behaviors.

Discussion

Decoding the neural activity patterns that underlie behavior
remains a central goal in neuroscience. Here, we describe
advances in 2P fiberscopy that enable high-speed (~26 fps)
imaging in freely behaving animals, providing the means to assess
neural activity in defined circuits as animals engage in normative
behaviors. Video-rate imaging was achieved by increasing the
scanning speed and decreasing the scanning density during data
acquisition in conjunction with the assistance of DNNs. Com-
pared with existing 2P fiberscopyconfigurations®”13, we
increased the frame rate by over 10-fold without compromising
signal-to-noise ratio and imaging resolution. This significant
improvement in frame rate overcomes a critical bottleneck of 2P
fiberscopy and enables it as a promising tool for functional neural
imaging studies.

Our DNNs achieved simultaneous image denoising and pixel
inpainting. For image denoising, many classical digital image pro-
cessing methods are widely used and have made great contributions,
such as non-local mean filter?”, anisotropic filtering?3, and wavelet-
based methods?®. Usually, these methods require prior knowledge
about the noise model of the images and a rational estimate about
the noise level. In comparison, deep learning-based methods are
advantageous. DNN can effectively figure out the system noise
distribution and serve as a highly customized denoiser without the
need for complex analyses of the noise model. Therefore, DNN
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shows better performance, especially when processing some fine
structures. One example of qualitative and quantitative comparisons
between some traditional imaging denoising methods and our
reported DNN-1 is shown in Supplementary Fig. 4 and Supple-
mentary Table 1. Image inpainting is another area where DNN
prevails®®31. Given similar morphological characteristics of neurons,
Nyquist sampling of the entire FOV is unnecessary. With only a
fraction of the image sampled, DNN can figure out the rest of the
pixels based upon its prior knowledge (training). While there is a
common concern about the fidelity of DL-based image processing
methods, we have demonstrated that our proposed method is very
unlikely to eliminate features/events or create features/events that do
not physically exist in the raw data, and one representative com-
parative study on features in the raw image and the corresponding
DNN-2 processed image is shown in Supplementary Fig. 5.

The DL-based method not only improves the visual quality of
the images, but also facilitates calcium dynamics analysis. One
example is shown in Supplementary Fig. 6. The results demon-
strate that the DNN-2 processed images yield better accuracy and
sensitivity for segmenting neurons with a weak SNR. Another
example is shown in Supplementary Fig. 7. Owing to improved
image quality (SNR and spatial imaging resolution), the DNN-2
processed images lead to much improved segmentation of fine
structures such as the dendrites. In addition, motion correction
would enjoy an improved image SNR32, which can be particularly
critical when imaging freely behaving animals.

The performance of DNN depends on the quality of the
training dataset, especially the ground truth. The critical challenge
is to generate a proper training dataset suited for high-speed
functional imaging in freely behaving mice. Since the ideal
ground truth under this imaging condition cannot be obtained
directly, one simplistic choice is the frame-averaged ex vivo
images as the ground truth. However, there is a big gap between
low-speed high-scanning density ex vivo imaging and high-speed
low scanning density in vivo imaging. If we only train the DNN
with the ex vivo images to perform simultaneous image denoising
and pixel inpainting directly (i.e., following a single-stage Pix2Pix
training procedure!?), the DNN outputs become suboptimal
when applying the trained DNN to in vivo images collected from
freely moving mice. One example is shown in Supplementary
Fig. 8. The results demonstrate that our proposed two-stage
training procedure is a more feasible solution to handle high-
speed in vivo images. In this application, the transferability of the
DNN is based on the structural similarity for given cell types
(such as neurons, axons, and dendrites) under ex vivo and in vivo
conditions. This two-stage DNN-based method can be potentially
applicable and valuable to other imaging modalities for increasing
the frame rate while avoiding image quality loss.

The current imaging frame rate (~26 fps) corresponds to about
30 ms per frame. This frame rate is clearly not fast enough for
direct assessment of action potential which would require a time
resolution at the millisecond level (corresponding to a frame rate
of several hundred frames/second). The current imaging speed of
2P fiberscopy is physically limited by the scanner. A faster
scanner, combined with our deep learning-based approach, may
increase the frame rate beyond that achieved here. A further
improvement in temporal resolution would enable fast optical
recording of sensory-evoked dendritic calcium signals®3, theta
oscillations in individual neurons34 and fast-spike in parvalbumin

(PV)-positive interneurons in vivo32,

Methods

Ethical statement. All the animal housing and experimentation procedures were
performed under the standards of humane animal care described in the National
Institutes of Health Guide for the Care and Use of Laboratory Animals with

protocols approved by the Institutional Animal Care and Use Committees at the
George Washington University and the Johns Hopkins University.

Scanning 2P fiberscopy system. The details of our 2P fiberscopy system have
been reported previously>~’. In essence, a femtosecond excitation beam at 920 nm
from a Ti:sapphire laser was pre-chirped by a pair of gratings and then coupled
into the single-mode core of the double-clad fiber (DCF) used in the fiberscope
with an output power set at ~30 mW. The fluorescence signal collected by the
micro-objective lens at the distal end of the fiberscope was passed through the DCF
core and inner clad to the proximal end and then directed to a photomultiplier tube
(PMT). 2D excitation beam scanning was performed by a piezoelectrically actuated
fiber-optic scanner. Amplitude-modulated sine and cosine waveforms with a fre-
quency close to the mechanical resonant frequency of the fiber-optic cantilever
were applied to the two orthogonal pairs of the electrodes to produce an open-close
spiral scanning pattern. The entire assembled probe weighed 0.6 g with diameter of
2.8 mm. The imaging system schematic is shown in Supplementary Fig. 9.

The frame rate of fiberscopy imaging equals to the duty ratio (usually ~50-80%)
times the scanning speed (the number of spirals scanned by the fiber cantilever
per second) and then divided by the scanning density (the number of spirals per
frame). The scanning speed determines the data acquisition time for one spiral,
which in turn governs the image signal-to-noise ratio. The scanning density
determines the pixel number along the radial direction per frame, and a higher
scanning density means a smaller separation between two adjacent spiral scans,
which impacts the imaging resolution. It is noted that the pixel number along the
circumferential direction (i.e., the pixel number per spiral) is only controlled by the
sampling rate of the data acquisition hardware, which does not affect the imaging
speed or frame rate.

Ex vivo imaging

Animals. We used C57BL/6]-Tg(Thyl-GCaMP6f)GP5.5Dkim/] (RRID:
IMSR_JAX:024276) mice of 20- to 24-week old for this experiment. Mice were
maintained on a 12 h light/dark cycle, and food and water were provided ad
libitum.

Immunofluorescence. We intraperitoneally administered mice with a euthanasia
dose of pentobarbital (100 mg/kg body weight). Once in deep anesthesia, animals
were perfused with phosphate buffer saline (PBS) followed by cold 4% paraf-
ormaldehyde (PFA). Brains were harvested, post-fixed in 4% PFA at 4 °C over-
night, cryoprotected in 30% sucrose, and sectioned into 50 pm thick slices on a
freezing microtome (Leica SM 2010R). Free-floating sections were washed in PBS,
incubated for 1h in a blocking solution (0.3% Triton X-100 & 5% NDS), and kept
at 4 °C overnight with primary antibodies (chicken anti-GFP, Aves Labs, 1:4000) in
0.3% Triton X-100 and 5% NDS. On the day after, sections were washed with PBS,
incubated for 2 h at room temperature with secondary antibodies (donkey anti-
chicken, Alexa Fluor 488, 1:2000) in 5% NDS, washed again in PBS, mounted on
slides and coverslip sealed with mounting medium (Aqua-Poly/Mount, Poly-
sciences #18606-20)3.

Ex vivo imaging. The immunostained sample slide was immersed in the deionized
water through entire imaging. The 2P probe was mounted on an XYZ linear stage
and then gently positioned against the cover glass of the sample slide. Once the
focal plane was determined, the probe was moved laterally (in the X-Y plane) to
search for different FOVs and collected imaging data.

In vivo imaging

Animals. We used male mice carrying Camk2-cre allele on the C57/B6 for this
experiment. The strain was obtained from the Jackson Laboratory (JAX#005359).
Animals were given ad libitum access to standard mouse chow and water, housed 4
to 5 per cage in a controlled room of temperature (23 + 1 °C) and humidity

(50 +10%) with a 12 hr light-dark cycle.

Cranial window preparation. At the age of 4-week old, the mice were deeply
anesthetized and then locked onto a stereotaxic platform. After prepping, a 4 mm-
wide craniotomy was drilled over the motor cortex using a high-performance
surgical drill. The center of the craniotomy was ~1.6 mm lateral to the bregma’’.
About 300 nL of AAV/D]J-flex-GCaMP6m virus was injected into the forelimb area
of the right motor cortex (1.5 mm lateral and 0.3 mm anterior to the bregma and
300 um in depth, according to previous studies?$3%) via a 1.0 mm O.D. glass
microneedle with a 10-20 um diameter tip attached to a Nanoject microinjector
pump (Nanoject II, Drummond). A 100 um-thick glass coverslip was then placed
over the exposed brain and sealed to the skull with vet glue. A 1-g titanium head
restraining bar was attached to the head with “cold cure” denture material for later
attachment of the miniature imaging probe. The transgene expression was checked
3 weeks after the initial surgery with a tabletop two-photon microscope.

In vivo imaging. After the transgene expression was successfully confirmed, the
mice would be used for 2P fiberscopy imaging in vivo. For head-fixed imaging, we
restrained the mouse by locking the head-restraining bar to a home-made platform
and the 2P probe was gently placed against the cranial window surface. We used an
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external 3-D translation stage to adjust the position of the probe for freely behaving
imaging, the imaging probe was secured to the head restraining bar through a
customized adaptor. After a suitable FOV was identified, the mouse was released
and allowed to walk/behave freely within a home-built imaging platform (Fig. 4a).
One camera (BFLY-PGE-12A2M-CS, FLIR) was set above the platform to obtain
the top view of the freely behaving mouse in synchronization with 2P imaging.

Data processing. We used Image] and MATLAB® for image processing, including
frame averaging and color mapping. We applied a non-rigid registration method
(NoRMCorre®?) to correct motion artifacts before processing the in vivo images
and a well-established post-processing pipeline (CalmAn?3) to recognize/segment
neuron somas for dynamic signal analysis. It is noted that the motion correction
was not performed or needed for DNN training and testing. It was only used when
we analyzed the neuronal calcium signals. Here calcium signals were presented as
the time-dependent GCaMP fluorescence intensity. It was calculated by averaging
over the whole ROI for a given neuron soma. After background fluorescence
subtraction, the dynamic fluorescence trace was normalized to the maximum value
and expressed as the relative fluorescence change (AF/F). The signal-to-noise ratio
(SNR) for a given neuron was defined as:

_ Psignal
SNR = 10log,, ) (1)

noise

1 was the average intensity for a given neuron and P,

where Py, hoise Was the average
background noise adjacent to the neuron. To quantify the calcium signal fidelity
after DNN processing, we calculated the normalized root mean square error

(NRMSE) between the calcium signals of DNN output image and the input image

(raw data) for a given active neuron, and the NRMSE was defined as:
RMSE

/S (F@) — Fy(v)
N S (2

max(F) — min(F) = max(F) — min(F)’

NRMSE“CUTUH =
where F(t) is the normalized AF/F for a given neuron at time ¢ (i.e, the £ frame of the
time-series imaging dataset) in the DNN output image, F(t) is the corresponding input
(raw data) AF/F, and T represents the total number of frames. The expression
max(F) — min(F) represents the maximum range of AF/F for the given neuron. To
assess the performance of the DNNs for image quality enhancement, we calculated the
multi-scale structure similarity (MS-SSIM) index*0 and the normalized root mean
square error (NRMSE) between the DNN output images and the corresponding ground
truth or reference images. Here the NRMSE for a given image frame was defined as:

SRS UGK) — ToGik)°
mn

max(I) — min(I)

RMSE, ...
NRMSE, . = %=
™3 max(I) — min(I)

(€)

where I(j, k) is the intensity at the position (j, k) in a given DNN-enhanced image and
I,(j, k) is the intensity at the position (j, k) in the ground truth (or reference) image.
The expression max(I) — min(I) represents the range of intensity for the given DNN-
enhanced image. Once the NRMSE of the entire testing set was calculated, their mean
and standard deviation were computed and plotted in Fig. 3e.

Deep neural network (DNN). In this work, we adopted a deep neural network
(DNN) based on conditional generative adversarial network (cGAN)!%20, In this
framework, two sub-networks were used simultaneously: a generative network
learned how to enhance the SNR for 8-bit 512 x 512 2D monochrome images and a
discriminative network returned an adversarial loss between the enhanced image
and the corresponding ground truth?{. Specifically, we aimed to optimize the
following objective function:

mGin mDaX ‘ccGAN = Ex‘y[log D(X, Y)] + Ey‘z[log(l - D(G(Z., Y)»)’)] (4)

Here x represents the ground truth, y represents the input images (e.g., high frame
rate images), and z represents a random noise vector that works together with the
input images to generate output images G(z, y). The discriminator D(x) takes an
input that can be either a ground truth image x or a “fake” image “generated” by
the generator G(z, y) and returns the probability of the input to be “true” with a
conditional input of y. E, [+] represents the mean value of logD(x, y) over the
entire training dataset (i.e,, the ground truth and the input images), and E, ,[+]
represents mean value of log(1 — D(G(z, y), y) over all the “fake” images generated
by G(z,). In the generator design, we adapted a U-Net structure to improve the
imaging resolution for the input images based on the ground truth*!. In the dis-
criminator design, we restricted both fine and coarse spatial structural information
by combining an LI norm (least absolute deviations) and a convolution neural
network (CNN)-based PatchGAN structure*!. The combining weights and the
patch scale were tuned as a hyperparameter#2. We followed the standard procedure
to update the parameters for the DNN*3 and adopting the Adam solver during
optimization#. To test the training stability, we conducted five separate training
cycles for DNN-1 and DNN-2 with different initializations, and the results con-
firmed that the training was stable (see Supplementary Table 2 and Supplementary
Fig. 10 for details).

The program was implemented using Python v3.6, and the DNN was
implemented using Pycharm (2020.2.3) and torch (0.4.1). We used a PC with an

Intel Core i7-8700K CPU 3.70 GHz (6 cores), 32 GB system RAM, and an NVIDIA
GPU (GeForce RTX 2080 Ti, 11 GB RAM), running a Microsoft Windows 10
professional operating system. Other data processing was performed by our
customized codes, which were implemented using MATLAB® (R2020a,
Mathworks). It took about 205 min to train each DNN model (with a total of 500
frames for both DNN-1 and DNN-2, 512 x 512 pixels/frame, 8 bits/pixel, and a
total of 200 training epochs). Motion correction took about 5 min for 2000 frames
(512 x 512 pixels/frame, 8 bits/pixel) on the same computer platform.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used and reported in this study have been deposited in the Figshare (https:/
doi.org/10.6084/m9.figshare.19193792).

Code availability

The deep-learning platform used in this study was adapted from a publicly available
repository: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix. We
recommend interested readers use the most updated pix2pix routine for compatibility
concern. Our customized source codes are also available upon request by sending an
email to jhu.bme.bit@gmail.com.
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