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A B S T R A C T

Background: Identifying which individuals will develop tuberculosis (TB) remains an unresolved problem due
to few animal models and computational approaches that effectively address its heterogeneity. To meet these
shortcomings, we show that Diversity Outbred (DO) mice reflect human-like genetic diversity and develop
human-like lung granulomas when infected withMycobacterium tuberculosis (M.tb) .
Methods: Following M.tb infection, a “supersusceptible” phenotype develops in approximately one-third of
DO mice characterized by rapid morbidity and mortality within 8 weeks. These supersusceptible DO mice
develop lung granulomas patterns akin to humans. This led us to utilize deep learning to identify supersus-
ceptibility from hematoxylin & eosin (H&E) lung tissue sections utilizing only clinical outcomes (supersus-
ceptible or not-supersusceptible) as labels.
Findings: The proposed machine learning model diagnosed supersusceptibility with high accuracy (91.50 §
4.68%) compared to two expert pathologists using H&E stained lung sections (94.95% and 94.58%). Two non-
experts used the imaging biomarker to diagnose supersusceptibility with high accuracy (88.25% and 87.95%)
and agreement (96.00%). A board-certified veterinary pathologist (GB) examined the imaging biomarker and
determined the model was making diagnostic decisions using a form of granuloma necrosis (karyorrhectic
and pyknotic nuclear debris). This was corroborated by one other board-certified veterinary pathologist.
Finally, the imaging biomarker was quantified, providing a novel means to convert visual patterns within
granulomas to data suitable for statistical analyses.
Implications: Overall, our results have translatable implication to improve our understanding of TB and also to
the broader field of computational pathology in which clinical outcomes alone can drive automatic identifica-
tion of interpretable imaging biomarkers, knowledge discovery, and validation of existing clinical
biomarkers.
Funding: National Institutes of Health and American Lung Association.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Tuberculosis (TB) is an important global disease. Over 2 billion
people are currently infected with Mycobacterium tuberculosis (M.tb),
the bacterium that causes TB. In 2018, 10 million people were diag-
nosed with TB and 1.5 million people died, surpassing mortality due
to HIV/AIDS [1]. More than 4000 deaths occur per day due to TB.
When infected with M.tb, those susceptible develop lung disease,
called active pulmonary TB. Clinical symptoms are fever, cough, pro-
gressive weight loss and emaciation, due to lung inflammation,
necrosis, and cavitation. Death occurs in 40-70% of untreated cases
[2,3]. Fortunately, most (90%) humans are resistant to M.tb and, if
infected, survive with latent M.tb infection (LTBI) for decades.
Although a small fraction of LTBI cases transition to active TB due to
acquired immunodeficiency, diabetes, and old age [4], most patients
who progress to active pulmonary TB have no known risk factors.
Additional forms of TB are recognized clinically (e.g. fulminant, mili-
ary, subclinical, and incipient) and are part of the spectrum of human
responses to M.tb. There are no consensus lung or blood biomarkers
readily available to diagnose active pulmonary TB, and examination
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Research in context

Evidence before this study

We performed literature searches for publications in English
without date restrictions. We searched PubMed for “tuberculo-
sis AND (mouse model) AND (granuloma necrosis)” on April
27th 2020. This retrieved 116 publications: 15 reviews and 101
primary research articles. Twenty-six primary articles reported
granuloma necrosis: 24 with inbred or gene-deleted mice, and
2 with humanized mice or inbred mice with human transgenes.
No primary publications except our own used Diversity Out-
bred mice. No primary research articles applied artificial intelli-
gence to H&E lung granulomas. We searched PubMed for
(tuberculosis AND (''imaging biomarker'') on April 27th 2020.
This retrieved 3 publications, all on PET or CT scans of human
TB patients and none on histology images. We searched
PubMed and arXiv for the term “(multiple instance learning)
AND (histology OR pathology OR histopathology)” on Septem-
ber 18, 2019 without date restriction and limited to English
articles. This resulted in a total of 35 articles from PubMed and
24 articles from arXiv. Six of these results applied deep multiple
instance learning to predict some diagnostic label using histo-
pathology images. All studies evaluated their methodology on
cancer histology slides, including colon, prostate, basal cell, and
breast. Five studies used weak labels for training of their mod-
els, and one required regions of interest. Five studies applied
their method to a two-class problem. Four used an attention-
based mechanism for pooling multiple instances into a slide-
level decision. All studies mentioned interpretability, but only
one study emphasized this and verified it with a pathologist.
Further, no study compared model performance to pathologist
performance or non-expert performance, verified model-iden-
tified key instances with current clinical practices, quantified
model-identified key instances, or recognized the potential for
their model to discover novel imaging biomarkers (in which tis-
sue-level annotations are impossible).

Added value of this study

Attention-based deep learning can automatically discover clini-
cally relevant histopathology-based biomarkers and can quan-
tify these features. The latter (quantification) is impossible for
human pathologists to perform and is a major strength of this
study as visual information can be extracted and quantified for
statistical analyses. Further, in supersusceptibility to M.tb infec-
tion, both our model and non-experts exceeded pathologist
performance using model-identified imaging biomarkers.

Implications of all the available evidence

Deep learning in pathology is stifled by its requirement for
meticulously curated ground truth, inefficiency in processing
large images (like in histopathology), and its “black-box”
nature. Our experiments with M.tb-infected mice implicate a
model that automatically identifies interpretable imaging bio-
markers for disease using only a diagnostic label. Not only does
our proposed machine learning model meet these shortcom-
ings of deep learning, it also more broadly paves a path for the
discovery of new interpretable imaging biomarkers and valida-
tion of current practices in clinical pathology.
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of lung tissue in sick patients is performed by in-life scans, after sur-
gical removal or at autopsy. As few animal models develop human-
like lung granulomas, there is a need for additional animal models of
TB to improve translational relevance of experimental findings.
To address needs for a better mouse model of TB, we use Diversity
Outbred (DO) mice. Each DO mouse’s genome is a heterozygous
mosaic of DNA inherited from the 8 founder strains (Supplemental
Fig. 1). The population was created by breeding together 5 Mus mus-
culus spp domesticus strains (A/J; C57BL/6J; 129S1/SvlmJ; NOD/ShiLtJ;
NZO/HILtJ) and 3 wild-derived Mus musculus strains (CAST/EiJ; PWK/
PhJ; WSB/EiJ) [5,6]. The genetic diversity of the DO population rivals
the genetic diversity of the human population and this has been
exploited to understand the genetic basis of disease [6�14]. When
infected virulent M.tb, DO responses better emulate human forms of
TB than C57BL/6, BALB/c, CBA/J, or C3HFeB/HeJ inbred strains
[2,15�19]. Analogous forms of TB in humans and DO mice are shown
below (Table 1).

Following infection with a low dose of aerosolized M.tb bacilli, DO
mice develop wide phenotype ranges in survival, weight change,
lung granuloma morphotypes, acquired immunity, and innate
inflammatory responses [20�22] that are not observed in inbred
strains including the related Collaborative Cross recombinant inbred
lines [5,6,19,22�30]. Like humans, weight loss in M.tb-infected DO
mice reflects metabolic signatures of poorly regulated inflammation
(unpublished). Also like humans, biomarker signatures from lungs
and/or serum better discriminate TB disease forms in DO mice than
single biomarkers [23]. Since those initial studies, we are now gener-
ating larger data sets to find accurate protein biomarkers for diagno-
sis and to generate testable mechanistic hypothesis. Finally, we have
applied image analysis and deep learning models to automatically
detect histologic features of M.tb-infected lungs, including granulo-
mas, cell-poor caseous necrosis, lymphocytic cuffs, macrophage-rich
regions, neutrophil-rich regions, normal lung tissue, and acid-fast
stainedM.tb [21,23,31�33].

Our extensive deep learning methods to automatically extract
information from lungs of M.tb-infected DO mice are limited by three
key factors, reflected in digital pathology more generally. First, the
vast majority of deep learning models require strong labels [34].
Strong labels can be thought of as any label that can be delineated in
an image (such as nuclei or tissue layers), whereas weak labels can
describe an image more generally (e.g. a morphological diagnosis
applied to a slide). Acquisition of strong labels or manual annotations
for digital histology images is a barrier for deep learning in computa-
tional pathology [35]. In our problem � diagnosis of supersusceptibil-
ity to M.tb � manual annotation for strong labels is not an option, as
there are no consensus histopathological features or specific cell
types indicative of supersusceptibility. Second, deep learning models
do not efficiently process the amount of data in digital histology
images, on the order trillions of pixels. In other domains, large images
can be resized [36�41]. However, in computational pathology, resiz-
ing results in information loss including individual cells, locations,
and tissue-level microanatomy (like looking at low-magnification).
As an option to resizing, tiles (small images cropped from a large digi-
tal images) are often substituted for the whole image, but this
approach still requires manual annotations (i.e. strong labels) and is
computationally expensive to process hundreds of thousands of tiles
per tissue section. Third, how deep learning models make decisions
for a histology side is not interpretable by humans and therefore diffi-
cult to trust. This ‘black-box’ nature of computational pathology lim-
its acceptance in biomedical research and medicine, as both scientists
and clinicians wish to know how decisions are made before the infor-
mation is used to inform a biological mechanism or to make an
informed clinical decision. Tools such as class activation mapping
(CAM) [42], Grad-CAM [43], and Grad-CAM++ [44] can highlight
which parts of an image contribute to what the deep learning model
“sees” but cannot be applied in computational pathology for diagno-
sis, as digitized tissue sections are too large.

To overcome these limitations, we implement an attention-based
multiple instance learning (MIL) [45] model to identify supersuscep-
tible DO mice using hematoxylin and eosin (H&E) stained lung tissue



Table 1
Analogous TB form in humans and DOmice.

Humans
(survival)

Fulminant TB
(weeks)

Pulmonary TB
(months/years)

Incipient TB
(years)

Latent TB infection
(years/decades)

Early clearance
(normal lifespan)

DOmice
(survival)

Supersusceptible
(<8 weeks)

Susceptible
(12�20 weeks)

Resistant
(>20 weeks)

Superresistant
(unknown)

Not yet observed
(unknown)
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sections. Unlike conventional deep learning in computational pathol-
ogy, the proposed machine learning model requires only weak labels,
can efficiently process the large digital histopathology images with-
out resizing, is interpretable, and automatically identifies regions in
H&E slides that contribute to its clinical label. Although similar con-
temporary studies recognize these aspect of attention [46�50], only
one study verified biological interpretability with an expert patholo-
gist [51]. Further, no studies compare model performance to patholo-
gist performance or non-expert performance, verify model-identified
key instances with current practices, or recognize the potential for
their model to discover novel imaging biomarkers. As evidenced by
this study, the field of computational pathology may benefit from the
proposed machine learning model’s interpretability, as it provides a
mechanism for the automatic discovery of novel image biomarkers as
well as validation of current practices.
2. Methods

2.1. Study design
2.1.1. Ethics statement
All procedures were approved by Tufts University’s Institutional

Animal Care and Use Committee, and the Institutional Biosafety Com-
mittee. These experiments were approved under IACUC protocols:
G2012-53; G2015-33; G2018-33. Biosafety Level 3 (BSL3) work was
approved by under IBC registrations GRIA04; GRIA10; and GRIA17.
2.1.2. Mice andM.tb infection
Female DO mice (n = 452) and female C57BL/6J inbred mice

(n = 30) from The Jackson Laboratory (Bar Harbor, ME) and were
housed with sterile caging, bedding, food, and water in the biosafety
level 3 (BSL3) facility at the New England Regional Biosafety Labora-
tory (Tufts University, Cummings School of Veterinary Medicine,
North Grafton, MA). At 8-10-weeks old, mice were infected with low
(~100 bacilli, n = 176) or very low (~20 bacilli, n = 256) dose of M.tb
strain Erdman bacilli using a CH Technologies nose-only system, as
we have described [23]. Mice were randomly assigned to cages prior
to infection. Mice were monitored for health daily, weighed thrice
weekly, and euthanized when signs of morbidity due to pulmonary
TB developed (i.e. loss of body condition, respiratory distress). All
mice were confirmed to be infected with M.tb. Age and gender
matched non-infected control DO mice (n = 40) were identically
housed, monitored, and euthanized at experimental end points. We
selected a DO sample size to provide sufficient power to detect a
quantitative trait locus that accounts for 10% of the phenotypic vari-
ance with 80% power at an alpha of 0.5 based on power simulations
presented in [13]. We also provided enough mice to have at least 140
mice in each of the susceptibility classes.
2.1.3. Genome construction of DO mice
DO haplotypes are constructed using allele calls from GigaMUGA

mouse genotyping array performed by Neogen (Lincoln, NB) and a
hidden Markov model (HMM) implemented in R software as
described [9].
2.1.4. Diagnostic categories forM.tb infected mice
The “supersusceptible” and “not-supersusceptible” ground truth

labels reflect clinical outcomes that occurred during experimental M.
tb infection. Supersusceptible DO mice developed morbidity and
mortality within 8 weeks of M.tb infection. Mice that survived 8
weeks without morbidity or mortality were “not-supersusceptible.”
These two phenotypes are robust and reproducible, as we have previ-
ously observed [21,22]. Mice were excluded if they were euthanized
due to non-TB disease based on clinical examination and necropsy
findings. The result total number of supersusceptible mice was 148,
and the total number of not-supersusceptible mice was 266.

2.1.5. Slide preparation and digital images
After euthanasia, lungs from each mouse were inflated and fixed

in 10% neutral buffered formalin, processed and embedded in paraf-
fin, sectioned at 5mm and stained with hematoxylin & eosin (H&E) at
Tufts University, Cummings School of Veterinary Medicine, Core His-
tology Laboratory (North Grafton, MA). H&E stained glass slides were
magnified 400 times and digitally scanned by Aperio ScanScope at
0.23 microns per pixel (The Ohio State University’s Comparative
Pathology and Mouse Phenotyping Shared Resources Core Facility,
Columbus, OH). The median image size was 153,384 £ 82,575 pixels.
A flow diagram for the study design can be found in Fig. 1a.

2.2. Model description

2.2.1. Multiple Instance Learning (MIL)
MIL is a machine learning method where weak labels are assigned

to collections (called bags) rather than individual examples (called
instances) like in conventional machine learning. Classification by
MIL is performed at the bag level and not the single instance level
like in supervised learning [52]. The underlying assumption is that
one class (“positive”) shares features with a second class (“negative”)
and possesses features unique to itself. Here, the “bags” are the whole
slides with one of two possible ground truth class labels � supersus-
ceptible and not-supersusceptible. The “instances” are the unanno-
tated, small images sampled from H&E-stained lung sections. The
MIL paradigm applies because lungs from M.tb-infected supersuscep-
tible DO mice share microscopic features with lungs of mice not-
supersusceptible (e.g., regions of normal lung tissue, lymphocytes,
plasma cells, macrophages) and also contain unique features (e.g.
large necrotizing granulomas infiltrated by many neutrophils).

2.2.2. Attention-based pooling
The attention-based pooling mechanism [45] automatically learns

to dynamically weight embedded instances into a bag-level feature
vector that is subsequently classified. For example, if we have a single
mouse, we take images sampled (instances) from its digital H&E tis-
sue section (bag) and extract features from each, forming instance
embeddings. A weight is automatically computed for each embedded
instance through the attention-based pooling mechanism, then a
weighted sum combines them into a single, bag-level instance, corre-
sponding slide-level embedding. Classification is then performed on
this bag-level embedding.

z ¼
XK

k¼1

akhk



Fig. 1. The overall proposed methodology. a) The overall flowchart and proposed methodology. b) A bag of instances are created from a tissue section by sampling some number of
image tiles. Each instance is individually subjected to feature extraction, resulting in instance features. Attention-based pooling computes attention weights (relative importance) of
each of these instance vectors. c) Computed instance weights scale their respective instance features and are summed to a bag-level feature vector, which is classified as supersus-
ceptible or not-supersusceptible. d) Attention weights are mapped back onto the tissue section image to bring attention to which areas of the tissue are being used for classification.
e) An expert examines model-identified regions and identifies what the model attends to (i.e. “sees”) leading to interpretable imaging biomarkers and potential knowledge discov-
ery as well as validation of clinical practices.
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ak ¼
exp wTtanh VhT

k

� �� �
PK

j¼1 expfwTtanhðVhT
j Þg

Our attention mechanism implementation consists of a simple
two-layer fully connected network which passes each instance
embedding (hk) though one layer of the network (V), applies a tanh
activation function to the result, then passes the activation though
the second layer (wT), which maps the vector into a single value, its
attention weight (ak). The weighted sum of each embedded instance
and its attention weight yields a bag-level instance (z). The parame-
ters (V,w) for this for this two-layer neural network are automatically
learned through training of the model.

In addition to performing better than instance-based and
embedding-based max and mean pooling approaches, the result-
ing instance weights allow the model to be interpretable in that
the relative magnitudes of instance weights directly correspond to
the instance’s relative contribution to the overall classification of
the bag [45]. Practically speaking, this means the model automati-
cally identifies regions of H&E slides (i.e. an imaging biomarker)
that contributes to its overall decision to classify a mouse as super-
susceptible.

2.2.3. Model implementation
We modified our original model [45] because baseline model

accuracy did not exceed pathologist performance. First, we decreased
the second filter size from 3 £ 3 to 1 £ 1 (Layer #3 in Supplemental
Table 2) to improve the model’s capacity to learn relationships across
feature maps of the previous layer while reducing the number of
parameters. Second, we increased the initial filter size from 4 £ 4 to
7 £ 7 (Layer #1 in Supplemental Table 2) to eliminate the shifting
caused by an even-dimensioned filter in the original model. This also
increased the field of view for the initial set of filters. Further, this fil-
ter increased the perceptive field to a size that approximates the orig-
inal two 3 £ 3 convolutions. Overall, the 1 £ 1 convolutions serve
solely to learn and extract the relationship between feature maps
while 7 £ 7 convolution exploits the spatial relationships in individ-
ual feature maps. Third, we increased the corresponding number of
filter maps in the first layer from 36 to 48 (Layer #1 in Supplemental
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Table 2) to offset the increase in the receptive field size when chang-
ing the filter size from 4 £ 4 to 7 £ 7 and to increase the feature set
extracted by the network. Finally, we added an additional convolu-
tional layer with ten 3 £ 3 filters to refine and reduce the number of
feature maps (Layer #5 in Supplemental Table 2). Overall, our archi-
tecture requires fewer parameters (389,340) than the original
(1,231,574) without increasing training time (ours: 14598§205s,
original: 13216§2250s, p=0.19 using a paired t-test) across six folds
and exhibits higher performance. A technical summary of the base-
line model and the proposed model are in Supplemental Table 2.

Models were optimized using Adam with b1 = 0.9 and b2 = 0.999,
the learning rate of 0.0001, weight decay of 0.0005, and over 100 or
200 epochs. Due to class imbalances, our cross-validation approach
was carried by randomly sampling 30 tissue sections from both super-
susceptible (~10%) and not-supersusceptible (~20%) categories for the
validation set in each fold and including the rest of the cases for
the training of the model, known as Monte Carlo cross-validation [53].
To account for imbalanced training sets, the training procedure was
modified to randomly select supersusceptible mice or not-supersus-
ceptible mice with equal likelihood and then to randomly select a
mouse from the selected category during every training iteration. Neg-
ative log-likelihood was used as a cost function in our implementation.

2.2.4. Model summary
A bag is created from a tissue section by sampling some number of

image crops (Fig. 1b). Each instance is subject to feature extraction
using the implementation described in Supplemental Table 2, result-
ing in instance embeddings (Fig. 1b). Attention-based pooling com-
putes attention weights (i.e. relative importance) of each of these
instance vectors (Fig. 1b). Computed instance weights scale their
respective instance embeddings and summed to a bag-level embed-
ding (Fig. 1c). This embedding is classified as supersusceptible or not-
supersusceptible (Fig. 1c) with a cutoff of 0.5. Attention weights for
each image crop can then mapped back onto the tissue section image
to bring attention to which areas of the tissue are being used for clas-
sification (Fig. 1d). The model was implemented in Python using the
PyTorch library.

2.3. Analysis

2.3.1. Statistical methods
Model performance was evaluated using overall accuracy, sensi-

tivity, specificity, positive predictive value, and negative predictive
value of the ten-fold cross-validation described above. 95% confi-
dence intervals for each statistic above were computed using boot-
strapped samples of predictions (equal to the number of
observations) with replacement (n = 1000). 97.5th and 2.5th percen-
tiles were taken as bounds for confidence intervals. Pathologist and
non-expert performance were similarly evaluated using accuracy,
sensitivity, specificity, positive predictive value, and negative predic-
tive value with confidence intervals. The proposed machine learning
model was compared to the baseline using a paired t-test of the dis-
tributions of accuracy of each fold. Each procedure was carried out in
MATLAB. Multivariate analyses used ANOVAs followed by Kruskal-
Wallis post-tests in GraphPad Prism v8 for the comparison of the
quantified imaging biomarker.

3. Results

3.1. Lung granuloma patterns of M.tb-infected DO mice resemble
humans

We observed many lung granuloma patterns in M.tb-infected DO
mice (Fig. 2), mimicking the heterogeneity of granulomas in human
pulmonary TB patients [54]. The lungs of supersusceptible DO mice,
who 1) developed morbidity and mortality due to necropsy and 2)
microbiologically-confirmed pulmonary TB within 8 weeks of infec-
tion, contained large coalescing regions of necrotic cellular, nuclear,
and proteinaceous debris; neutrophils and macrophages; and tissue
damage due to alveolar septal necrosis and capillary thrombosis
(Fig. 2a�f). Lymphocytes and plasma cells were present but not
prominent. The lungs of DO mice who survived more than 8 weeks
without morbidity/mortality (i.e. not-supersusceptible) showed dif-
ferent granuloma patterns. Granulomas were not necrotic and
instead contained many perivascular and peribronchiolar lympho-
cytes, plasma cells, and foamy macrophages (Fig. 2g�l) similar to
most inbred mouse strains [55,56]. Interestingly, a small fraction
(3�4%) of those DO mice developed histiocytic pneumonia, and lung
cavities containing neutrophil and macrophage cellular debris sur-
rounded by peripheral fibrosis (Fig. 2m�o). Chronic, discrete, orga-
nizing granulomas were occasionally observed (Fig. 2p�r). The lung
patterns indicate that granuloma and/or lung tissue necrosis and
neutrophilic influx are disease pathways of supersusceptibility,
reflecting genetically controlled inflammatory responses to M.tb.
These findings align with our prior work which showed that neutro-
phil chemokines (e.g. CXCL1, CXCL2, and CXCL5) and other innate
inflammatory cytokines (e.g. Tumor Necrosis Factor) were signifi-
cantly increased in the lungs of supersusceptible DO mice [23].

3.2. Model performance increases as the number instances included
from each slide increases

Our first set of experiments explored how the baseline model
would perform using different tile size and number of instances com-
binations (Supplemental Table 1). For each number of instances and
tile size combination (Supplemental Table 1), a distinct dataset was
generated. Each dataset consisted of a bag for each tissue section
labeled with its associated diagnostic category (supersusceptible vs.
not-supersusceptible). This resulted in 18 distinct datasets. Next, in
order to determine optimal tile size and bag size configuration, a ten-
fold cross-validation of the baseline model [45] was performed using
the same set of training parameters (Supplemental Fig. 2). Overall,
these experiments show two trends. Comparing configurations in the
same rows (in which bag size remains the same), both training losses
and errors quickly converge, albeit more slowly for smaller tile sizes,
validation error generally doesn’t converge, and validation loss
begins to rise after about the same epoch. This implies that tile size
does not affect the performance of the model. Comparing configura-
tions within the same column (where tile size remains the same), as
the number of tiles increases, convergence is slower but overall vali-
dation loss and error diverge less. This implies that the number of
tiles is an important factor for validation convergence. Intuitively,
this makes sense, as 1) the filter sizes in the CNN are much smaller
than any tile size, so the resulting feature maps change little with
change in tile size, and 2) a greater number of tiles represents more
spread across the slide.

3.3. Proposed machine learning model significantly outperforms
baseline model in identifying supersusceptibility

Using these optimized parameters (32 £ 32 pixel tiles, mean/std
bag size of 5000/1000), the proposed machine learning model (Supple-
mental Table 2) was subject to a ten-fold cross-validation and com-
pared against the baseline model (Supplemental Fig. 3). The proposed
machine learning model tends to performmuch accurately (converging
around 8% error) and converges at a faster rate compared to approxi-
mately the baseline model (approximately 16% error). The resulting
cross-validation accuracy is 89.00 § 2.96% (95% CI [86.83,91.00]) for
the baseline model and 91.50 § 4.68% (95% CI [89.83,93.33]) for the
proposed machine learning model (paired Student’s t-test, P = 0.04).
Sensitivity, specificity, positive predictive value, and negative predicate
value for the baseline model are 87.67, 85.00, 85.39, and 87.33 with



Fig. 2. Examples of lung sections from M.tb-infected DO mice. 8-10-week-old female DO (J:DO) and C57BL/6J mice were infected with 25§7 of aerosolized M.tb bacilli and eutha-
nized when signs of morbidity developed or by day 150 after infection (whichever came first). Lung lobes were fixed in formalin, paraffin-embedded, sectioned at 5mm, and stained
with hematoxylin and eosin. Lungs from normal, non-infected mice are shown in panels a, b, c. Lungs from supersusceptible mice with granuloma necrosis with neutrophil influx
and pyknotic nuclear debris are shown in panels d, e, f. Lungs from not-supersusceptible mice are a spectrum from mild (g, h, i) to moderate (j, k, l) lymphohistiocytic pneumonia to
severe pneumonia with cavitation and fibrosis (m, n, o), and necrosuppurative granulomas (p, q, r). Images are magnified 15x, 40x, and 400x normal from left to right.
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Fig. 3. Pathologists, non-expert, and model performance identifying supersusceptibility. Accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV) for the baseline model (baseline) using H&E, proposed model (proposed) using H&E, expert pathologist (GB) using H&E, resident pathologist (CPM) using H&E, non-expert
(KN) using heatmaps, and non-expert (TT) using heatmaps for identifying supersusceptible mice.
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95% CI [84.42,90.76], [81.42,88.38], [81.80,88.74], and [84.06,90.53],
respectively, and for the proposed machine learning model 94.00,
88.33, 88.96, and 93.64 with 95% CI [91.54,96.21], [85.17,91.57],
[86.12,91.97], and [90.92,95.95], respectively

3.4. Proposed machine learning model approaches pathologist
performance to diagnose supersusceptibility

We compared the model’s performance to diagnose supersuscept-
ibility using lung tissue sections against one expert board-certified
veterinary pathologist (Gillian Beamer) with over ten years of experi-
ence studying lungs of mice experimentally infected with M.tb and
one board-eligible third-year veterinary pathology resident (Cesar
Piedra-Mora) with no experience in mouse TB model. The patholo-
gists reviewed H&E stained lung sections blinded. The experienced
pathologist (GB) directly evaluated all sections with no additional
training, while the junior pathologist (CPM) studied 10 randomly
selected images from each class (supersusceptible and not-supersus-
ceptible) prior to evaluating all available images 1 week later. The
expert pathologist’s accuracy on H&E stained lung tissue sections
from 424 mice was 94.58% (95% CI [92.86,96.31]). Their sensitivity,
specificity, positive predictive value, and negative predictive value
were 100.00, 84.72, 92.25, and 100.00, respectively, with 95% CI
[100.00, 100.00], [79.87,89.51], [89.78,94.74], and [100.00,100.00],
respectively. The junior pathologist’s accuracy was 94.95% (95% CI
[93.27,96.63]). Their sensitivity, specificity, positive predictive value,
and negative predictive value were 99.63, 86.21, 93.10, and 99.21
with 95% CI [98.94,100.00], [81.61,90.85], [90.71, 95.45], and
[97.90,100.00]. By cross-validation, the proposed machine learning
model performed similarly to experienced pathologists (Fig. 3).

3.5. Automatically identifies pyknotic nuclei and nuclear debris as
imaging biomarkers for supersusceptibility

Each slide was exhaustively divided into 32 £ 32 image crops, and
their attention weights were computed using proposed machine
learning model. A corresponding image heatmap was generated in
which image crops were replaced by their attention weights. Resulting
examples can be seen in Figs. 4 and 5 and Supplemental Fig. 4. In order
to ascertain interpretability, potential as automatically identified imag-
ing biomarkers, and clinical validity, the expert pathologist (GB) exam-
ined resulting heatmaps alongside respective tissue section
counterparts and identified what the model was attending to (Fig. 1e).
She concluded that the primary feature being identified by the pro-
posed machine learning model was pyknotic nuclei and nuclear debris
(Fig. 5). One other board-certified veterinary pathologist (Famke Aeff-
ner) corroborated these observations by judging the presence of necro-
sis from 30 images sampled model-identified regions (like Fig. 5a�d)
and non-model-identified regions (like Fig. 5e�h). They agreed with
the model’s identification of necrosis 73.33% of the time.

3.6. Non-experts identify supersusceptible mice using imaging
biomarkers with high accuracy

After generating heatmaps for each digital tissue section, two
non-experts (Thomas Tavolara and Khalid Niazi) were trained on a
subset of slides (30 supersusceptible and 30 not-supersusceptible
class) and validated on the rest (364 slides). Their respective accura-
cies for identifying supersusceptible and not-supersusceptible mice
were 88.25% (95% CI [85.99,90.55]) and 87.95% (95% CI [85.67,90.07])
(Fig. 3). Their respective sensitivities, specificities, positive predictive
values, and negative predictive values were 96.55, 72.12, 87.11, and
91.46 with 95% CI [94.89,98.08], [67.07,77.08], [84.55,89.78], and
[87.54,95.13], respectively, and 97.78, 68.75, 85.93, and 94.08 with
95% CI [96.57,98.96, 63.29,74.02, 83.24,88.66], and [90.73,97.08],
respectively. Their agreement was high and is depicted in Table 2.

3.7. Automatic quantification of imaging biomarkers provides
continuous data for statistical analyses

Pathologists cannot quantify cellular, nuclear, or stromal features
within a tissue section with accuracy or reproducibility [57,58].



Fig. 4. Heatmap examples. The top set is a representative example of the supersusceptible class. The middle set is a representative example of the not-supersusceptible category.
The bottom set is a representative example of non-infected mice. Heatmap images are contrast enhanced for visual purposes. Brighter (middle column) or redder (right column)
regions correspond to areas of the images that correspond to supersusceptible features (i.e. image biomarkers). All images are taken at 1x magnification.
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Generally, they attempt to judge extent of disease by relying on
grades or scales that are estimates [59,60]. The automatically identi-
fied lung imaging biomarker was quantified (Supplementary Meth-
ods) for tissue sections in each mouse as a ratio of necrotic pyknotic
affected regions to non-necrotic tissue (Fig. 6). The imaging bio-
marker was significantly increased in the lung sections of M.tb-
infected supersusceptible DO mice (n = 148) than not-supersuscepti-
ble (n = 266) M.tb-infected DO mice, M.tb-infected C57BL/6J inbred
mice (n = 10), and non-infected DO mice.

4. Discussion

Each DO mouse carries genome segments from 8 inbred founder
strains, resulting in a mosaic across the chromosomes (Supplemen-
tary Fig. 1). The genetic diversity of DO mice is equivalent to humans
[8], and this genetic diversity contributes to unique and wide pheno-
types [20] that are not observed within or between common inbred
strains [5,6,19,22�30]. Even our work with panels of founder and
Collaborative Cross inbred strains [29] do not produce the response
range in DO mice [23] and our unpublished data. We showed that
supersusceptible DO mice develop pulmonary TB with large necrotiz-
ing granulomas and abundant M.tb bacilli, while those that survive
longer develop non-necrotic lymphocyte-rich granulomas. Published
elsewhere, we confirmed that DO mice are not immune deficient or
highly susceptible to other mycobacteria, and they generate antigen-
specific immunity against M.tb [16,23,24]. Together, these results
support our conclusion that DO mice are a valuable animal model of
TB. Since we can now rigorously quantify necrotic and pyknotic
debris within lung granulomas using the method here, our ongoing
and future work can focus identifying novel mechanisms of M.tb-
induced granuloma necrosis. This is a great translational benefit of
DO mice and of computational pathology because tissue and cellular
features of histology images cannot be accurately quantified by path-
ologists in large image data sets.

Although deep learning in the context of computer vision has
achieved many great feats, from human-level object detection to realis-
tic synthetic image generation and self-driving vehicles, it has still gen-
erally been eluded by knowledge discovery, in which other fields have
seen some successes [61,62]. The results of the proposed machine
learningmodel suggest a path for such knowledge discovery in medical
image analysis. Here, we did not use any manual annotations to guide
the MIL. Instead, two outcomes (classes) were used solely � supersus-
ceptible, defined as rapid pulmonary TB within 8 weeks of infection;
and not-supersusceptible, defined as no clinical signs for at least the
same duration. This identified an imaging biomarker in granulomas
that 1) Automatically diagnoses supersusceptibility; 2) Serves as a tool
(heatmap) for non-experts to diagnose supersusceptibility; 3)Was clin-
ical interpretable by two board-certified veterinary pathologists as
pyknotic debris; and 4) Quantifies pyknotic debris for statistical com-
parisons. Our results imply that computational approaches can produce
and use the same imaging biomarkers that pathologists use, mimicking
pattern recognition and decision-making of pathologists reading



Fig. 5. Primarily nuclear debris is being identified. Heatmaps with their corresponding tissue region to the right (H&E) from eight supersusceptible mice. Brighter (middle column)
or redder (right column) regions correspond to areas of the images that correspond to supersusceptible features (i.e. image biomarkers). Note that primarily nuclear debris is being
identified and that healthy tissue is not being identified.
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histology slides. Thus, our work sheds light on the “black box” of
computational pathology and instills confidence that artificial intelli-
gence canmake accurate diagnoses using interpretable, biologically rel-
evant histopathology imaging biomarkers.

We recognize three major shortcomings of conventional deep
learning approaches [34,36�41,58,63,64] which the proposed MIL
model overcomes. First, conventional deep learning models require
strong labels [34]. Labels are classes or identities we assign to images.
Strong labels can be thought of as any label that can be delineated in
an image (a.k.a. image annotations). For example, in the context of
medical image analysis, a strong label could be an outline or segmen-
tation of an organ or tissue structure in MRI or CT, or it could be ana-
tomical structures or cell types in histology. The proposed MIL model
directly addresses this shortcoming of conventional approaches by
requiring weak labels, labels assigned to whole image rather than its
parts. Examples of weak labels include a diagnosis, status, tumor
malignancy/benignness, cancer stage, or degree of neurodegenera-
tion. In the context of the problem addressed here, the weak labels of
supersusceptible and not-supersusceptible are utilized not only
because they are available to us but also because tissue-level knowl-
edge (i.e. strong labels) is not readily available � there are no tissue
Table 2
Agreement between two non-experts using imaging biomarkers.

Non-expert 1
predicts not SS

Non-expert 1
predicts SS

Non-expert 2 predicts not SS 262 11
Non-expert 2 predicts SS 4 86

ig. 6. Quantification of image biomarker for statistical analysis. The imaging bio-
arker was quantified as a ratio of necrotic/pyknotic affected regions to non-necrotic
ssue and analyzed across multiple groups including: non-infected (NI) DO mice
= 20) and M.tb-infected DO mice in supersusceptible (n = 148) and not-supersuscep-

ble (n = 266) categories. The biomarker was also quantified in the lungs of M.tb-
fected C57BL/6J inbred mice (n = 10). The lungs of supersusceptible mice contain sig-
ificantly more of the imaging biomarker than M.tb-infected not-supersusceptible DO
ice, C57BL/6J inbred mice, and non-infected DO mice. Each dot represents one indi-
idual mouse. Data was analyzed by ANOVA with multiple comparisons and Kruskal-
allis posttest (***p < 0.001).
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areasorcelltypeswhichwecaneasilyandconfidentlyannotateassuper-
susceptible or not-supersusceptible. The distinction is key for the auto-
matedanalysisofmedical images,asacquisitionofrelevantannotations
(i.e.domainknowledge)istimeconsumingandthusoneofthebarriersfor
artificialintelligenceinmedicine.

Second, conventional deep learning models fall short, as they do
not efficiently process digital tissue slides, which are in the order of
gigapixels. TB detection studies that utilize chest x-ray images often
rely on CNNs for fibrosis detection [36�41]. Chest x-ray image sizes
are in the order of thousands by thousands of pixels (i.e. 1000 £ 1000
to 5000 £ 5000), and as is typical in CNN applications, are resized to
small images (typically 200 £ 200 to 300 £ 300) 1) for the purpose of
fitting the fixed-input size for their CNN model and 2) because of lack
of memory on current GPUs. Though not explicitly justified in the lit-
erature, the underlying assumption in resizing images is that smaller
details (which are lost from resizing) aren’t necessary for CNN mod-
els. Unlike x-rays, digital pathology slides are in the order of billions
of pixels. To resize an entire slide to the fixed-input size of a deep
learning model would result in loss of nearly all cell and anatomical
structure information. Thus, we cannot simply resize the input image.
Typical solutions in digital pathology include extracting high-power
fields (akin to fields of view a pathologist might analyze under the
microscope) or extracting tiles (small images cropped from the slide).
In the former, high power fields are annotated by a pathologist,
thereby returning to the problems of strong labeling discussed ear-
lier. In the latter, individual tiles are assigned labels based on their
anatomical content. However, processing hundreds of thousands of
image tiles per slide is inefficient in addition to requiring strong
labeling. Moreover, it is not explicitly clear how model-predicted cell
and tissue level labels relate to weaker clinical labels nor how multi-
ple tile-level predictions should be aggregated into clinical labels.
The proposed MIL model resolves the magnitude of the problem (i.e.
the large image size) by sampling digitized tissue sections (without
resizing) for small 32 £ 32 image tiles. It also resolves the question of
how to aggregate said tiles through an automatically learned aggre-
gation mechanism � namely, attention pooling.

Third, conventional deep learning models are generally not inter-
pretable. Lack of interpretability is an oft criticized aspect of CNN-
based deep learning in image analysis [58,63,64]. Though CNN mod-
els have been shown to achieve near human-level performance on
several computer vision tasks in specific domains, they generally lack
the ability to explain how they decide. Thus, such approaches are
often dubbed ‘black-boxes.’ This black-box nature is particularly trou-
bling in biomedical research and medicine, as scientists and clinicians
need to know how and why a model makes decisions in order to
understand some underlying phenomenon (i.e. knowledge discov-
ery) and to make informed clinical decisions. Given this crucial short-
coming of CNN-based deep learning, there exist several tools to give
some insight into what they “see.” Class activation mapping (CAM)
[42] was one of the first of these tools. This method allowed CNN
models to highlight which parts of an input image contribute to its
overall classification. Grad-CAM [43] immediately improved on CAM
by allowing for more complex CNN models. There was further
improvement in a method dubbed Grad-CAM++ [44]. Several studies
examining CNNs as potential clinical tools for TB utilized these meth-
ods to visualize which parts of chest X-rays were being utilized for
their model’s decision [36�39]. However, in digital pathology, these
methods cannot be applied, as they require entire images as input to
highlight decision-supporting regions. Digital slides are too large to
be processed in such a manner and cannot be resized for reasons dis-
cussed. Further, these methods focus largely on strong labels in
multi-class problems and thus cannot apply to the current problem.
The proposed MIL model resolves these issues of interpretability
through the automatically learned attention pooling mechanism
[45]. Automatically identified instances give insight into what the
proposed machine learning model is “seeing.”
In the context of medical image analysis, this attention pooling
provides a useful mechanism that does not require manual annota-
tion of microscopic features. Here, it automatically discovered an
imaging feature (“biomarker”) diagnostic for supersusceptibility �
namely, pyknotic nuclei and nuclear debris. Despite the proposed
machine learning model not being aware, granuloma necrosis is used
by pathologists to diagnose pulmonary TB in human patients and is a
desirable feature of experimental TB in animal models. Thus, our
automatic method mimics how pathologists examine biopsy,
autopsy, and experimental tissues to make diagnostic decisions, pro-
viding validation and clinical relevance. Importantly, the proposed
machine learning model did not identify healthy lung tissue. This
affirms the MIL assumption that positive bags may contain instances
similar to those found in negative bags. In this problem, those instan-
ces are healthy lung tissue (Fig. 5e�h). Healthy tissue is present in
both supersusceptible and not-supersusceptible M.tb-infected DO
mice. It therefore should not be a discriminatory feature identified by
the proposed machine learning model. And indeed, this is the case. It
is obvious from the heatmap that areas of healthy lung tissue and
never attended to (Figs. 4 and 5e�h).

As a result of automatically identifying imaging biomarkers, the
proposed machine learning model was also able to generate heat-
maps corresponding to presence and intensity of features indicative
of supersusceptibility. This resulted in simplified images which non-
experts used to classify supersusceptibility or not with greater accu-
racy than an expert using H&E. This is understandable, as patholo-
gists are trained for years to differentiate among thousands of
different tissues, cell types, and other features in more than one type
of stain. Comparatively, the proposed machine learning model learns
only to focus a few of these features, primarily pyknotic nuclei and
nuclear debris. Additionally, it samples across the entire slide rather
than a small, localized subset of regions (like pathologists). Non-
experts benefit from heatmaps by being able to focus on a specific
feature while being undistracted by irrelevant features. Both non-
expert readers identified two key features of heatmaps in their train-
ing set � density and clustering. In general, supersusceptible heat-
maps were identifiable by multiple large, dense clusters. Heatmaps
from the not-supersusceptible class usually were either not very
dense or did not form clusters (Fig. 4; Supplemental Fig. 4).

The proposed machine learning model has limitations. For exam-
ple, it cannot identify imaging biomarkers of non-supersusceptibility,
likely because the non-supersusceptible class is homogenous, con-
taining few morphological subtypes and also non-infected DO mice.
Future work will yield imaging biomarkers of intermediate and long-
term resistance to M.tb. Currently, we are increasing our data set and
investigating how to automatically discover important features of
other classes of M.tb-infected DO mice, such susceptible and resistant
DO mice (Table 1).

Overall, our results show that computational approaches can
automatically identify and utilize the same imaging biomarkers that
pathologists use, mimicking expert human pattern recognition and
decision-making. Our work sheds light on the “black box” of compu-
tational pathology and instills confidence that artificial intelligence
methods can make accurate diagnoses using interpretable histopa-
thology features. In future studies, we intend to develop a multi-class
version of this framework to identify and quantify unique granuloma
features of highly resistant DO mice, and of vaccinated DO mice.
Finally, we will explore how the proposed machine learning model
performs in related scenarios and whether model-identified imaging
biomarkers are interpretable quantifiable.
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