
Structural bioinformatics

A deep dilated convolutional residual network for

predicting interchain contacts of protein homodimers

Raj S. Roy, Farhan Quadir, Elham Soltanikazemi and Jianlin Cheng *

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA

*To whom correspondence should be addressed.

Associate Editor: Jinbo Xu

Received on September 18, 2021; revised on January 17, 2022; editorial decision on January 29, 2022; accepted on January 31, 2022

Abstract

Motivation: Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep
learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains.
However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still
relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue con-
tacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated con-
volutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from
residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain resi-
due–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning,
and other sequence and structural features.

Results: Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset),
the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%,
47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and
DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure
or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy
is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that
good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers.

Availability and implementation: The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon.
The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins fold into three-dimensional (3D) structures to carry out bio-
logical functions such as catalyzing chemical reactions and trans-
porting nutrients. The 3D structure of a single protein chain is called
tertiary structure. The tertiary structures of multiple protein chains
usually interact to form a complex structure (i.e. quaternary struc-
ture). Both tertiary structure and quaternary structure are important
for protein function. Because the experimental determination of pro-
tein structure is low-throughput and can be applied to only a small
portion of proteins in the nature, the computational prediction of
protein tertiary and quaternary structure is critical for obtaining
structural information for most proteins to study their function.

The computational methods for predicting protein tertiary struc-
tures and quaternary structures are periodically evaluated in the
Critical Assessment of Protein Structure Prediction (CASP)
(Kryshtafovych et al., 2014; 2019; Kwon et al., 2021; Moult et al.,

2016) and the Critical Assessment of Protein Interaction (CAPRI)
(Lensink et al., 2016, 2018, 2021), respectively, or the joint experi-
ment of the two. Driven by the application of deep learning methods
to predicting residue–residue contacts and distances (Eickholt and
Cheng, 2012; Adhikari et al., 2018; Hou et al., 2020; Jones and
Kandathil, 2018; Li et al., 2019; Senior et al., 2020; Wang et al.,
2017; Wu et al., 2021; Yang et al., 2020 ) in the last several years,
tertiary structure prediction has reached unprecedented high accur-
acy. In the 2020 CASP14 experiment, AlphaFold2 (Jumper et al.,
2021) predicted high-quality structures for most CASP14 targets
with the accuracy equal to or close to that of the experimental struc-
ture determination. Recently, AlphaFold2 was applied to predict the
structures for all the proteins in several species including human
(Tunyasuvunakool et al., 2021).

Despite the drastic advance in protein tertiary structure predic-
tion, the prediction of quaternary structure has progressed slowly
and still cannot reach high accuracy for most protein complexes.
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One reason is more effort has been put into tertiary structure predic-
tion than quaternary structure prediction because the former is
needed as input for the latter. Another reason is the application of
deep learning methods to protein quaternary structure prediction is
still in the early stage and much fewer deep learning methods for
quaternary structure prediction than tertiary structure prediction
have been developed.

The most common approach to quaternary structure prediction
is classic protein docking algorithms (Gray et al., 2003; Johansson-
Åkhe et al., 2020; Li and Kihara, 2012; Lyskov and Gray, 2008;
Pierce et al., 2014; Venkatraman et al., 2009), leveraging the geo-
metric and electrostatic complementarity between protein tertiary
structures. The residue–residue co-evolutionary methods such as the
direct coupling analysis (DCA) (Hopf et al., 2014; Ovchinnikov
et al., 2014) that were originally designed to predict intrachain resi-
due–residue contacts in a protein chain were also used to predict
interchain contacts from multiple sequence alignments (MSAs) of
protein complex (e.g. protein heterodimers). The DCA-based meth-
ods require a large number of sequences in MSAs to generate accur-
ate interchain contact predictions, which are not available for most
protein complexes because there are not many known protein com-
plexes available. The problem is alleviated for protein homodimers
(a protein complex consisting of two identical chains) because the
MSA of a monomer (a single chain) in a homodimer contains both
intrachain and interchain residue–residue co-evolutionary signals
(Quadir et al., 2021a,b). The advantage of using the MSA of a
monomer is that it is generally much deeper than the MSA of a pro-
tein complex. Recently several deep learning methods such as
DNCON2_Inter (Quadir et al., 2021a,b) and DeepHomo (Yan and
Huang, 2021) use the MSA of a monomer in a homodimer to predict
interchain contacts in homodimers, while another method, Glinter
(Xie and Xu, 2021), uses the MSA of a dimer to perdict interchain
contacts in both homodimers and heterodimers

Another interesting recent development is the application of
AlphaFold2 and RoseTTAFold (Baek et al., 2021)—the two cutting-
edge deep learning methods designed for prediction of tertiary struc-
ture to the prediction of the quaternary structures of several protein
complexes, demonstrating the great potentials of deep learning
methods for predicting protein quaternary structures. However, be-
cause the two methods are not specially designed for quaternary
structure prediction and are not trained on the protein complex
data, there is a significant need to develop more deep learning meth-
ods directly targeting quaternary structure prediction.

In this work, we develop a dilated convolutional residual neural
network called DRCon to directly predict interchain contacts in
homodimers from the MSA, intrachain contacts and other features
of the monomers forming the homodimers. We test our method
rigorously on the CASP-CAPRI dataset, DeepHomo test dataset and
also on Homo_std test dataset. It performs better than two other
deep learning methods (DeepHomo and DNCON2_Inter) for inter-
chain contact prediction. The method works not only with true ter-
tiary structures of monomers in the bound state as input but also
predicted tertiary structures of monomers in the unbound state (e.g.
tertiary structure models predicted by AlphaFold2). Moreover, we
demonstrate that good interchain contact predictions can be used to
build high-quality quaternary structures of homodimers.

2 Materials and methods

2.1 Datasets
Two residues from the two chains in a homodimer are considered an
interchain contact if the Euclidean distance between any two heavy
atoms of the two residues is less than or equal to 6 Å (Ovchinnikov
et al., 2014; Quadir et al., 2021a,b; Zhou et al., 2018). Multiple
homodimer datasets with known quaternary structures and inter-
chain contacts are used to develop DRCon. The Homo_std dataset
used in DNCON2_Inter is used to train, validate and test DRCon.
Homo_std was derived from the homodimers in the 3D Complex
database (Levy et al., 2006). All the complexes of the 3D Complex
were released before October of 2005. The dimers in the database

whose two chains have �95% sequence identity are treated as
homodimers to create Homo_std. Homo_std has 8530 homodimers
in total that has �30% pairwise sequence identity. It is split into a
training dataset (5975 dimers), a validation dataset (853 dimers)
and a test dataset (1702 dimers) according to the ratio of 7:1:2 to
train, validate and test DRCon. Furthermore, in addition to the 6 Å
threshold, 8 Å is also used as a threshold to generate inter-chain con-
tacts to train a network in order to compare it with two inter-chain
contact predictors [DeepHomo and Glinter (Xie and Xu, 2021)]
trained at the threshold.

Moreover, two independent datasets (the CASP-CAPRI dataset
and DeepHomo dataset) are used to test DRCon. The CASP-CAPRI
dataset contains 40 homodimers collected from CASP-CAPRI-11,
12, 13 and 14 experiments that are publicly available. We discarded
homodimers whose monomer has more than 500 residues in order
to make a fair comparison with Glinter as it has a limitation of
about 1024 residues for the combined length of the two monomers
in a dimer.

The DeepHomo dataset used here contains 218 homodimers out
of the 300 homodimers in its original version (Yan and Huang,
2021). 82 homodimers in the original DeepHomo dataset that are
present in the Homo_std training dataset are removed to avoid the
evaluation bias.

The statistics of the number of the dimers, the length of the
dimers (i.e. the length of the monomer sequence in a homodimer)
and the contact density of the dimers (i.e. the number of true inter-
chain contacts divided by the length of the monomer in a homo-
dimer) of the three test datasets above is reported in Table 1.

2.2 Input features
The input features for DRCon are stored in L�L�d tensors (L:
length of the sequence of the monomer in a homodimer; d is the
number of features for each pair of interchain residues) that describe
the features of all pairs of interchain residues. Since the two chains
in a homodimer are identical and interchain residue–residue coevo-
lution features are also preserved in the multiple sequence alignment
(MSA) of one chain (monomer), only the sequence of a monomer is
used to generate the input features for interchain contact prediction
in this work.

The number of features (d) for each interchain residue pair is
592. 49 features are the same kind of features used by DNCON2
(Adhikari et al., 2018) for intrachain contact prediction, including
solvent accessibility of residues as well as interchain residue–residue
coevolution features calculated from MSAs of a monomer by
CCMpred (Seemayer et al., 2014) and PSICOV(Jones et al., 2012).
526 features generated from MSAs by trRosetta (Yang et al., 2020)
are also used. The 8-state secondary structure prediction for each
residue (i.e. 16 features for a pair of residues) made by SCRATCH
(Cheng et al., 2005) is also included. Finally, a binary feature indi-
cating if two residues form an intrachain contact (i.e. Cb–Cb atom
distance is less than or equal to 8 Å (Adhikari et al., 2015; Wu et al.,
2021) is also used as input, which is useful for the neural network to
distinguish interchain contacts from intrachain contacts. It worth
noting that all the features except secondary structure, solvent acces-
sibility, intrachain contact and CCMpred features used in DRCon
are different from DeepHomo. In the training phase, the intrachain
contacts are derived from the true tertiary structures of monomers
in the dimers. In the test phase, the intrachain contacts may be either
derived from true tertiary structures of monomers in the bound state
or predicted from sequences/tertiary structure models of monomers
in the unbound state, depending on the experimental setting.
Specifically, for the training and validation datasets, the intrachain
contacts are derived from the known tertiary structures of the mono-
mers in the homodimers (the bound state). For the test datasets, ei-
ther true intrachain contacts or predicted intrachain contacts made
by trRosetta or extracted from AlphaFold2 tertiary structure models
in the unbound state are used to generate intrachain contact
features.

Most of the 592 features above are generated from the MSAs of
the monomers in the homodimers. The DNCON2’s MSA generation
procedure is used to generate the MSAs for all the datasets by using
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HHBlits (Remmert et al., 2011) to search UniRef30_2020_02 data-
base (Suzek et al., 2015) and Jackhmmer (Johnson et al., 2010) to
search Uniref90. In addition, DeepMSA (Zhang et al., 2020) is used
to generate MSAs for the CASP-CAPRI dataset. The MSAs with
more sequences generated by DNCON2 or DeepMSA are selected
for the proteins in this dataset.

2.3 Deep learning architecture for interchain contact

prediction
Figure 1 illustrates the deep learning architecture for interchain contact
prediction. The input tensor (L�L�592) is first transformed by a block
consisting of a convolutional layer and instance normalization. The in-
stance normalization instead of the batch normalization is used because
the former is better at dealing with a small batch size (Lian and Liu,
2019). The transformed tensor is then processed by 36 residual blocks
containing regular convolutional layers, instance normalization, dilated
convolutional layers and residual connections. The residual connection
makes the learning of deep networks more efficient and effective. The
dilated convolution can capture a larger input area than the regular
convolution with the same number of parameters, which has been
shown to improve intrachain residue–residue distance prediction in
AlphaFold1 (Senior et al., 2019). This dilated residual architecture is
different from that in DeepHomo.

The network is trained on the Homo_std training dataset with
0.0001 learning rate and optimized with Adam (Kingma and Ba,
2015) optimizer using a batch size of 2 and the binary cross entropy
as loss function. Each epoch of training the network on six 32 GB

NVIDIA V100 GPUs takes around 2 h. The deep network is imple-
mented on Pytorch and horovod (Sergeev and Del Balso, 2018) to le-
verage the distributed deep learning training. The deep learning
model with the highest precision for top L/5 interchain contact pre-
dictions on the Homo_std validation dataset is selected as the final
model for testing.

3 Results and discussions

DRCon has been extensively benchmarked on three datasets:
Homo_std test dataset, DeepHomo test dataset and CASP14-CAPRI
dataset. The contact-level precision and the target-level accuracy
rate at the various thresholds (i.e. Top 10, top L/10, top L/5, top L
interchain contact predictions) are used to compare DRCon with
existing methods, where L is the length of the monomer sequence in
a homodimer. The contact-level precision is the number of correctly
predicted contacts divided by the total number of contact predic-
tions. And the target-level accuracy rate (Zhao and Gong, 2019) is
defined as the percentage of dimers (targets) with non-zero correct
interchain contact prediction when a certain number of predicted
interchain contacts are evaluated.

3.1 Evaluation on Homo_std test dataset
We compare DRCon with DNCON2_Inter on the Homo_std test
dataset. DRCon is run in the three settings. In one setting, the true
intrachain contacts extracted from known tertiary structures of a
monomer in each homodimer are used as input. In another setting,

Table 1. The statistics of the Homo_std test dataset, DeepHomo test dataset and CASP-CAPRI test dataset

Name Number of dimers Range of length Average length Range of contact density Average contact density

Homo_std test dataset 1702 30 to 600 254.94 0.003 to 4.54 0.67

DeepHomo 218 48 to 498 235.9 0.210 to 4.5 1.06

CASP-CAPRI 40 73 to 480 248.97 0.346 to 4.96 2.04

Fig. 1. The deep learning architecture of DRCon for interchain contact prediction in homodimers. For a homodimer in which the length of the monomer sequence is L, the in-

put is a L�L�592 tensor. The number of input features for each pair of residues is 592. For convenience, L is set to a fixed number—600. 0 padding is applied if L is less than

600. It is worth noting that in the prediction phase, no zero padding is used in generating the input tensor if L is greater than 600. The input is transformed to a 600�600�48

tensor using a 2D-convolutional layer which has a kernel size of 1 and uses Exponential Linear Unit (elu). The output of the convolution layer is passed through 36 residual

blocks with kernel size of 3x3. Each residual block uses a 2D-convolution layer with a kernel size of 3, instance normalization and dropout of 15% probability of a neuron

being ignored, followed by a dilated convolution layer without dropout. The step of the dilation in the dilated convolution layers in these blocks changes from 1, 2, 4, 8, 16

periodically. The sigmoid activation function is applied to the output of the last residual block to calculate the contact probability of each interchain residue–residue pair. The

probabilities for residue pair (i, j) and residue pair (j, i) are averaged to a symmetric final contact map
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the intrachain contacts predicted by trRosetta are used as input.
Predicted intrachain contacts are converted from the distance proba-
bilities predicted by trRosetta. A cutoff probability of 0.5 is applied
to make the conversion. The precision of top L and top 2L intra-
chain contact predictions made by trRosetta is 86% and 78%, re-
spectively, indicating the quality of the intrachain contact prediction
is good. Lastly, the intrachain contacts extracted from Alphafold2
predicted tertiary structures which had an average TM-score of
0.948 were used as input.

The precision of the interchain contact prediction on the Homo_std
test dataset is reported in Table 2. The precision of DRCon in all the
settings is more than twice that of DNCON2_Inter in most cases. For
instance, the precision of DRCon with intrachain contact prediction
made by trRosetta as input for top L/10 interchain contact prediction
is 37.25%, higher than 17.32% of DNCON2_Inter. The difference is
largely because DRCon is specially designed and trained to predict
interchain contacts, but DNCON2_Inter is adapted from a deep learn-
ing method designed and trained to predict intrachain contacts. It is
worth noting that the interchain contact prediction accuracy of using
AlphaFold predicted tertiary structure as input (DRCon_alpha) is very
close to that of using true tertiary structures as input (DRCon_true),
indicating that tertiary structures predicted by AlphaFold are sufficient-
ly accurate for interchain contact prediction.

In contrast, the precision of DRCon with trRosetta predicted
intrachain contacts (DRCon_pre) as input is worse than that of
DRCon with true contacts by about 6 to 11 percentage points for
Top 10, Top L/10, Top L/5 and Top L interchain contact predic-
tions, indicating that more precise intrachain contact prediction (or
tertiary structure prediction) of monomer leads to the higher accur-
acy of the interchain contact prediction.

Because the predicted intrachain contacts represent the tertiary
structures of monomers in the unbound state (i.e. in the free state
without a binding partner) while the true intrachain contacts repre-
sent the tertiary structures in the bound state (i.e. in the state of
binding with a partner in complex), the reasonable performance of
DRCon_pre and DRCon_alpha shows that DRCon trained on the
dimers and the true tertiary structures of monomers in the bound
state can work well on the predicted input intrachain contacts (or
predicted tertiary structures) in the unbound state. The similar trend
is also observed in the target-level prediction accuracy rate on the
dataset (Table 3).

3.2 Evaluation on DeepHomo test dataset
We compare DRCon, DNCON2_Inter and DeepHomo on the
DeepHomo test dataset (see the contact-level precision and target-
level accuracy rate in Tables 4 and 5, respectively). For a fair com-
parison, we use the same tertiary structures of monomers in the
homodimers provided by the DeepHomo server to extract the intra-
chain contacts as input for DRCon and for the DeepHomo server it-
self to make interchain contact predictions. The interchain contacts
predicted by DeepHomo consist of only the upper triangle of the
interchain contact map. They are converted to a diagonally symmet-
ric full contact map for evaluation as DeepHomo assumes the con-
tact map is of C2-symmetry. DRCon performs better than
DeepHomo in terms of contact-level precision and target-level ac-
curacy rate at all the thresholds except for the target-level accuracy
rate of top L contact predictions. For instance, the contact-level pre-
cision and target-level accuracy of DRCon for top L/10 interchain
contact prediction is 50.17% and 76.15%, higher than 38.74% and
70.77% of DeepHomo. The result of this experiment with 8 Å con-
tact threshold is presented in Supplementary Tables S1 and S2 in
Supplementary Material. However, it is worth pointing out that the
sequence redundancy between the DeepHomo test dataset and the
training data of DRCon is not filtered by the 30% sequence identity
threshold, which may lead to an overestimate the performance of
DRCon.

3.3 Evaluation on CASP-CAPRI dataset using true or

predicted tertiary structures as input
We compare DRCon, DeepHomo, Glinter and DNCON2_inter on
the CASP-CAPRI dataset. Only the contact-level precision is used to
evaluate them because only 40 targets are not sufficient to reliably es-
timate the target-level accuracy rate. DRCon is run in the two set-
tings (the ideal setting and the realistic setting). In the ideal setting
(DRCon_true), the known tertiary structures of the monomers in the
homodimers are used to generate the true intrachain contacts as in-
put for DRCon. In the realistic setting (DRCon_alpha), the tertiary
structures of the monomers predicted by AlphaFold2 (Jumper et al.,
2021) are used to generate the interchain contacts for DRCon. The
AlphaFold2 model with the highest confidence is used for each tar-
get. The average TM-scores (Zhang and Skolnick, 2004) of the ter-
tiary structures for the 40 targets predicted by AlphaFold2 is 0.931.

The precision of interchain contact predictions of the four meth-
ods are shown in Table 6. The precision of both DRCon_true and
DRCon_alpha is substantially higher than that of DeepHomo and
DNCON2_Inter at all the thresholds. For instance, for top L/10
interchain contact predictions, the precision of DRCon_true and
DRCon_alpha is 38.65% and 36.88% in comparison with 23.88%
of DeepHomo and 2.36% for DNCON2_Inter. DRCon_true per-
forms better than DRCon_alpha, indicating that more accurate

Table 2. The interchain contact prediction precision of DNCON2_Inter,

the DRCon with true intrachain contacts as input (DRCon_true),

DRCon with AlphaFold2 predicted tertiary structure’s intrachain con-

tacts as input (DRCon_alpha) and DRCon with trRosetta predicted

intrachain contacts as input (DRCon_pre) on Homo_std test set

Predictor Top10 (%) Top L/10 (%) Top L/5 (%) Top L (%)

DNCON2_Inter 16.9 17.32 16.31 13.69

DRCon_pre 40.20 37.25 33.75 18.92

DRCon_alpha 49.71 46.21 42.12 24.04

DRCon_true 50.61 47.21 43.46 25.05

Note: The precision of DNCON2_Inter is reported with its best parameter

setting (relax_removal¼ 2).

L, length of a monomer in a dimer.

Table 3. Target-level accuracy rate of DNCON2_Inter, DRCon_pre,

DRCon_alpha and DRCon on the Homo_std test dataset

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%) Top L (%)

DNCON2_Inter 23.52 30.19 37.50 43.36

DRCon_pre 58.28 63.40 67.74 73.85

DRCon_alpha 67.09 70.38 74.14 83.31

DRCon_true 67.39 70.86 75.56 80.38

Table 4. The interchain contact prediction precision of DRCon and

DeepHomo, DNCON2_Inter on the DeepHomo test dataset

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%) Top L (%)

DRCon 53.66 50.17 47.10 27.81

DNCON2_Inter 7.43 7.59 7.95 7.67

DeepHomo 43.80 38.74 34.10 21.35

Bold fold is used to denote the highest precision in terms of each metric.

Table 5. The target-level accuracy rate of DRCon, DNCON2_Inter

and DeepHomo on the DeepHomo test dataset

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%) Top L (%)

DRCon 72.95 76.15 80.73 86.69

DNCON2_Inter 22.01 28.44 34.40 64.22

DeepHomo 66.67 70.77 77.17 87.61

Bold fold is used to denote the highest precision in terms of each metric.
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intrachain contact input leads to better interchain contact predic-
tion. However, because the quality of the AlphaFold predicted
tertiary structure is very high, the difference between DRCon_true
and DRCon_alpha is small. In addition, both DRCon and
DrCon_alpha performs better than Glinter by up to a few percent-
age points. The result of this experiment with 8 Å contact threshold
is presented in Supplementary Table S3. At 8 Å contact threshold,
the precision of top L/10 and L/5 contact predictions of Glinter is
slightly higher than DRCon_true, but its precision of top 10 contact
predictions is slightly lower.

3.4 Effect of contact density on interchain contact

prediction
We investigate the interchain contact density in a dimer with the
precision of the interchain contact prediction on the Homo_std
test dataset. The Pearson’s correlation coefficient between the
precision of top L/5 interchain contacts and contact density is
0.4211, indicating a moderate correlation between the two. The
lowest average precision (a little over 4%) is recorded for targets
with the low contact density between 0 and 0.25, indicating that
when the interchain contact map is very sparse, the prediction is
generally difficult. According to Figure 2, there is an uptrend of
the average contact prediction precision with the increasing con-
tact density until the density of 1.5.

3.5 Impact of sequence similarity on interchain contact

prediction
A common threshold—30% sequence identity is used to remove the
redundancy between the Homo_std test dataset and the training data-
set. However, low sequence identity between two sequences does not
always mean they do not significant similarity/homology. To investi-
gate how sequence similarity may influence the accuracy of interchain
contact prediction, we build a hidden Markov model profile database
for the sequences in the training dataset from their multiple sequence
alignments using Hhsuite, and then use hhsearch in Hhsuite to search
each sequence in Homo_std test dataset, DeepHomo test dataset and
CASP-CAPRI dataset against the profile database. The ranges of e-
values of the top hits for the test sequences measuring the similarity
between the test sequences and the training data for the three test
datasets are reported in Supplementary Table S4. All the test datasets
including the CASP-CAPRI dataset whose proteins were released in
the Protein Data Bank (PDB) much later than the proteins in the
training dataset and were carefully selected by CASP organizers to
rigorously test protein structure prediction methods contain some
proteins having significant similarity with the training data. On all
the three test datasets, the average top L/5 precision of interchain con-
tact prediction for 6 and 8 Å thresholds largely increases as the
sequence similarity increases between test sequence and the training
data (i.e. e-value decreases). The similar trends are observed with
Glinter and DeepHomo (Supplementary Table S5) on the CASP-
CAPRI test dataset.

Moreover, we select all the test sequences in the CASP-CAPRI
dataset that has e-value > 0.1 (no similarity) with all the sequences
in the training sets of DRCon, Glinter and DeepHomo to compare
their performance on the common de novo targets. Nine such test
sequences are obtained. The precision of top L/5 interchain contact
prediction at 8 Å threshold is reported in Supplementary Table S6.
Glinter performs better than DRCon, while DRCon performs better
than DeepHomo and DNCON_Inter.

3.6 A case study of applying interchain contact

prediction to build quaternary structure
Figure 3 visualizes the top L/5 interchain contact predictions for a
target (PDB code: 1DR0) from the Homo_std test dataset and the
quaternary structure reconstructed from the interchain contacts pre-
dicted by DRcon and the known tertiary structure of a chain in the
dimer. The quaternary structure is built by GD (Soltanikazemi et al.,
2022), which applies the gradient descent optimization to build qua-
ternary structures by using interchain contacts as distance restraints.

It is shown in Figure 3A that most of the interchain contact pre-
dictions overlap with the true interchain contacts, indicating a high
prediction precision. Indeed, the precision of top L/5 and top L con-
tact predictions is 100% and 75%, respectively. The quaternary
structure reconstructed from the predicted interchain contacts is
also very similar to the native structure (Fig. 3B). The TM-score of
the predicted quaternary structure in comparison with the true qua-
ternary structure is 0.99. TMalign (Zhang and Skolnick, 2005) is
used to calculate the TM-score. The predicted quaternary structure
has a fraction of the native contacts (Fnat) of 0.88, interface RMSD
(iRMS: root mean square displacement of inter-protein heavy atoms
that are within 10 Å) of 0.3 Å, ligand RMS (LRMS) of 0.83 Å and a
DockQ score of 0.95. Fnat, iRMS, LRMS and DockQ score of the

Table 6. The precision of DRCon, DeepHomo, Glinter and

DNCON2_inter on the CASP-CAPRI test dataset

Predictor Top 10 (%) Top L/10 (%) Top L/5 (%)

DRCon_true 41.75 38.65 33.50

DRCon_alpha 40.25 36.88 31.67

DeepHomo 26.0 23.88 20.27

Glinter 37.5 35.16 30.61

DNCON2_Inter 2.36 2.33 2.39

Note: DRCon_true and DeepHomo use the true tertiary structures of

monomers in the bound state to extract intrachain contacts as input.

DRCon_alpha uses the tertiary structures predicted by AlphaFold2 in the un-

bound state to extract intrachain contacts as input. Bold fold is used to denote

the highest precision in terms of each metric.
Fig. 2. Illustrating the effect of contact density on interchain contact prediction pre-

cision on the Homo_std test dataset

Fig. 3. (A) The predicted and true contact maps of target 1DR0. The top L/5 pre-

dicted contacts (red dots) and true contacts (blue dots) are plotted. Most predicted

contacts overlap with the true contacts, indicating a high contact prediction preci-

sion. (B) The superimposition of the true quaternary structure (chain A in red and

chain B in green) and the predicted quaternary structure (chain A in blue and chain

B in orange). The two quaternary structures are quite similar
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predicted quaternary structure are calculated against the true qua-
ternary structure by DockQ (Basu and Wallner, 2016). A DockQ
score of 0.8 indicates a high-quality quaternary structure prediction.
The scores (e.g. TM-score¼0.99) of the structures reconstructed by
GD with interchain contact predictions are much better than the
scores (e.g. TM-score¼0.55) of the structures reconstructed by GD
without contact predictions (see Supplementary Table S7 for
details), indicating that the interchain contact prediction plays a crit-
ical role in reconstructing correct quaternary structures.

3.7 Ablation studies
The DRCon utilizes a variety of features to make interchain contact
prediction. Collectively the features can be grouped into 3 divisions,
i.e. the DNCON2, trRosetta and intrachain features. Using these
groups, we conducted an ablation study to find out their impact on
the precision of DRCon. The findings of the investigation are illus-
trated on Figure 4. In each run we leave out one group of features
and then compare the prediction precision with the DRCon using all
the features. The results show that removing any group of the fea-
tures decreases the performance. Among the 3 groups of features
DNCON2 feature group appear the least impactful. After removing
it, the average L/5 precision drops from 43.46% to 40.44%.
TrRoseetta feature group is the second most significant as its ab-
sence causes the precision to be dropped to 39.27% from 43.46.
Finally, the intrachain feature group is the most impactful feature
group. Leaving it out causes the average accuracy to sharply fall to
37.47%. Even though each group of features has different impacts,
combining them together works best.

4 Conclusion and future work

In this work, we develop a deep network (DRCon) consisting of re-
sidual connections, regular and dilated convolutions and instance
normalizations to predict interchain homodimers from sequence and
structural features of monomers in homodimers. DRCon trained on
known homodimer structures can predict interchain contacts well.
Moreover, DRCon is robust against the errors in input tertiary
structures or intrachain contacts of monomers. It maintains the rea-
sonable prediction precision when predicted tertiary structures of
monomers in the unbound state instead of true tertiary structures in
the bound state are used as input. The work demonstrates that deep
learning methods specially designed for interchain contact predic-
tion can be trained on known homodimer structures to substantially
improve the prediction of interchain residue–residue contacts as
what had happened in protein tertiary structure prediction. In the
future, we plan to further improve the deep learning architecture, in-
put features and training strategies to improve interchain contact
prediction. We will generalize the method to predict interchain resi-
due–residue distances. Moreover, we plan to develop similar

methods to predict interchain contacts and distances in heterodimers
and generalize them to multimers consisting of more than two
chains.
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