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Simple Summary: Laboratory rodents are the most common animal models used in preclinical
cancer research. Companion animals with naturally occurring cancers are an under-utilized natural
model for the development of new anti-cancer drugs. Dogs and cats develop several types of cancers
that resemble those arising in humans with similar clinical and histopathological features and often
with similar molecular and genetic backgrounds. Exposure to environmental carcinogens, including
air, food and water are also common between people and their pets. Dogs and cats are a unique model
that could be integrated between the preclinical laboratory animal model and human clinical trials.

Abstract: Companion animals with naturally occurring cancers can provide an advantageous model
for cancer research and in particular anticancer drug development. Compared to commonly utilized
mouse models, companion animals, specifically dogs and cats, share a closer phylogenetical distance,
body size, and genome organization. Most importantly, pets develop spontaneous, rather than
artificially induced, cancers. The incidence of cancer in people and companion animals is quite
similar and cancer is the leading cause of death in dogs over 10 years of age. Many cancer types in
dogs and cats have similar pathological, molecular, and clinical features to their human counterparts.
Drug toxicity and response to anti-cancer treatment in dogs and cats are also similar to those in
people. Companion animals share their lives with their owners, including the environmental and
socioeconomic cancer-risk factors. In contrast to humans, pets have a shorter life span and cancer
progression is often more rapid. Clinical trials in companion animals are cheaper and less time
consuming compared to human trials. Dogs and cats with naturally occurring cancers are an ideal and
unique model for human cancer research. Model selection for the specific type of cancer is of pivotal
importance. Although companion animal models for translational research have been reviewed
previously, this review will try to summarize the most important advantages and disadvantages
of this model. Feline oral squamous cell carcinoma as a model for head and neck squamous cell
carcinoma and canine oral melanoma as a model for mucosal melanoma and immunotherapy in

people will be discussed as examples.

Keywords: companion animal model; feline oral squamous cell carcinoma; head and neck carcinoma;

immunotherapy; mucosal oral melanoma

1. Spontaneously Occurring Cancers in Companion Animals Represent a Unique
Model for Human Cancers

The main goal of cancer research is to find new diagnostic and therapeutic anti-cancer
strategies. Preclinical cancer research is mainly based on laboratory animal models with
most of the studies performed on tumors grown in rodents [1]. Laboratory in vitro and
in vivo studies have been and remain an essential first step in cancer research. The main
goal of preclinical research is to assess the toxicity and efficacy of new drugs prior to
conducting human trials [2]. Despite the common use of mice and other rodents in preclin-
ical research, these models are poorly predictive of efficacy in human clinical trials [3,4].
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Despite many successful laboratory animal studies, only 5-8% of new anticancer drugs are
eventually approved for clinical use [5,6].

The lack of success in preclinical laboratory mice studies, both in xenograft and
genetically engineered mice, could result from the failure to accurately reproduce the
biological behavior and genetic and molecular background of the artificially induced cancer
compared to a spontaneous human tumor, the inability to examine the specific tumor
microenvironment and host characteristics, and a lack of the complexity and heterogenicity
of naturally occurring cancers [6,7]. Experiments conducted in caged laboratory animals
can be affected by high levels of stress that could affect the response to investigational
drugs and immunotherapy. A lack of well-defined best practice protocols for the testing,
treatment and procedures performed in laboratory animals compared to human clinical
trials could also introduce bias [8,9].

Companion animals represent a unique model for human cancer for various reasons.
Dogs and cats, unlike laboratory rodents, develop naturally occurring cancers that closely
mimic the heterogenous nature of human tumors [10,11]. Many cancers arising in dogs
and cats have similar clinical signs, appearances, and biological behavior to human cancers.
Microscopic appearance and genetic and molecular background are also very similar
in many types of cancers in dogs, cats, and people. The outbred characteristic in dogs,
compared to studies in inbred laboratory animals, provides a background of genetic
diversity that more closely parallels that of humans [11,12]. In addition, compared with the
murine genome, the canine genome more closely resembles the human genome [12,13].

Cancer in pets, as in people, is one of the leading causes of death [13,14]. The life
span of dogs and cats has increased in recent decades and now the incidence of cancer
in dogs exceeds that of people, with around 40-50% of dogs older than 10 years dying of
cancer [15,16]. Companion animals share all their lives with their owners, including the
environmental and socioeconomic factors that predispose to cancer development [17]. For
example, obesity is considered one of the leading factors associate with increased cancer
incidence, morbidity, and mortality in people [18]. Obesity also affects dogs and cats.
Around 50% of dogs are considered overweight [19] and obese dogs are also more likely to
have an owner that is obese [20]. Companion animals and people are exposed to similar
environmental risks factors, toxins, and carcinogens such as air pollution or pesticides in
food and water [21]. Spontaneous companion animal tumor models are likely to mimic
the intricate and complex metabolic, genetic, and epigenetic alterations that are associated
with cancer in people [22].

Companion animals have a larger body size compared to rodents, allowing for easier
and more frequent blood sampling for longitudinal assessment of drug efficacy/toxicity.
Furthermore, the collection of larger biopsy samples compared to those of mice can be
advantageous when multiple analyses are required [23]. Identical imaging modalities can
be applied to cancers in animals and humans (x-ray, CT, and MRI scan) so that any findings
can be easily interpreted and compared. Responses to chemotherapy and drug toxicity in
people is more comparable to those of companion animals than mice, and similar drugs are
used to treat cancer in people and in pets [23]. As an example, the CHOP chemotherapy
protocol involving the use of cyclophosphamide, doxorubicin, vincristine, and prednisolone
is used as a standard of care for the treatment of the most common type of lymphoma,
diffuse large cell lymphoma (DLCL), in both dogs and human patients. Response rates and
outcomes for some cancers (approximately one year survival in dogs translates to five years
in people) are also comparable [11]. However, many chemotherapy drugs are used at lower
doses in pets compared to people as the main goal of treatment in veterinary oncology is to
improve quality of life rather than attempting to achieve a cure [24]. While conventional
chemotherapy is used at lower doses in pets to avoid severe adverse events, target therapies
and immunotherapies can often be used at similar doses in pets as in human patients [25].

In the new era of cancer immunotherapy, companion animal models could play a key
role in the testing and development of new treatment in people. The intricate crosstalk
between the immune system and cancer is very difficult to replicate in artificially induced
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tumors in laboratory rodents. Dogs are exposed to a multitude of antigenic stimuli across
their lifespan, including pathogenic and nonpathogenic bacteria, viruses, and parasites.
Considering the large exposure of the intestine to numerous microbial antigens, it is not
surprising that the intestinal microbiome can influence cancer growth and response to im-
munotherapy [26,27]. Dogs have a naturally developed intestinal microbiome that regulates
the complex response to antigenic stimulation and diseases. Dogs are likely to respond to
immunotherapy similarly to people, compared to laboratory rodents kept in disease free or
minimal-disease conditions. Evaluation of the response to immunotherapy treatments and
the longitudinal assessment of immune response parameters/biomarkers and side effects
would be easier in companion animal than mice due to the easier collection of larger blood
samples. Numerous studies in pets have assessed the relationship between cancer and
the immune system; increased numbers of immunosuppressive regulatory T-cells (T-reg)
have been found in various cancer types in dogs [28-30]. Markers of potential response
to immunotherapy such as programmed cell death 1 (PD-1) and its ligand, programmed
cell death ligand 1 (PD-L1), have also been found to be overexpressed in cancer cells and
cancer infiltrating lymphocytes in oral melanoma, lymphoma, osteosarcoma, and urothelial
carcinoma in dogs [31-35]. The first cancer immunotherapy vaccine has been successfully
used in dogs with locally controlled oral melanoma and is now conditionally licensed in
the USA [36,37]. Another new promising recombinant attenuated listeria monocytogenes
vaccine expressing a chimeric human HER2 for HER-2+ osteosarcoma showed safety and
efficacy in dogs and further studies are ongoing [38].

In recent years, knowledge in veterinary medicine has grown significantly. Veterinari-
ans can specialize in various medical disciplines including companion animal oncology.
Qualified veterinary oncologists, like human oncologists, perform advanced treatments and
follow best practice guidelines in performing clinical trials in pets. Veterinary oncologists,
similarly to their medical colleagues, conduct clinical trials in dogs and cats with a strict
standardized criteria for assessing grade of toxicity and tumor response [39,40], potentially
offering preclinical data that are more precise, reliable, and more likely to be translated to
successful human trials than the rodent models. Dogs and cats have a short life span and
cancer progresses relatively quicker than in people, allowing for a more rapid collection of
end-point data such as disease-free interval (DFI) and median survival time (MST) with
significantly reduced cost compared to human clinical trials [11].

Regulatory policies involving companion animal clinical trials are not always well
defined and clear, but in general, the regulations are more flexible than in human clinical
trials [41]. As there are no clear international guidelines, rules often vary in different
countries [41]. However, it is often for the institution involved in the companion animal
trial to set the rules when clear guidelines are not available [42]. Clear and detailed owner
consent forms and ethical approval from the institution involved in the study are usually the
main requirements to perform a companion animal clinical trial in most countries [42,43].

Despite the advantages of using companion animal models, there are few limitations
that need to be considered. The cancer heterogenicity of spontaneous companion ani-
mal models is an advantage, but also a disadvantage. When specific genetic/pathway
alterations need to be studied, a more homogeneous and less diverse genetic background
is preferable. Another limitation is cost; despite pet trials being cheaper than their hu-
man counterparts, they are still more expensive and more time consuming than rodent
preclinical studies [23]. Owner willingness to be enrolled in investigational studies and
compliance with the terms and conditions of the trial are other potential disadvantages.
Furthermore, an important factor that needs to be considered in pet trials is euthanasia.
In many western countries, euthanasia in pets is widely recognized as a humane way to
end life and so the subjective and personal decision of the owner to euthanize their pets
could affect standardization of the MST (Table 1). Despite the similarities of cancers in
people and companion animals, there are species-specific differences in incidence as well
as biological and clinical behavior that needs to be considered before choosing a specific
companion animal cancer model. Feline oral squamous cell carcinoma and canine oral
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melanoma have previously been considered a good model for people suffering from head
and neck carcinoma and mucosal melanoma, respectively [17,44]. An updated summary of
the findings in these two types of tumors for translational cancer research, including new
possible translational immunotherapies, will be discussed in more detail.

Table 1. Advantages and disadvantages of companion animal models for translational cancer

research.
Advantages Disadvantages
»  Naturally occurring cancers
»  Cancer heterogenicity
> Shared environmental and socioeconomic
factors
»  Similar tumor histopathology, molecular
and genetic background
> Large boc'iy size ' »  Tumor heterogenicity
> S}m{lar biological behavior ) > Longer studies and higher costs
»  Similar response to treatment and side compared to mouse model
effects > Different incidence for some cancer types
»  Similar cancer staging and imaging in human and pets
modalities »  Owner request for euthanasia can affect
»  Intact and functional immune system MST * measurement
»  Pets’ clinical trials are cheaper than >  Owner compliance
human trials
»  Standardization in reporting drug
toxicity and cancer response
> End-point measurements (DFI/MST) * in

pets are reached faster than in human
trials

* DFI disease free interval, MST median survival time.

2. Feline Oral Squamous Cell Carcinoma in Cats as a Model of Head and Neck
Squamous Cell Carcinoma in People

Incidence, Risk Factors and Biological Behavior

Feline oral squamous cell carcinoma (FOSCC) is a promising and unique model for
Human head and neck squamous cell carcinoma (HNSCC) [17]. Head and neck squamous
cell carcinomas (HNSCC) are the most common oral neoplasia and the sixth most common
cancer worldwide, counting for 890,000 new cases and 450,000 human deaths in 2018 [45].

In HNSCC, papillomavirus is considered an important risk factor as well as tobacco
smoke and alcohol consumption [45]. Cats living in households with smokers are consid-
ered at increased risk of developing FOSCC compared to non-smoking households [46,47],
possibly due to the deposition of chemicals from the tobacco smoke on the coat in conjunc-
tion with feline grooming habits. Cats with a high intake of canned food in their diet and
cats wearing flea collars have also been reported to be more at risk of developing SCC [46].
The relationship of papilloma virus and FOSCC is not well established. In one study, 90%
of feline cutaneous SCC carried papillomavirus DNA [48]. In a recent study using next
generation sequencing, the presence of feline papillomavirus in FOSCC was very low, only
11in 20 [49]. In contrast to the situation in people, papillomaviruses are unlikely to be a
risk factor for FOSCC, hence, FOSCC is likely a better model for the more aggressive HPV
negative HNSCC [49].

FOSCC is a common cancer in old cats and the most common tumor affecting the
oral cavity [50]. (Figure 1) FOSCC is a locally aggressive tumor with a low metastatic
rate. The mucosa of the tongue, mandible and maxilla are the most common sites [51].
At presentation, metastatic rate is low, with around 14-18% having metastasized to the
regional lymph nodes and around 12% to the lungs [51]. Most patients are likely to die due
to the consequences of the primary tumor which impacts the ability to eat and drink [51,52].
Like FOSCC, HNSCC is a local aggressive disease with early invasion and destruction of
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the surrounding tissues, and metastases presenting only at a later stage [45]. Humans, like
feline patients, often present at advanced stages as precancerous oral lesions are rare [45].

Figure 1. Sublingual oral squamous cell carcinoma in a 13-year-old female domestic shorthair cat.

3. Molecular and Genetic Similarities

FOSCC and HNSCC have similar histological appearances with common dysregulated
pathways and molecular markers [45,52,53]. P53 loss of function is frequently found in
HPV-negative HNSCC and carries a worse prognosis compared with positive HPV [54].
Mutation of p53 is commonly found in FOSCC [47] and seems to be associated with tobacco
smoke exposure [47].

The epithelial growth factor (EGF) signaling pathway involved in the cancer devel-
opment, progression, metastasis, and angiogenesis, is dysregulated in many cancers [55].
EGEF receptor (EGFR) overexpression has been found in both FOSCC and HNSCC [53,56].
Increased expression in people with HNSCC has been associated with poor survival, and
anti-EGFR monoclonal antibodies have been used with limited success [55]. EGFR is
overexpressed in a large proportion of FOSCC, but the prognostic significance is still
controversial [17].

COX-2 expression is mainly involved in tumor development, growth, and neo angio-
genesis. High Cox-2 expression is found in a large proportion of HNSCC, and overexpres-
sion is considered a negative prognostic factor [57]. In FOSCC, expression of COX-2 is
variable, with different studies reporting between 18 and 60% of expression [58-60]. It is
not clear if COX-2 expression in FOSCC is of prognostic significance, but improved survival
has been found in cats treated with COX-2 inhibitors [61].

Overexpression of VEGF has been found in FOSCC and HNSCC. Increased expression
can be correlated with poor prognosis in people [62,63] and in one study in cats, and COX-2
and VEGF expression were correlated with FOSCC disease progression [64].

STAT3 phosphorylation and hyperactivation has been found in HNSCC and FOSCC
and it has been associated with a poor prognosis in people [65,66]. In FOSCC, cell lines
phosphorylated STAT show high levels of expression and treatment, with a STAT inhibitor
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producing a significant biological effect [66]. STAT inhibition could be a new target treat-
ment for both FOSCC and HNSCC.

WNT signaling is a signal transduction pathway known to be dysregulated in many
human cancers [67]. Oncogenic signaling by the WNT—p-catenin pathway contributes to
HNSCC, and overexpression and dysregulation of the WNT- 3-catenin pathway has been
found in HNSCC [68-70]. Similarly, putative targets of WNT signaling transduction were
found to be upregulated in FOSCC [52].

BMI1 (B cell specific Moloney murine leukemia virus integration site 1) is an impor-
tant biomarker of cancer stem cells (CSC). CSC are involved in cancer transformation,
progression, and metastasis. High levels of BMI-1 have been found in both FOSCC and
HNSCC with possible prognostic implication and future new treatment avenues in both
cancers [71,72].

4. Therapeutic Strategies

Despite the progress made over the past two decades, HNSCC remains a tumor with
high mortality rates due to frequent late-stage presentations, and more effective systemic
treatments are needed [45].

The main treatment modalities for both FOSCC and HNSCC are surgery and radiother-
apy with systemic treatment achieving only modest results [51,73]. Treatment for advanced
FOSCC with standard chemotherapies have been unsuccessful, as tumor response and/or
improved survival time are rarely achieved [51]. Similarly, in people, standard chemother-
apy treatment with carboplatin, with or without fluorouracil, is quite disappointing for
advanced tumors [73]. Tyrosine kinase inhibitor treatments have been used in both ad-
vanced FOSCC and HNSCC. In advanced HNCC, for example, the use of EGFR inhibitor
Gefitinib has shown only a very modest clinical efficacy [74]. Similarly to feline patients, the
use of a multi-kinase inhibitor Toceranib has produced only minor survival improvement
in FOSCC cases [75].

The prognosis for cats with FOSCC is often very poor, with cats treated palliatively
with COX-2 inhibitors and/or other pain management surviving only 2-3 months [61]
while cats treated with surgery and radiotherapy only 3-5 months [76,77]. Similarly, the
prognosis for advanced stage HNSCC (stage -III-IV) is very poor, with most people dying
in less than one year [73].

In conclusion, at a microscopic and macroscopic level and from molecular background
to clinical behavior, FOSCC and HNSCC share interesting similarity [78]. FOSCC could be
a good model for new anti-cancer drug trials for advanced HNSCC. The high incidence of
FOSCC, and the lack of effective treatment, translate into fast clinical trials in cats compared
to people. Endpoints like DFI and MST are reached quickly as most of the cats with only
palliative treatment die or are euthanized in 2-3 months [61]. As no standard of care or
effective drugs are available, many FOSCC patients could be potential candidates, and a
high number of enrolled patients would translate into quickly achievable results. However,
when considering owned feline patients, there are some potential problems that need to be
taken into consideration, such as owner willingness to enroll the cat in an investigational
study, owner compliance with the terms and conditions of the trial, and the potential
extra costs for the owners. For studies involving frequent administration of oral drugs,
willingness and/or capability of the owner to administer tablets/capsules, palatability of
the compound or the possibility of oral pain when opening the mouth will need to be taken
into consideration.

5. Canine Oral Melanoma as a Translational Model of Mucosal Melanoma and
Immunotherapy in People

Biological Behavior and Molecular Similarities
Canine oral melanoma might represent a unique model to study mucosal melanoma

in people, and to assess the safety and efficacy of new immunotherapy drugs before human
clinical trials.
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Canine melanoma is a very common tumor in old dogs and the most common ma-
lignant tumor of the oral cavity [79] (Figure 2). The tumor originates from the neoplastic
transformation of resident melanocytes of the oral cavity. Human mucosal melanoma is a
rare cancer that affects mainly the oropharyngeal and nasal cavity [80]. The etiopathogen-
esis of human mucosal melanoma, in contrast to that of cutaneous melanoma, is largely
unknown. The lack of exposure to UV-light rules this out as a causal factor for mucosal
melanoma [81]. The risk factors and etiopathogenesis of oral melanoma in dogs are also
unknown, but a genetic predisposition has been hypothesized due to the predisposition
of some small breeds with heavily pigmented oral mucous membranes [82]. Mucosal
melanomas in dogs are locally aggressive tumors with a high rate of metastasis especially
to the loco-regional lymph nodes and lungs [79,83]. Contrary to people, canine cutaneous
melanoma or melanocytoma are usually benign lesions often cured by a complete surgical
excision [83]. In people, mucosal melanoma is much less common compared with dogs but
shares similar aggressive biological behavior [44]. The prognosis for mucosal melanoma in
people is poor, with only around 20-30% of patients alive at five years [80,84]. Similarly,
in dogs, advanced stage oral melanoma carries a very poor prognosis with survival rang-
ing from two to five months [79,82,83]. Mucosal melanoma in dogs and people share a
similar histopathological appearance and molecular/genetic background [44]. Oncogene
mutations commonly found in cutaneous melanoma in humans, like BRAF and NRAS, are
uncommon in mucosal melanoma in either humans or dogs, while activation of the ERK
and AKT signaling pathways are common in both species [44]. Aberrant expression of the
oncogene KIT and mutation of platelet derived growth factor receptor, PDGFRA, are more
common in mucosal melanoma compared to cutaneous melanoma in people [85]. In canine
oral melanoma, KIT mutation is uncommon and anti-KIT targeted therapy has resulted in
only modest results [49,86]. However, PDGFR«/ 3 expression was found in around 50%
of oral canine melanoma and « and 3 co-expression was shown to correlate with a worse
prognosis [87].

Figure 2. Mucosal melanoma of the oral cavity in a 9-year-old mixed breed dog.

6. Inmunotherapeutic Strategies

The most common treatment for mucosal melanoma in both dogs and human patients
is surgery and radiotherapy with systemic chemotherapy treatment rarely effective in
both species [88-91]. Effective systemic treatments for the long-term control of advanced
cancer stages in both people and dogs are lacking. BRAF tyrosine kinase inhibitors (TKIs)
have been successfully used in people with cutaneous melanoma, but due to the low
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frequency of BRAF mutation in mucosal melanoma, TKIs are rarely effective in this type of
melanoma [92].

It is well-known that cancers use various mechanisms to inhibit the anti-cancer im-
mune response and induce immunotolerance. Immune checkpoints and programmed
cell death in T-lymphocytes and the respective ligands PD-L1 in cancer cells, all play a
pivotal role in cancer-associated immune suppression and immune evasion [93]. High
expressions of PD-1/PD-L1 have been proposed as cancer markers to predict response to
treatment to monoclonal anti PD-1/PD-L1 checkpoint inhibitors, and expression of PD-1
and PD-L1 have been found in cancer cells and tumor infiltrating lymphocytes in both
canine and human melanoma [30,31]. Other recognized markers of cancer immune evasion
like a high number of T-regulatory cells, increased expression of cytotoxic T lymphocyte
antigen-4 CTLA-4, and increased lymphocytes activation inhibitor indoleamine-pyrrole
2,3-dioxygenase IDO, have been found in canine melanoma and were found to correlate
with a worse prognosis [94].

Tumor-associated antigens (TAAs) are antigens expressed in tumor cells that are not
present in normal tissue cells, or expressed at a higher level in cancer cells [95]. TAA are
responsible for immune responses to cancer and numerous TAAs have been discovered
in various cancers including melanoma [96]. Melanoma-associated antigens are often
differentiation antigens, antigens derived from specific proteins expressed in melanoma
and normal melanocytes, and are involved in melanin biosynthesis or melanosome biogen-
esis [97,98]). The most studied melanoma antigens (MAA) are tyrosinase, gp100/pmell7,
and Melan-A/MART-1 [97,99,100]. MAA have been used to develop an anticancer vaccine
in dogs that could be translated to vaccine immunotherapy in people [101-103].

Cancer immunotherapy has recently gained momentum due to the success of im-
munotherapy treatments for a subset of cancers and, in particular, cutaneous melanoma.
The success of the anti PD-1 monoclonal antibody in mucosal melanoma in people has
been encouraging, but survival compared to cutaneous melanoma remains very poor [104].
Recently in dogs with oral melanoma, immunotherapy with an anti PD-1 monoclonal
antibody has also achieved some promising results [105,106]. Immunotherapy with a
xenogeneic human tyrosinase DNA vaccine is already available for dogs with stage II
and III locally controlled oral melanoma and it shows a significant efficacy in a subset of
patients [36,107].

Another melanoma antigen called chondroitin sulphate proteoglycan-4 (CSPG-4) has
been used to develop a canine vaccine. CSPG-4 is a transmembrane protein that plays an im-
portant role in cell proliferation, adhesion, migration, and survival [108,109]. It participates
in signaling transduction, presenting and linking growth factors to the extracellular matrix
(ECM), and enhancing growth factor activity and integrin-mediated pathways [110,111].
CSPG4 is overexpressed in various cancers including melanoma in dogs and human pa-
tients [112,113]. Recently, vaccination immunotherapy with a human chondroitin sulphate
proteoglycan-4 (hCSPG4) DNA-based vaccine delivered by intramuscular injection fol-
lowed by electroporation has shown some efficacy in canine oral melanoma after surgical
resection [114,115]. In human patients, various anti-cancer vaccines have entered clinical
trials, but none have been approved due to a lack of significant cancer response or increase
in survival time [116]. However, human trials are often performed in people with an
advanced cancer stage [117,118], while anti-cancer vaccines are likely to be more beneficial
in patients with microscopic or at early stage of disease [119]. This is mainly due to the
time required for the patient to mount an effective immune response to the cancer vaccine,
causing a delayed anti-cancer effect with a clinically detectable response that can require
weeks or months to be achieved [119]. A successful vaccination strategy in dogs could posi-
tively translate in human trials with early disease, and a combination of vaccine with check
point inhibitors could also achieve better results [120]. Due to the difficulty in recruiting
large numbers of human patients with mucosal melanoma, the large number of available
dogs with a similar disease make canine oral melanoma an interesting model with which
to investigate new treatment strategies.
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Another immunotherapy strategy that could take advantage of the canine oral melanoma
model is adoptive cell transfer (ACT) treatment. With this approach, antigen-specific T-cells
are isolated from the patient, expanded, activated in vitro, and reinfused into the same
patient. One promising ACT treatment is the use of CAR-T cell, where T lymphocytes are
genetically modified to express chimeric antigen receptors that recognize a specific surface
tumor antigen. CAR -T cells have the main advantage of being non-MHC II restricted,
so they can be administered from healthy allogenic donors, and they are still effective in
cancers with down-regulation of MHCII [121-123]. However, despite the success of CAR-T
CD19 cell therapy in lymphoproliferative diseases, the results in solid tumors, including
melanoma, have been disappointing [124,125]. In melanoma, CAR-T cell therapy has shown
success in preclinical models, but success in clinical trials has not been satisfactory [125,126].
It is now clear that mouse models are probably not a good model to predict response and
side effects to immunotherapy in people [126]. Major drawbacks of CAR-T cells in solid
tumors are the difficulty of finding specific antigens that are widely expressed in the cancer
and not expressed in normal tissues, a lack of homogeneous penetration of the CAR-T cell
in solid cancer tissue (due to increased tumoral interstitial pressure, hypoxic and immune
suppressive environment, and thick extracellular matrix), off-target effects with significant
adverse events, and development of resistance [124,127].

ACT therapy has not yet been used in canine oral melanoma, but it is feasible in
canine patients, and it has already been investigated in dogs with lymphoma and osteosar-
coma. This approach not only appears to be promising, but also appears to be better
compared to murine models with regards to studying the response and side effects to im-
munotherapy [128-130]. As many MAA are shared between human and canine melanoma,
evaluation of new antigen specific adoptive cell therapy could be used in dogs as a more
efficient preclinical model than mice, before starting a clinical trial in people.

In recent years, the role of intestinal microbiota has been found to a play a key role
in health and disease and the fecal microbiome has been found to affect cancer growth
and even response to immunotherapy [26,27]. In a recent small human clinical trial, a fecal
microbiota transplant showed some efficacy in restoring response to patient refractory
to anti-PD-1 monoclonal antibodies [131]. Interestingly, dysbiosis and alteration of the
microbiome have been found in dogs with cancers [132,133] and fecal transplantation has
been investigated in dogs with inflammatory bowel disease (IBD and refractory IBD with
some success [134,135]). Inmunotherapy in combination with fecal transplantation could
be beneficial in both species and canine patients could be a useful model to test for this or
other types of combined immunotherapy approaches that could be translated to people.
Despite the significant advantage of this canine model, there are similar limitations as
discussed in relation to FOSCC, including owner compliance with the terms and conditions
of the trial, potential extra costs for the owners, and willingness and/or capability of the
owner to administer tablets/capsules, all which need to be taken into consideration.

7. Conclusions

FOSCC and canine oral melanoma are only two examples of how cancers in pets
could be used as a translational model for the development of new anti-cancer treatments
in people. The collaboration and sharing of knowledge between scientists working in
preclinical research, veterinary oncologists, and human oncologists should be implemented
in a “one health” “one oncology” approach. Integration of companion animal clinical
trials between laboratory preclinical studies and human clinical trials could improve the
bench-to-bedside success rate of new anticancer drugs development.
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